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Abstract

Previous research that has evaluated the effectiveness of personality variables 

for predicting work performance has predominantly relied on methods designed to 

detect simple relationships. The research reported in this thesis employed artificial 

neural networks – a method that is capable of capturing complex nonlinear and 

configural relationships among variables – and the findings were compared to those 

obtained by the more traditional method of linear regression.  

Six datasets that comprise a range of occupations, personality inventories, and 

work performance measures were used as the basis of the analyses. A series of studies 

were conducted to compare the predictive performance of prediction equations that a) 

were developed using either artificial neural networks or linear regression, and b) 

differed with respect to the type and number of personality variables that were used as 

predictors of work performance. Studies 1 and 2 compared the two methods using 

individual personality variables that assess the broad constructs of the five-factor model 

of personality. Studies 3 and 4 used combinations of these broad variables as the 

predictors. Study 5 employed narrow personality variables that assess specific facets of 

the broad constructs. Additional methodological contributions include the use of a 

resampling procedure, the use of multiple measures of predictive performance, and the 

comparison of two procedures for developing neural networks.

Across the studies, it was generally found that the neural networks were rarely 

able to outperform the simpler linear regression equations, and this was attributed to the 

lack of reliable nonlinearity and configurality in personality-work performance 

relationships. However, the neural networks were able to outperform linear regression 

in the few instances where there was some independent evidence of nonlinear or 

configural relationships. Consequently, although the findings do not support the 



iv

usefulness of neural networks for specifically improving the effectiveness of personality 

variables as predictors of work performance, in a broader sense they provide some 

grounds for optimism for organisational researchers interested in applying this method 

to investigate and exploit complex relationships among variables. 
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CHAPTER 1: Personality and Work Performance 

Introduction

The notion that success at work may be related to an individual’s personality has 

long been intuitively appealing. Over 2300 years ago Plato wrote that people should be 

assigned to jobs for which they are naturally suited (Cohen, Swerdlik, & Phillips, 1996), 

and there is ample evidence that the ancient Chinese recognised the importance of 

personal characteristics in determining the fitness of officials for their jobs (Higgins & 

Sun, 2002). However, it was not until the early 20th Century that standardised 

personality inventories were developed and systematically used to make decisions about 

incumbent and prospective personnel. The first personality inventory, the Woodworth 

Personal Data Sheet, was developed during World War I with the aim of screening out 

potentially problematic army recruits (Anastasi, 1988), and since that time there has 

been a rapid proliferation in the number and use of these instruments in organisations.  

Today, personality inventories are one of the most popular methods of employee 

selection. Survey evidence suggests that they are the most frequently used selection 

tests for managerial jobs in Canada, France, Greece, Spain, and Sweden, and only come 

second to medical screening in Australia, Ireland, Italy, the Netherlands, Portugal, 

Singapore, South Africa, and the United Kingdom (Ryan, McFarland, Baron, & Page, 

1999). Their use has also been documented in a number of other countries including 

Belgium, Croatia, Germany, Hong Kong, Israel, New Zealand, Norway, Portugal, and 

the United States (Levy-Leboyer, 1994; Ryan et al., 1999; Smith & Abrahamsen, 1992; 

Taylor, Keelty, & McDonnell, 2002). A recent survey of large Australian businesses 

found that personality inventories were used to make selection and promotion decisions 

by 71 of the 85 responding firms (Hartstone & Kirby, 1998). Surveys conducted in the 
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United Kingdom suggest that they are used at least some of the time by the majority of 

companies hiring managers (Shackleton & Newell, 1991; Williams, 1994) and 

graduates (Hodgkinson & Payne, 1998). In the United States the estimates are lower, 

closer to 10% to 20% usage (American Management Association, 2001; Dipboye, 

1992), although even this would represent a substantial number of employees who come 

into contact with these instruments. 

Given the widespread use of personality inventories in organisations, an 

important issue concerns the effectiveness of personality variables for predicting work 

performance. A great deal of research has investigated this issue, yet the majority of 

previous work has relied on methods designed to detect simple (linear and additive) 

relationships among variables, and there have been few attempts to employ methods 

capable of capturing more complex relationships. The primary aim of the research 

reported in this thesis was to apply one such method, artificial neural networks, to 

evaluate the effectiveness of personality variables for predicting work performance, and 

to compare the findings with those obtained by the more traditional method of linear 

regression.

This chapter reviews the literature concerning personality and work 

performance. First, the research designs and methods typically used to evaluate the 

criterion-related validity of personality variables are outlined, 1 and the importance of a 

taxonomy of personality constructs within this framework is highlighted. Second, the 

five-factor model of personality is presented as one such taxonomy, and evidence for its 

usefulness as a classification scheme is provided. Third, the validity of measures of each 

of the five factors for predicting work performance is reviewed. Finally, arguments are 

1 The term criterion-related validity refers to the effectiveness of a predictor variable in predicting an 
individual’s standing on some criterion of interest (Anastasi, 1988). In this thesis the term is used 
specifically to refer to the prediction of work performance. 
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made for more complex relationships between personality variables and work 

performance, that if detected would increase the criterion-related validity of personality 

variables.

A Conceptual Framework  

In the approximately 90 years since the first standardised personality inventory 

was developed there have been hundreds of studies that have examined the validity of 

personality variables for predicting work performance. Typically, the method of 

investigation has involved administering a self-report personality inventory that assesses 

one or more personality variables to a sample of employees, and collecting work 

performance information for the employees either concurrently or, less often, after a 

certain period of time has elapsed (Guion, 1991). Validity coefficients are then 

calculated by correlating the scores on the personality variables (the predictors) with the 

performance scores (the criterion) in order to evaluate the extent to which the 

personality variables predict performance. Primarily, researchers have used supervisor 

ratings of performance as the criterion, although other popular measures have included 

objective indices such as production rates, sales volume, or performance on tests 

(Borman, 1991). Furthermore, researchers have made a distinction between training 

performance (the amount learned on training and development programs) and 

performance on-the-job. While there has been interest in investigating the correlates of 

both types of performance, it has also been recognised that personality variables may be 

differentially related to the two criteria (e.g., Barrick & Mount, 1991).2

A number of intermittent reviews have summarised the findings from the large 

volume of individual studies that have been conducted (e.g., Ghiselli, 1973; Guion & 

2 In this thesis the term work performance is used to refer to both on-the-job performance and training 
performance. 
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Gottier, 1965; Schmitt, Gooding, Noe, & Kirsch, 1984). Early reviews focused on the 

criterion-related validity of personality variables in general rather than the validity 

associated with specific personality constructs, and in many cases this resulted in 

pessimistic conclusions about the validity of personality variables. For example, 

Ghiselli and Barthol (1953) found that in certain circumstances personality measures 

were valid predictors of performance, although they suggested caution in the use of 

personality inventories after noting the number of low and negative results. Similarly, 

Guion and Gottier (1965) concluded that while there was variation in the validity 

coefficients obtained in different studies, there was no evidence that personality 

measures in general were useful tools for personnel selection. The fact that results were 

summarised across personality constructs, rather than in terms of specific constructs, 

may have contributed to the pessimistic conclusions of these reviews. This is because 

scales assessing constructs that would not be expected to predict performance on 

rational grounds may have been included in the summary process. Such a procedure 

was justified at the time as there was no well-accepted framework for grouping 

personality scales. Nevertheless, the results from these early reviews highlight the 

importance of a classification scheme for organising the myriad of personality variables 

from different inventories.  

As a first step toward a taxonomy of personality constructs, Eysenck (1947) 

introduced the idea that personality variables can be organised hierarchically, according 

to the breadth of behaviours represented. In particular, he distinguished between 

personality variables that assess consistencies in behaviour at three different levels of 

breadth, namely habitual responses, personality traits, and personality types.3 Habitual 

responses refer to specific behaviours that tend to recur under similar circumstances, 

3 Eysenck (1947) used the term type to refer to the highest level of the hierarchy, however today the term 
higher-level factor is more commonly used (e.g., Goldberg, 1999). 
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and thus they represent a relatively narrow range of behaviours. Within personality 

inventories, habitual responses are often assessed by individual items (Digman, 1990). 

For example the item “(I) pay my bills on time.” (from the IPIP-NEO inventory; 

International Personality Item Pool, 2001) represents one such behavioural tendency. At 

the next level, habitual responses that are related can be grouped to define personality 

traits that by definition represent a broader set of behaviours. For example, habitual 

responses such as paying bills promptly, keeping promises, and attending work 

regularly are all part of the broader trait of dutifulness. At the highest level of breadth, 

related traits can be grouped to define personality factors that describe broad mental, 

emotional, motivational, and interpersonal constructs. Within personality inventories, 

the latter two levels of the hierarchy are typically operationalised in terms of scales 

composed of multiple items.  

Methodologically, the technique of factor analysis has been be used to 

investigate the number and nature of constructs at the highest levels of the hierarchy. 

For example, items on personality inventories have frequently been factor analysed to 

yield a number of first-order factors corresponding to various traits. The first-order 

factors (or the scales that serve to operationalise them) have in turn been factor analysed 

to yield second-order factors corresponding to broad personality dimensions. There has 

been little agreement among researchers about the number or nature of factors at the 

first-order level (Barrick, Mount & Judge, 2001). Indeed, the failure of first-order 

factors to emerge with any degree of clarity has prompted doubts about their ability to 

form an adequate basis for the description of personality (e.g., Kline & Barrett, 1983). 

In contrast, there has been growing consensus regarding the number of dimensions at 

the second-order factor level, with much evidence pointing to the existence of five 

dimensions collectively labelled as the five-factor model of personality. The next 
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section provides a description of the five factors, and evaluates the five-factor model as 

a taxonomy for classifying personality variables. 

The Five-Factor Model 

Description of the Five Factors 

According to the five-factor model, personality can be adequately described in 

terms of five major dimensions or factors. Although there has been some disagreement 

about the specific traits associated with each factor (see Digman, 1990), there is enough 

consensus to provide broad characterisations of the factors. 

One factor has been referred to as Neuroticism. Alternatively, it has been 

conceptualised in terms of its opposite pole and called Emotional Stability. Neuroticism 

is commonly identified with terms representing fear and vulnerability such as anxious, 

nervous, insecure, tense, easily upset, intolerant of stress, and unstable (e.g., Mount & 

Barrick, 1995). Conversely, terms such as calm, relaxed, secure, and unflinching load 

negatively on this factor (Goldberg, 1990). Other traits that have been found to load on 

Neuroticism include those associated with depression, anger, shame and embarrassment 

(e.g., Costa & McCrae, 1992). Taken together, this suggests that Neuroticism is broadly 

indicative of the tendency to experience negative emotions. 

A second factor, labelled Extraversion or Surgency, is characterised by traits that 

indicate the extent and forcefulness with which an individual interacts with their 

external environment. This is reflected specifically in the way the individual interacts 

with others (high scorers tend to be more sociable, talkative, assertive and domineering 

than low scorers, Goldberg, 1992), and more generally in the way they live their life 

(high scorers are more energetic, active, daring, adventurous, and enthusiastic than low 

scorers, Goldberg, 1992). However, as many of the traits that define Extraversion also 
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describe positive emotions, in particular a highly aroused type of positive affect, this 

factor has also been equated with positive emotionality (e.g., Watson & Tellegen, 

1985).

A third factor, Openness to Experience (hereafter referred to as Openness), has 

been the most difficult to define as reflected by a number of alternative labels such as 

Intellectance, Culture, and Intellect. John and Srivastava (1999) suggest that it describes 

the “breadth, depth, originality, and complexity of an individual’s mental and 

experiential life” (p. 121). Traits such as imagination, creativity, and artistic sensitivity 

are core aspects of this factor (Johnson, 1994; Saucier, 1994). High scorers also display 

greater intellectual curiosity and a willingness to consider new ideas, although it has 

been argued that Openness is distinct from cognitive ability (Costa & McCrae, 1992). 

More generally Openness manifests in terms of open-mindedness to novelty and 

unconventionality in many different aspects of life including one’s behavioural 

experiences, inner feelings, and values (Costa & McCrae, 1992). 

A fourth factor, commonly labelled Agreeableness, is interpersonal in nature in 

that it describes the extent to which an individual has a prosocial and communal 

orientation toward others (John & Srivastava, 1999). Thus, traits that are associated with 

sympathy and altruism, such as kindness, compassion, generosity, helpfulness, and soft-

heartedness load on this factor (Hofstee, De Raad, & Goldberg, 1992). Furthermore, in 

their interactions with others high scorers tend to be cooperative, trusting, and courteous 

whereas low scorers are more likely to be uncooperative, sceptical, and impolite. 

Agreeableness has also been linked to morality and modesty – high scorers are less 

likely to be described as cruel, dishonest and manipulative, and more likely to be 

described as humble (Goldberg, 1990). 



8

The essence of the fifth factor, labelled Conscientiousness, is self-control (Costa 

& McCrae, 1992). This factor is directly relevant to the way an individual approaches 

and completes tasks, and can manifest itself in a number of ways. High scorers 

approach tasks in a more planful and organised manner, and are more likely to be 

described as orderly, neat, systematic, meticulous, and efficient (Hofstee et al., 1992). In 

their interactions with others the highly conscientious show greater levels of 

dependability, responsibility, and reliability (Goldberg, 1992). Conscientiousness has 

also been associated with self-discipline and traits representative of the will to achieve, 

such as being persevering and hardworking (Mount & Barrick, 1995). Furthermore, 

high scorers are more likely to follow rules and to think before acting (John & 

Srivastava, 1999). 

Evidence for the Five-Factor Model 

The five-factor model has its origin in factor-analytic studies of ratings of trait 

adjectives that were compiled by Allport and Odbert (1936), and subsequently modified 

and reduced to 35 by Cattell (1947). In an early attempt to study the principal 

dimensions of personality, Fiske (1949) used 22 of Cattell’s trait terms to compare the 

factorial structures of trait ratings from different sources. The participants were 128 

trainees participating in a week-long intensive assessment program. At the end of the 

program each participant was rated on the trait terms by themselves, by their peers, and 

by the staff who were supervising them. Separate factor analyses of the self-, peer-, and 

staff-ratings provided evidence for five factors that recurred across the different sources. 

Several other researchers were able to demonstrate the robustness of a five-

factor solution. Tupes and Christal (1961/1992) factor analysed ratings on Cattell’s 35 

trait terms across eight datasets comprising different samples, situations, raters, and 
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lengths and kinds of acquaintanceships. They labelled the resulting five factors 

Surgency, Agreeableness, Dependability, Emotional Stability, and Culture, and 

concluded that “(t)here can be no doubt that the five factors found throughout all eight 

analyses are recurrent” (p.244). Subsequent studies by Norman (1963), Borgatta (1964), 

and Smith (1967) provided support for five factors that closely resembled those 

obtained by Tupes and Christal. Moreover, Digman and Takemoto-Chock (1981) 

reanalysed correlations from six earlier studies, some of which had found solutions with 

greater than five factors. After correcting for clerical errors that had occurred in some of 

the studies, and using a common method of factor analysis, they too concluded that the 

observed relationships were well accounted for in terms of the five-factor structure.  

Much of the early work used the set (or a subset) of the 35 trait terms initially 

selected by Cattell (1947), and therefore did not preclude the possibility that the 

findings simply indicated the structure in Cattell’s limited set of variables, rather than 

representing truly substantive findings (see Block, 1995). Goldberg (1981, 1990, 1992) 

sought to establish the generality of the five-factor structure by analysing more 

comprehensive sets of trait terms. He demonstrated that the five-factor structure 

emerged across different sets of trait terms, different methods of factor analysis, and for 

both peer- and self-ratings. The term Big Five was coined to refer to these five factors. 

Factors corresponding to the Big Five have also been found in studies of trait terms 

from other languages including German (Hofstee, Kiers, De Raad, Goldberg, & 

Ostendorf, 1997), Russian (Shmelyov & Pokhil’ko, 1993), Turkish (Goldberg & Somer, 

2000), and Filipino (Church, Katigbak, & Reyes, 1996). The consistency of the results 

across different studies can be taken as evidence for the fundamental nature of the five 

factors underlying personality trait term ratings. 
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While studies of trait term ratings provided the initial impetus for the five-factor 

model, later studies confirmed the usefulness of the model as a framework for 

organising scales from existing personality inventories. A significant contribution in this 

regard was the work of Costa and McCrae (1985) who, encouraged by the replicability 

of the Big Five in analyses of trait ratings, developed a personality questionnaire 

explicitly designed to measure the five factors – the NEO Personality Inventory (NEO 

PI). Through a series of studies conducted with other colleagues they were able to 

demonstrate that the majority of scales from existing personality inventories could be 

associated with at least one of the five factors. For example, the Myers-Briggs Type 

Indicator (MBTI; Myers & McCaulley, 1985), a personality inventory that is currently 

used in many organisations, was developed with the aim of classifying individuals into 

one of 16 personality categories based on their scores on four variables. McCrae and 

Costa (1989) found that each of these variables was strongly associated with one of the 

five NEO PI scales (only Neuroticism was not represented in the MBTI). Similarly, 

using a combination of rational and empirical analyses, McCrae, Costa, and Piedmont 

(1993) showed that all but one of the 20 scales of the California Psychological 

Inventory (CPI; Gough, 1987) could be meaningfully related to one or more of the five 

factors. Another widely used instrument, Jackson’s (1984) Personality Research Form 

(PRF), contains 20 scales that assess various forms of psychological needs. Factor-

analytic studies of the 20 PRF scales have found five factors that replicate well across 

different samples and cultures (e.g., Paunonen, Jackson, Trzebinski, & Fosterling, 1992; 

Stumpf, 1993). Costa and McCrae’s (1988) joint factor analysis of the NEO PI scales 

and the PRF scales provided evidence that the five PRF factors correspond to the five 

dimensions of Neuroticism, Extraversion, Openness, Agreeableness, and 

Conscientiousness. 



11

One of the most extensively researched personality systems is that of Cattell 

who proposed that personality be described in terms of 16 first-order factors, and who 

developed the popular 16 PF inventory (Cattell, Eber, & Tatsuoka, 1970) as a means of 

operationalising these factors. While factor analysis of the 16 PF items has sometimes 

failed to support the proposed first-order factor structure (e.g., Kline & Barrett, 1983), a 

large scale study of the second-order factor structure of the 16 PF found that the major 

portion of variance in the first-order scales was captured by five dimensions (Krug & 

John, 1986). Three of these factors can be clearly identified with Neuroticism, 

Extraversion, and Conscientiousness, while the other two show some resemblance to the 

Agreeableness and Openness factors.  

The five-factor model has also been shown to be useful for classifying variables 

from personality instruments that were designed within clinical contexts. The Minnesota 

Multiphasic Personality Inventory (MMPI) contains 550 items that were initially 

developed by referring to psychiatric reports, textbooks, and previously published 

personality items, and later retained based on their ability to differentiate between 

psychiatric and non-psychiatric subjects (Cohen et al., 1996). Although factor analysis 

of the MMPI items has yielded more than five factors (e.g., Costa, Zonderman, McCrae, 

& Williams, 1985; Johnson, Null, Butcher, & Johnson, 1984), rational judgments and 

correlations with the NEO PI variables suggest that most of the MMPI factors reflect 

aspects of Neuroticism, Extraversion, Openness, or Agreeableness (Costa, Busch, 

Zonderman, & McCrae, 1986). Similarly, the 100 items of the California Q-Set (CQS; 

Block, 1961) were developed based on the judgments of panels of psychodynamically-

oriented clinicians. McCrae, Costa, and Busch’s (1986) factor analysis of these items 

suggested six replicable factors. Five of the factors could be identified with the 

dimensions of the five-factor model based on their correlations with the NEO PI 
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variables and the items loading on each factor. A sixth factor labelled as Attractive-

Narcissistic represented physical attractiveness.

At the second-order factor level, the main competitor to the five-factor model is 

Eysenck’s model comprising the three factors Neuroticism, Extraversion, and 

Psychoticism (Eysenck & Eysenck, 1985). The first two factors of Eysenck’s model are 

consistent with the first two factors of the five-factor model. Furthermore, it has been 

proposed that Eysenck’s Psychoticism factor represents a blend of the Agreeableness 

and Conscientiousness factors (e.g., Digman, 1990). Support for these assertions has 

come from a study conducted by McCrae and Costa (1985) in which the NEO PI 

measures were jointly factor analysed with personality instruments developed by 

Eysenck to operationalise his theory. The results suggested the presence of five factors 

that could be clearly identified with the dimensions of the five-factor model. Eysenck’s 

measures of Neuroticism and Extraversion loaded on the same factors as the NEO PI 

measures of Neuroticism and Extraversion, and the Psychoticism measure loaded 

negatively on the factors corresponding to Agreeableness and Conscientiousness. 

Finally, none of the Eysenck measures loaded on the Openness factor. The absence of 

the Openness factor from Eysenck’s system may be attributed to the fact that he 

considered intellect-related variables as being separate from those aspects of personality 

that are non-intellectual (Digman, 1990). Thus, the main difference between the two 

systems concerns whether Agreeableness and Conscientiousness should be viewed as 

distinct second-order factors, or whether they are more appropriately categorised as 

constituents of the second-order factor Psychoticism when conceptualised in terms of its 

opposite pole. 

In summary, the majority of variables measured by existing personality 

inventories can be meaningfully organised within the five-factor taxonomy. An 
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implication of this finding has been that many of the reviews conducted since 1990 have 

used the five-factor model as a framework for developing and testing hypotheses about 

the validity of personality variables for predicting work performance. The next section 

discusses the findings from these reviews. 

The Five Personality Factors and Work Performance 

In one of the initial applications of the five-factor model to the prediction of 

work performance, Barrick and Mount (1991) proposed a set of hypotheses regarding 

the expected relationships between measures of the five factors and work performance. 

It was hypothesised that measures of Conscientiousness and Neuroticism would be valid 

predictors of performance across occupations because traits associated with 

Conscientiousness (such as being responsible, hard-working, and persistent) would 

facilitate performance in all jobs, whereas traits associated with Neuroticism (such as 

being nervous, temperamental, and high-strung) would hamper performance. Openness 

was hypothesised to predict performance on training programs because this factor is 

associated with characteristics that indicate a positive attitude to learning, such as 

curiosity and broad-mindedness. Extraversion and Agreeableness were hypothesised to 

be important for dealing with others, and therefore measures of these two factors were 

expected to predict performance for occupations that require interpersonal interaction.

A number of meta-analyses conducted since the early 1990’s used the five-factor 

model as a basis for investigating relationships between personality variables and work 

performance (see Barrick & Mount, 2003), and therefore provided evidence relevant to 

these hypotheses. Two main conclusions could be drawn from the findings of these 

reviews. First, it emerged that there was some empirical support for the various 

hypothesised personality-performance linkages, although the findings were not always 
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consistent across meta-analyses. It was generally found that Conscientiousness was a 

valid predictor of performance across occupational groups and types of performance 

criteria (e.g., Barrick & Mount, 1991; Mount & Barrick, 1995; Salgado, 1997). 

Neuroticism was found to predict performance in some reviews (e.g., Hough, Eaton, 

Dunnette, Kamp, & McCloy, 1990; Salgado, 1997; Tett, Jackson, & Rothstein, 1991), 

although in others the correlation coefficients could not be distinguished from zero or 

were in the opposite direction to that hypothesised (e.g. Barrick & Mount, 1991; 

Vinchur, Schippmann, Switzer, & Roth, 1998). Openness predicted training 

performance, but not performance on the job (e.g., Barrick & Mount, 1991; Hough et 

al., 1990; Salgado, 1997). There was also some support for the hypotheses linking 

Extraversion and Agreeableness to jobs involving interpersonal interaction. 

Extraversion was a valid predictor of performance for sales and managerial occupations 

(Barrick & Mount, 1991; Vinchur et al., 1998). Additionally, Extraversion was found to 

predict performance on training programs that were highly interactive in nature, such as 

police academy, sales, and flight attendant training programs (Barrick & Mount, 1991). 

Agreeableness was related to performance for jobs involving teamwork or the provision 

of customer service (Hough, 1992; Mount, Barrick, & Stewart, 1998).

A second finding was that the magnitude of the validity coefficients rarely 

exceeded .30.4 This was initially attributed (at least partly) to the post hoc classification 

of scales into one of the five-factor categories: the possibility of misclassification, and 

the fact that the individual scales typically only represent facets of the five constructs 

rather than the constructs themselves, could serve to attenuate the validity estimates. 

Hurtz and Donovan (2000) addressed this issue by only including studies that had used 

4 Unless otherwise stated, the validity coefficients reported in this section are those that were corrected for 
statistical artefacts (such as sampling error, range restriction, and measurement error) that would 
otherwise underestimate the true validity of the personality variables. 
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a personality inventory explicitly designed to measure the five-factor constructs. 

Validity coefficients were summarised across four occupational categories (sales, 

customer service, management, and skilled/semi-skilled workers). The estimated true 

validity coefficients for Conscientiousness and Neuroticism (which was conceptualised 

in terms of its opposing pole, Emotional Stability) were .20 and .13 averaged across 

occupations, and did not exceed .26 for any given occupation. The validity of Openness 

for predicting training performance was estimated to be .13. Extraversion exhibited 

validity coefficients of .15 and .12 for sales and managerial work, and the validity of 

Agreeableness in customer service jobs was estimated to be .17. Based on these results 

Hurtz and Donovan (2000) concluded that the benefits of the five factor measures for 

personnel selection purposes are likely to be small.  

Similar validity coefficients were obtained by Barrick et al. (2001), who 

conducted a meta-analysis of previous meta-analyses in order to provide a summary of 

what had been learnt from the previous reviews. Results were summarised across five 

occupational groups (sales, management, professionals, police, and skilled/semi-skilled 

workers). Conscientiousness was the best predictor of performance across different 

occupations. Its corrected correlation coefficient ranged from .23 to .26 for different 

occupations. The corrected correlation between measures of Emotional Stability and 

performance across occupations was .13. When each occupational group was considered 

separately, Emotional Stability was related to performance for police (corrected r = .12) 

and skilled/semi-skilled workers (corrected r = .15), but not for any other occupation. 

Openness predicted training performance (corrected r = .33), and also had a low (though 

non-zero) correlation with the job performance of professionals (corrected r = .11). 

Extraversion was related to performance in some jobs involving interpersonal 

interaction, such as management (corrected r = .21) and police work (corrected r = .12). 



16

Additionally, Extraversion was positively associated with performance on training 

programs (corrected r = .28). Agreeableness was not related to performance in any 

occupational group, although it predicted the specific criterion of teamwork (corrected r 

= .34). 

The magnitude of the validity coefficients for personality variables can be 

evaluated with respect to a number of different benchmarks. For example, based on his 

observations of effect sizes typically obtained in social science research, Cohen (1977) 

proposed several benchmarks that could be used as conventions in the absence of prior 

research in the area. Specifically, Cohen suggested that an uncorrected correlation 

coefficient of approximately .50 to .60 represents an upper bound on what could be 

expected in the social sciences, an uncorrected correlation of .30 is moderate in size, 

and that an uncorrected correlation of .10 borders on the trivially small. The uncorrected 

(i.e., observed) correlations obtained in previous meta-analyses have not been reported 

here, although they rarely exceed .20 even in the most optimistic cases, and are usually 

less than .10 (for examples see Barrick et al., 2001; Hurtz & Donovan, 2000). Thus 

using Cohen’s benchmarks, one could conclude that the criterion-related validity of 

measures of the five factors are at best low to moderate. 

A more appropriate frame of reference for interpreting the magnitude of 

personality-performance correlation coefficients may be the findings from the literature 

concerning alternate predictors of work performance. Schmidt and Hunter (1998) 

summarised the results of meta-analyses concerning 19 different selection methods. The 

validity coefficients, corrected for range restriction and measurement error in the 

criterion, ranged from in excess of .50 for the most valid methods to negligible values 

for predictors such as age and graphology. The most accurate predictors were work 

sample tests (r = .54), general mental ability tests (r = .51), and structured interviews (r 
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= .51). If one were to take the value of .30 as an estimate of the corrected validity 

coefficient associated with measures of the most valid five-factor dimension, 

Conscientiousness, this predictor would clearly have lower predictive validity than 11 

of the predictors examined by Schmidt and Hunter (1998). Thus, relative to the best 

performing selection methods, the magnitude of the validity coefficients associated with 

measures of Conscientiousness and the other five-factor dimensions tend to be low.  

In summary, therefore, the validity coefficients associated with measures of the 

five factors are low when compared to the benchmarks proposed by Cohen (1977), and 

relative to what has been achieved by some other predictors of work performance. As 

recently noted by Murphy and Dzieweczynski (2005), although the application of the 

five-factor model has helped to resolve some of the inconsistencies in earlier reviews, 

the pessimistic conclusions about the validity of personality variables compared to other 

selection methods are still relevant today. This is perhaps surprising given the proposal 

that the individual differences captured by the five factors evolved as a result of their 

importance for forecasting the utility of an individual to the economy of their group 

(Hogan, 1996), and for selecting allies who are likely to facilitate the achievement of 

adaptively significant goals (Buss, 1996). The low validity coefficients may reflect 

limits on the ability of personality variables to predict performance. That is, the 

information provided by the five dimensions (or more precisely by the scores on 

personality scales that measure these dimensions) may be inherently less useful for 

predicting work performance than the information provided by other predictors. An 

alternative possibility, however, is that the low validity is not due to limits in the 

informativeness of personality scores, but rather due to the methods used to examine the 

ability of personality variables to predict performance. The majority of studies have 

used methods designed to detect simple relationships. For example, the commonly used 
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procedure of calculating correlations assesses the degree of linear association between 

one personality variable and performance. In other words, it is assumed that the 

personality variable is uniformly related to performance over the entire range of scores 

on the variable.  Similarly, regression analysis has typically been employed to study 

linear and additive relationships between personality variables and work performance. 

However, the relationship between personality variables and performance may be 

nonlinear or configural in nature, in which case the low criterion-related validity of 

personality scales may be the result of examining complex relationships with simple 

methods. Such complex relationships are discussed in the next section. 

Complexity in Personality-Performance Relationships 

Nonlinear Relationships 

Nonlinear relationships occur when a predictor is not uniformly related to the 

criterion across the predictor’s entire range. There are many ways in which two 

variables can be nonlinearly related, and not all of these functions are likely descriptors 

of the relationship between personality and work performance. Existing theories of 

work performance that incorporate personality characteristics as explanatory variables 

provide little guidance as to the types of nonlinearity (if any) to expect. Within these 

theories, personality variables are conceptualised as indices of basic underlying 

dispositions that influence work performance indirectly through their effects on various 

mediating variables such as goals and goal-setting (Barrick, Mitchell, & Stewart, 2003), 

or work-related knowledge, skills, and habits (Motowidlo, Borman, & Schmit, 1997). 

The nature of the functional relationships between variables is not specified. Indeed, the 

methods used to test the theories suggest the implicit assumption of linearity.  
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Nevertheless, a number of researchers have highlighted the importance of 

investigating nonlinear relationships (e.g., Guion, 1991), and in some instances 

conceptually plausible ways in which personality may be nonlinearly related to 

performance have been outlined (e.g., Murphy, 1996; Robie & Ryan, 1999). One can 

consider cases where the direction of the relationship between a personality variable and 

performance changes at different values of the personality variable. For example, 

Murphy (1996) proposed that too much or too little of a given personality characteristic 

may have a negative effect on performance. This can be described by an inverted-U 

function where an increase in the personality variable is associated with an increase in 

work performance up to a certain optimal point after which a decrease in performance 

occurs. Murphy argued that Conscientiousness and Extraversion may be related to job 

performance in this way. The extremely conscientious individual may be so 

conventional and rule-bound that their performance is impaired relative to their more 

moderately conscientious colleagues; and while a certain level of Extraversion is likely 

to be useful in jobs requiring interpersonal interaction, the extremely extraverted 

individual may spend all their time interacting with others at the expense of completing 

their own tasks. Similarly, Mount et al. (1998) hypothesised that although 

Agreeableness is likely to be a desirable characteristic in service-oriented jobs, too 

much of this characteristic may hamper performance: The highly agreeable employee 

may be too cooperative with customers to take actions that are in the company’s best 

interests. The relationship between work performance and the two other factors – 

Neuroticism and Openness – may also show an inverted-U pattern. Neuroticism has 

been posited to adversely effect performance by reducing the motivation to exert and 

maintain effort on work tasks (Barrick et al., 2003). However, to the extent that negative 

affect can be a motivator, a certain amount of fear of failure may also be required for 
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optimal performance. Therefore, although the relationship between Neuroticism and 

performance is expected to be negative across most of the predictor’s range, at low 

levels of Neuroticism the relationship may be positive. Similarly, Openness is likely to 

be a desirable attribute for performance on training programs, however the high levels 

of fantasy and intellectual curiosity that are characteristic of the upper extremes of this 

factor may distract the trainee away from the relevant material in the training program. 

Other possible forms of nonlinearity may involve changes in the strength of the 

relationship between a personality variable and performance at different values of the 

personality variable. For example, performance may increase by large amounts as a 

function of increases in a personality variable up to given point after which the 

relationship ceases to exist or becomes weaker. Murphy (1996) argued that this is likely 

to occur in situations where only a certain level of an attribute or skill is required to 

facilitate performance. He cited the example of interpersonal sensitivity – an individual 

with no interpersonal sensitivity is likely to function poorly in social situations, 

although the difference in performance between normal sensitivity and being finely 

attuned to others may be small. A similar type of reasoning could be extended to the 

relationship between other types of skills (social and technical) and performance. Given 

that personality variables have been hypothesised to partly influence performance via 

their effects on skills – for example Extraversion and Agreeableness have been 

associated with the acquisition of social skills (Motowidlo et al., 1997), and Openness 

with the ability to solve technical problems (Hogan, 1996) – it may well be the case that 

personality variables are also nonlinearly related to performance in this way. It is also 

interesting to note that the way in which many practitioners use personality (and other 

psychological) tests for selection purposes implicitly assumes this type of nonlinear 

relationship between the predictor and work performance. Specifically, it is often the 



21

case that cut-off scores are set on the predictor and those candidates who score above 

the cut-off are eligible for selection whereas those scoring below the cut-off are 

rejected. This procedure is adopted in favour of one where candidates are selected 

sequentially starting with the highest scorers (Guion, 1991). The assumption that is 

being made is that the cut-off score represents the minimum level of the predictor 

attribute that is desirable, and that beyond this minimum level increases in the predictor 

attribute confer little benefit. 

Alternatively, it has been suggested that personality may be more strongly 

related to work performance at the extremes than in the mid-range (see Sinclair, Banas, 

& Radwinsky, 1999). According to the concept of traitedness, the relevance of any 

given personality trait to an individual’s behaviour is greater for some individuals than 

others (Siem, 1998). Hence, individuals who possess high traitedness for a particular 

trait are more consistent in their behaviour with respect to that trait and therefore more 

predictable than low traited individuals (Siem, 1998). Furthermore, there is some 

evidence that traitedness is related to trait level such that individuals who score either at 

the high or low end of a particular personality trait scale display higher traitedness than 

individuals who score in the middle of the scale (Paunonen, 1988; Siem, 1998). Taken 

together, the above findings suggest that personality traits are not uniformly related to 

work criteria over their entire ranges and therefore the relationship between personality 

and work criteria is nonlinear. Specifically, the relationship between a given personality 

trait and a criterion will be stronger (and therefore exhibit a steeper slope) for low and 

high levels of the trait than for intermediate levels (where the slope will be flatter). 

Despite the rationale for nonlinearity, there have only been a few attempts to 

empirically investigate nonlinear relationships between personality variables and work 

performance. Day and Silverman (1989) hypothesised that extreme scores on two 
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personality scales, labelled orientation towards direction from others and impulse 

expression, were likely to signal poor performance in an accounting job. The former 

scale assessed the tendency to be dependent on the direction of others versus the 

tendency to be non-conforming and rebellious. The latter scale assessed the tendency to 

act without deliberation and avoid routine at one extreme, versus the tendency to be 

fearful and apprehensive, neat and systematic, and rigid and exacting at the other 

extreme. On description, therefore, impulse expression seems to capture elements of the 

Conscientiousness and Neuroticism factors. In partial support of their hypotheses, Day 

and Silverman found an inverted-U relationship between impulse expression and 

supervisor ratings of performance in a sample of 40 accountants.  

Sinclair and his colleagues (Sinclair et al., 1999; Sinclair & Lyne, 1997) 

presented two conference papers in which they used polynomial regression to 

investigate quadratic and cubic relationships between the seven scales of the Hogan 

Personality Inventory (HPI; Hogan & Hogan, 1995) and supervisor ratings on various 

measures of performance.5 In total they analysed samples from six occupations: (a) 

inspectors/operators in a manufacturing consortium, (b) adjustors in a manufacturing 

consortium, (c) retail service clerks, (d) bank employees, (e) marketers, and (f) customer 

service representatives. A number of significant nonlinear relationships were detected, 

although these were scattered across the personality measures. A limitation of this 

research was that the sample sizes were small (typically less than 100), a factor that 

would decrease the likelihood of detecting nonlinear effects.

Subsequent work on nonlinearity between personality and work performance has 

predominantly focused on the Conscientiousness factor. Robie and Ryan (1999) 

5 A quadratic relationship exists when the relationship between two variables can be described as a curve 
with one bend (for example, an inverted-U function). A cubic relationship exists when the relationship 
between two variables can be described as a curve with two bends.  



23

examined five diverse samples that were substantially larger than those used by Sinclair 

et al. (1999). They failed to find any evidence for either quadratic or cubic relationships 

between measures of this construct and supervisor ratings of overall job performance 

across the five samples. In contrast, La Huis, Martin, and Davis (2005) obtained a 

significant quadratic relationship between Conscientiousness and supervisor ratings of 

job performance in two separate clerical samples; and Cucina and Vasilopoulos (2005) 

found that Conscientiousness was quadratically related to the academic performance of 

262 undergraduate university students. Consequently, although there is some evidence 

in favour of nonlinear personality-performance relationships, the results are far from 

clear-cut. 

Configural Relationships 

Configural relationships occur when the strength and/or direction of the 

relationship between a predictor and criterion depends on an individual’s standing on 

some other variable (Ganzach, 1997). Within organisational psychology such 

relationships have been commonly investigated as moderator (or interaction) effects, in 

which the analysis proceeds by examining whether the predictor and the moderator have 

a significant multiplicative effect on the criterion after controlling for the additive 

effects of the two variables (see Baron & Kenny, 1986).

Most of the work on moderators of the relationship between personality 

variables and performance has focused on situational moderators such as the 

cooperative and competitive demands placed on employees by the job (Barrick et al., 

2003), the level of autonomy associated with the job (Barrick & Mount, 1993), reward 

structures (Stewart, 1996), and organisational politics (Hochwater, Witt, & Kacmar, 

2000). There has also been some focus on the interactive effect of cognitive ability and 
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personality on performance (e.g., Mount, Barrick & Strauss, 1999; Sackett, Gruys, & 

Ellington, 1998; Wright, Kacmar, McMahan, & Deleeuw; 1995). Far less attention has 

been devoted to examining the extent to which the effects of a particular personality 

variable is moderated by other personality variables. Nevertheless, a rationale for 

moderator effects among personality variables can be found in the writings of several 

researchers, especially the type of moderator effect in which the strength of the 

relationship between a relevant personality variable and work performance differs at 

various levels of one or more other relevant personality variables. For example, Buss 

(1996) has argued that the five factors represent (in part) alternative strategies that can 

be drawn upon to solve problems. Implicit in this theorising is the idea that different 

personality characteristics can be useful for facilitating performance within a particular 

domain, and that being low on one relevant characteristic is not necessarily 

disadvantageous if the individual is high on some other useful characteristic. For 

example, an individual high on Openness may solve a problem by thinking of creative 

solutions, whereas the individual low on this characteristic but high on 

Conscientiousness may do so through persistence and hard work. A third individual 

who is low on both these characteristics but high on Extraversion may solve the same 

problem by eliciting the cooperation of others. This implies the type of moderator effect 

where performance is poor only if the individual is low on all characteristics that are 

useful for solving the problem. In other words, the relationship between a personality 

variable and performance is stronger when alternative personality variables that 

facilitate performance are low. 

Conversely, one might expect situations in which the relationship between a 

personality variable and performance is stronger when other relevant personality 

characteristics are high. That is, a high score on one personality variable enhances the 
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effects of a high score on another personality variable. For example, in order to have 

successful client relationships, a salesperson will need to display high levels of 

sociability to establish such relationships but will need to combine this with high levels 

of likeability to maintain the relationships (Hogan and Hogan, 1995); and in jobs 

involving interpersonal interaction being conscientious may add little to performance if 

the employee is not agreeable (Witt, Burke, Barrick & Mount, 2002). In both these 

examples the relationship between the personality variables and performance would be 

better represented as a multiplicative effect, where the benefits of being high on both 

personality variables is greater than the additive effects of the two variables. 

Three recent studies by Witt and his colleagues have empirically investigated the 

multiplicative effects of the five factors on performance using moderated regression 

(Burke & Witt, 2002; Witt, 2002; Witt et al., 2002). Burke and Witt (2002) 

hypothesised that low levels of Openness would have a destructive effect on 

performance when combined with either high Extraversion, low Emotional Stability, or 

low Agreeableness (but not otherwise), and therefore that the relationship between 

Openness and performance would be stronger at higher levels of Extraversion, and 

lower levels of Emotional Stability and Agreeableness. This was tested using a sample 

of 114 employees of a financial services firm who completed measures of the five 

factors and who were subsequently rated on 13 performance items by their supervisors. 

The results supported the hypotheses concerning the moderating effects of Extraversion 

and Emotional Stability, but not Agreeableness. However, as only one sample was 

examined it was not possible to establish the generality of the findings. 

Other studies utilised multiple samples and focused particularly on moderators 

of the Conscientiousness-performance relationship. Witt (2002) examined the 

interactive effect of Extraversion and Conscientiousness on job performance ratings 
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across three samples. In all three datasets there was a significant moderation effect: 

Conscientiousness was more strongly related to performance at high levels of 

Extraversion than at low levels. Similarly, when Witt et al. (2002) investigated the 

interactive effect of Conscientiousness and Agreeableness on performance, they 

obtained a significant effect in five of the seven samples examined. Specifically, 

Conscientiousness was more strongly related to performance at high levels of 

Agreeableness than at low levels.  

To summarise, there are various conceptual reasons to believe that the 

relationship between personality variables and performance may be nonlinear and/or 

configural in nature. Furthermore, there is some support (albeit mixed) for such 

relationships from the few empirical studies that have addressed this issue, although 

most of the research to date has focused on the Conscientiousness factor. In addition to 

the effects discussed, the situation may be more complex further still. For example, 

there is the possibility of higher order interactions where a moderation effect is itself 

moderated by other variables, or where the effect of the predictor on the outcome may 

vary nonlinearly as a function of the moderator. Unfortunately, theories of job 

performance are not precise enough to specify the exact nature of such relationships. 

Nevertheless, a method that is flexible enough to empirically detect such complex 

trends may well improve the effectiveness of personality variables for predicting work 

performance, as well as contribute to theory development by providing a better 

understanding of the nature of the relationships between personality variables and 

performance. Artificial neural networks represent one group of techniques that offer this 

flexibility, and it is to this method that we next turn our attention. 
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CHAPTER 2: Artificial Neural Networks 

Introduction

Artificial neural networks, broadly defined, are networks of many simple 

processing elements (called units) that are interconnected via communication channels 

(called weights) carrying numeric data (Sarle, 2001a).1 While any given unit only 

performs relatively simple computations, the network as a whole is typically capable of 

representing a variety of complex relationships (Reed & Marks, 1999).  

There are many kinds of artificial neural networks, and many different tasks for 

which they are used. For example, Sarle (2001a) notes that they are used by physicists 

to model phenomena in statistical mechanics, by biologists to interpret nucleotide 

sequences, by cognitive scientists to describe high-level brain functions, by computer 

scientists to investigate the properties of non-symbolic information processing, and by 

engineers for signal processing and automatic control. The focus of this thesis is on 

artificial neural networks as a statistical procedure for mapping relationships between 

sets of input and output variables. In particular, the aim is to develop prediction 

equations that capture empirical relationships between scores on personality variables 

(the inputs) and work performance criteria (the output), and that can then be used to 

make predictions about an individual’s work performance given their personality scores. 

This procedure provides an alternative way of evaluating the effectiveness of 

personality variables for predicting work performance, and may well result in prediction 

equations that produce more accurate predictions than equations developed using linear 

regression.

1 Artificial neural networks are often simply referred to as neural networks. The two terms are used 
interchangeably in this thesis. 
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This chapter provides much of the rationale for the specific procedures that are 

used to implement neural networks in the subsequent studies. In particular, I focus on 

the most widely used type of neural network, the multilayer perceptron. The first 

section of this chapter provides a brief introduction to such neural networks and 

discusses their capability to represent different functional relationships between 

predictors and a criterion. The second section addresses issues related to developing 

neural networks. The third section is concerned with issues related to testing the 

predictive performance of networks. Techniques related to assessing the nature of the 

relationships detected by the network and the importance of individual predictors are 

discussed in the fourth section. The fifth section provides a review of previous studies 

that have used artificial neural networks to evaluate the effectiveness of psychological 

variables for predicting work-related criteria. In all sections the emphasis will be on 

comparing artificial neural networks to traditional regression-based methods of data 

analysis. At the end of this chapter the aims of the research conducted for this thesis are 

summarised, and a preview of subsequent chapters is provided. 

Representational Capability 

Multilayer perceptron neural networks provide a general framework for 

representing nonlinear and configural relationships between sets of input and output 

variables (Bishop, 1995). This can be best demonstrated by a network diagram, as in 

Figure 2.1, which illustrates some of the main characteristics of such neural networks.
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Figure 2.1 

A diagrammatic representation of a multilayer perceptron neural network with two 

input units, three hidden units, and one output unit. 

Each network is organised in terms of layers of units that are interconnected via 

weights. The weights are simply numerical values that represent the strength of the 

connections between units, much in the same way that regression coefficients represent 

the strength of the relationships between predictors and the criterion in linear regression. 

The network in Figure 2.1 has three layers: an input layer, an output layer, and a hidden

layer that links the inputs to the outputs. It is possible to have neural networks with 

more than one hidden layer, although for practical applications one hidden layer is 

sufficient to represent virtually all relationships of interest (Masters, 1993). The layers 

are connected according to a feedforward topology where the units in one layer have 

one-way connections running to units in the next layer. 

The input layer is used to represent the predictor or input variables. For the 

purposes of this thesis the inputs are the personality variables. When the input variables 
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are continuous, as is the case with the majority of personality variables, then they can 

each be represented by one unit in the input layer. Unlike the other units in the network, 

the input units do not conduct any processing of the data (Masters, 1993). 

The units in the hidden layer conduct some intermediate processing of the input 

values. Specifically, at each hidden unit the values of the inputs are weighted and 

summed. Each hidden unit also contains an adjustable bias term that is added to the sum 

of the weighted inputs.2 The total sum is passed through an activation function to obtain 

the value of the hidden unit. This process can be expressed mathematically. 

Specifically, 

zj = f ( i wij xi + w0j) (1)

where zj is the value of the jth hidden unit, xi is the value of the ith input unit, wij is the 

value of the weight linking input unit i to hidden unit j, w0j is the value of the bias term 

of hidden unit j, and f(.) denotes the activation function that transforms the weighted 

linear combination of inputs and the bias term ( i wij xi + w0j) into the output zj. The 

role of the activation function is to introduce nonlinearity into the network. In practice, 

the most commonly used activation functions are sigmoidal (S-shaped) functions such 

as the logistic function or the hyperbolic tangent function (Sarle, 2001b). The 

hyperbolic tangent function is plotted in Figure 2.2 and is described by the equation

f(a) = (ea - e-a) / (ea + e-a), where a = ( i wij xi + w0j) as discussed above. Thus, each 

hidden unit is capable of representing a relatively simple type of nonlinear function.  

2 For simplicity the bias term is not depicted in Figure 2.1. The bias term plays a similar role to the 
intercept term (a) in a regression equation (Y = a + bX). A regression equation would be constrained to 
pass through the origin if the intercept term were omitted; equivalently, a neural network without bias 
terms would be constrained in terms of the functions that could be approximated (Sarle, 2001b). 
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Figure 2.2 

The hyperbolic tangent function: f(a) = (ea - e-a) / (ea + e-a)

The output layer represents the criterion to be predicted. Only one unit in the 

output layer is needed if the criterion is continuous, as is the case with most measures of 

work performance, including the ones used in this thesis.3 The output unit weighs and 

sums the values of the hidden units and adds a bias term to produce a single output 

value corresponding to a predicted score on the criterion. Typically, an identity 

activation function is used in the output layer (Hastie, Tibshirani, & Friedman, 2001), 

which is synonymous with using no activation function, and therefore the output unit 

3 If the criterion is an unordered categorical variable with more than two categories then multiple output 
units are required (Sarle, 2001b). 
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can be expressed as a weighted linear combination of the hidden units plus the output 

unit bias term: 

y = j w’
j zj + w’

0 (2)

where y is the value of the output unit (the predicted criterion score), zj is the value of 

the jth hidden unit, w’
j is the weight linking hidden unit j to the output unit, and w’

0 is 

the value of the output unit bias term. 

Thus, from the above it can be seen that the multilayer perceptron neural 

network can be thought of as a complex equation that represents the relationship 

between the input units (the predictors) and the output unit (the criterion) by:

1. Taking nonlinear functions of the linear combination of inputs at each hidden 

unit (Equation 1). 

2. Linearly combining the nonlinear functions at the output unit (Equation 2).

This is a very powerful and general approach to mapping relationships as it allows the 

same network to represent a wide variety of nonlinear and configural relationships 

between the predictors and the criterion simply by varying the values of the weights 

(Hastie et al., 2001). To illustrate, one can consider networks with different numbers of 

hidden units. If a network has no hidden units, and therefore no hidden layer, then the 

inputs link directly to the output unit and the network is equivalent to a linear regression 

equation, y = i wi xi + w0. Thus, linear regression can be conceptualised as a network 

with no hidden units. Clearly such a network is only capable of representing linear and 

additive relationships between the inputs and the output regardless of the values of the 

weights.
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The introduction of a hidden layer with one hidden unit increases the range of 

functions that can be approximated. First, the sigmoidal activation function in the 

hidden unit allows the network to represent S-shaped functions. Furthermore, such a 

network is also capable of representing linear and step functions (Bishop, 1995). The 

former is achieved by setting the weights feeding into the hidden unit to very small 

values so that the summed input lies close to zero, where the sigmoidal function is 

approximately linear. Conversely, a step function can be represented by setting the 

weights into the hidden unit to very large values. Any rescaling that needs to be 

performed is then incorporated into the weights linking the hidden units to the output 

unit (Bishop, 1995).

When there is more than one hidden unit, the process of combining multiple 

sigmoidal functions at the output unit can generate many other types of nonlinear and 

configural functions, some of which are far more complex than the original sigmoidal 

functions. For example, depending on the weights chosen, the outputs from two hidden 

units can be combined to produce functions that look like ridges; and combining 

multiple ridges can produce functions that contain many bumps, curves, bends and other 

similar structures (Bishop, 1995).  

The actual range of functions that can be approximated by a given network when 

its weights and bias terms are varied is referred to as the network’s representational

capability (Reed & Marks, 1999). Generally, as the number of hidden units is increased 

the network’s representational capability also increases. One of the properties of 

multilayer perceptrons that makes them appealing is their capability as universal 

approximators.  That is, given enough hidden units the network can in theory 

approximate all bounded continuous functions (Reed & Marks, 1999, cite a number of 

studies that have established this property through mathematical proof). It is not yet 
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clear exactly how many hidden units are required to approximate any given function 

(Sarle, 2001c), although investigations with artificial data sets have demonstrated that 

even networks with only a small number of hidden units can approximate a wide variety 

of relationships. For example, Bishop (1995) generated artificial datasets containing 

quadratic, sine, absolute value, and step functions. He found that the same network, 

containing five hidden units, was able to represent each function by altering the values 

of the weights and bias terms.  

The capability of representing many types of functions makes the neural 

network approach to detecting relationships in data very flexible in that few a priori 

assumptions need to be made about the nature of the relationships between the input and 

output variables.4 This capability is likely to be particularly useful in situations where 

there are general expectations of nonlinear or configural relationships among variables 

but the existing theories are not precise enough to specify the exact nature of such 

relationships. Nevertheless, that a neural network is capable of representing various 

relationships does not necessarily guarantee that it will detect the true relationships 

underlying the data or that it will produce more accurate predictions than prediction 

equations developed using simpler methods such as linear regression. The act of 

developing a network – that is of selecting the appropriate weights – is one of the 

factors that plays an important role in successfully implementing neural network 

applications, and this is discussed next.

4 It is possible to develop regression equations that have the same representational capabilities as neural 
networks simply by adding a sufficiently large number of power and product terms (Bishop, 1995). 
However, the number of weights that would need to be estimated as a function of the number of inputs 
increases at a much faster rate for this method than for neural networks (Paik, 2000), and therefore neural 
networks offer a more practical way of performing flexible function approximation. 
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Network Development 

Developing a neural network requires a dataset, called the training set, that 

contains predictor and criterion scores for the training cases. The goal of network 

development is to use the training data to develop a prediction equation that accurately 

predicts the criterion scores of unseen cases (cases not in the training set) given the 

predictor scores (see Reed & Marks, 1999). It is assumed that the training data reflects 

an unknown underlying systematic component – namely the population level functional 

relationship between the predictors and the criterion – but is corrupted by random noise 

(Bishop, 1995). In order to make the most accurate predictions for unseen cases the 

network needs to capture the underlying functional relationship while ignoring the noise 

in the training set (Geman, Bienenstock, & Doursat, 1992). Hence, any differences 

between the form of the prediction equation derived by the network and the true 

underlying function will decrease the predictive performance of the network for unseen 

cases (Smith, 1993).  

The extent to which a network captures the underlying relationship while 

ignoring training set noise is closely related to the representational capability of the 

network. If the network has little representational capability then it may not be able to 

represent the underlying function and this will result in a prediction equation that is too 

simple. This would occur, for example, if a linear equation were used when the 

underlying function is nonlinear. The equation would not fully reflect the underlying 

function and hence would yield predictions that are on average different to what would 

be predicted by the underlying function. In this case, the network would be said to 

underfit the data (Sarle, 2001c). On the other hand, if the network has a high level of 

representational capability then it is more likely that the underlying function will be 

contained within the range of relationships that the network can represent. However, 
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this too comes at a price as high representational capability of the network will make it 

very sensitive to the noise in the particular training set, and hence it may overfit the data 

by capturing too much of the idiosyncrasies of the training data (Geman, Bienenstock et 

al., 1992). Consequently, the network will do a good job of fitting the training set but 

will yield poor predictions for cases not used to train the network. Therefore, there is a 

trade off between accurately fitting the training data and controlling the complexity of 

the prediction equation that needs to be balanced if the network is to display good 

predictions for unseen cases (Bishop, 1995). Procedures for accurately fitting the 

training data are presented immediately below, followed by a discussion of various 

approaches to controlling the complexity of the network. 

Fitting the Training Data 

A network with a given number of hidden units is fitted to the training data by 

assigning values to its weights such that some error function is minimised. This is 

referred to as training and is similar to parameter estimation in linear regression models. 

In linear regression the aim is to select the set of weights (regression coefficients) that 

minimises the sum of the squared errors (the error function), where the error for each 

case is defined as the difference between the criterion value predicted by the regression 

equation and the observed criterion value (Pedhazur, 1997). As the regression equation 

is a linear function of the weights, the error function is a quadratic function of the 

weights, and hence the optimal set of weights (optimal in the sense that it minimises the 

overall error on the training set) can be determined exactly, and relatively easily, by 

differentiation (see Bishop, 1995).

Neural networks are also commonly trained with the aim of minimising the sum 

of the squared errors (Hastie et al., 2001), although the process of estimating optimal 
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weights is a lot more complex and arduous compared to linear regression. The error 

function to be minimised is highly nonlinear in the weights (Masters, 1993), and 

therefore the optimal weights need to be estimated iteratively. This process can be 

described as follows:

1. Small random values are assigned as weights.  

2. The network is presented with the training set.  

3. The predictor scores for each training case are weighted and propagated through 

the network in order to produce predicted output values.

4. Error is calculated by comparing predicted outputs to the observed output 

values.

5. The derivatives of the error with respect to the weights are computed by 

progressively working backwards through the network.

6. The weights are adjusted so as to decrease error.  

The process is iterated by repeating steps 2 to 6 many times until error is minimised 

(Reed & Marks, 1999).

Backpropagation refers to the procedure for calculating the derivatives of the 

error with respect to the weights (step 5), and is also the name of the most commonly 

used training algorithm for adjusting the weights (step 6). In short, the derivatives are 

calculated through an application of the chain rule of calculus (see Hinton, 1992 for a 

description of this procedure). The derivatives indicate the direction in which the error 

function increases the most. The backpropagation training algorithm adjusts the weights 

by moving a small distance in the opposite direction, where error decreases most steeply 

(Smith, 1993). By iterating the above process many times the error gradually decreases 

and converges towards a minimum. The backpropagation algorithm has been shown in 

many practical applications to be a successful method of training artificial neural 
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networks (e.g., Bounds, Lloyd, & Mathew, 1990; Gorman & Sejnowski, 1988; 

Rajavelu, Musavi, Shirvaikar, 1989; Silverman & Noetzel, 1990), however it can be 

very slow and sometimes requires many thousands of iterations before error is 

minimised. A more complex algorithm, called conjugate gradients, reduces the training 

time required by assuming a quadratic error surface (Reed & Marks, 1999). As the 

quadratic error assumption tends to only hold in the vicinity of a minimum it is useful to 

initially train a network with a few iterations of backpropagation in order to obtain the 

approximate position of a minimum, followed by conjugate gradients training to obtain 

a final solution (Reed & Marks, 1999). This procedure for training neural networks was 

adopted in the present research. 

Controlling the Complexity of the Network

Given the large representational capability of neural networks, the process 

outlined above for fitting the network to the training data may overfit the data by 

capturing some of the noise in the training set, and consequently produce poor 

predictions for unseen cases. The extent to which overfitting occurs also depends on 

characteristics of the data within the domain of interest, such as the amount of noise in 

the data and the number of training cases available (Reed & Marks, 1999). If the data is 

very noisy or only small samples are available for training purposes then a simpler 

linear model may outperform a neural network even if the underlying function is 

nonlinear (Sarle 2000c). Several approaches to reducing the extent to which neural 

networks overfit the data have been developed based on controlling the complexity of 

the network. Three of the more common methods are discussed below. 

The simplest approach involves experimenting with different numbers of hidden 

units, including networks with only a small number of hidden units (e.g., Zhang, Hu, 
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Patuwo, & Indro, 1999). As previously discussed, the range of functions that can be 

approximated by a neural network increases as the number of hidden units is increased. 

By including networks with only a small number of hidden units one limits the 

representational capability of these networks and hence their ability to overfit. However, 

even small networks can overfit the data (e.g., Caruana, Lawrence, & Giles, 2000), and 

therefore this approach is not always effective. 

A second approach, referred to as weight regularisation, is based on 

constraining the size of the weights in the network by adding a penalty term to the error 

function. For example, a common penalty term referred to as the weight decay term 

involves squaring the weights, summing them, and multiplying the sum by a 

regularisation constant that influences the extent to which the weights are constrained 

(Reed & Marks, 1999). When a network is trained with this term added to its error 

function it is penalised for having large weights (in the form of an increase in the overall 

error function). The training process is therefore motivated to reduce the size of weights 

that are not essential to the solution (Reed & Marks, 1999). Large weights cause a lot of 

curvature in the prediction equation, and the use of a penalty term has the effect of 

smoothing the equation. Weight regularisation techniques have been successfully used 

to reduce overfitting and improve predictive accuracy for unseen cases in a number of 

practical applications of neural networks (e.g., Ennett & Frize, 2003; Weigend, 

Huberman, & Rumelhart, 1990). 

A third approach is the procedure known as early stopping (e.g., Hagiwara, 

2002; Sarle, 1995). It involves using only a subset of the total training cases to adjust 

the weights, and using the remaining cases to monitor prediction error during the 

training process. Specifically, the available training cases are partitioned into a training 

set and a validation set. A network with a large number of hidden units is trained using 
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the training set and prediction error for the validation cases is calculated periodically 

during training, ideally after every iteration. Generally, as training progresses, error on 

the validation set initially decreases but then starts to increase as the network starts to 

overfit the training set (e.g., LeBaron & Weigend, 1998; Wang, Venkatesh, & Judd, 

1994; cf. Prechelt, 1998).  By monitoring error on the validation set one can stop the 

training process at the point where error starts to increase and select the set of weights 

corresponding to this point.  In other words, this procedure uses the validation set as an 

indicator of when the network starts to overfit the training data.

   Like weight regularisation, early stopping has been successfully applied in a 

number of studies that have used artificial neural networks to solve practical problems 

(e.g., Gencay & Qi, 2001; Edwards & Murray, 2000; Tetko, Livingstone, & Luik, 

1995). Finoff, Hergert, and Zimmermann (1993) compared the performance of several 

techniques for controlling complexity including variants of the three approaches 

presented here. They tested each technique on a number of artificially generated 

datasets that varied in terms of the amount of noise in the data, the degree of 

nonlinearity, and the number of input and output variables. There was no clear 

difference in predictive accuracy for unseen cases between the weight regularisation and 

early stopping procedures, although both approaches were uniformly superior to simply 

experimenting with the number of hidden units. In the present research combinations of 

all three procedures were employed. 

Testing Predictive Performance  

Regardless of the approach used to develop artificial neural networks, a 

network’s predictive performance should be evaluated using data that is independent of 

that used during the training process. Error on the training set provides an 
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overoptimistic estimate of predictive accuracy. A network with a large number of free 

parameters (or weights) can produce very low training error by fitting the noise in the 

training set yet perform poorly when generalising to unseen cases. Similarly, when 

using the early stopping procedure error on the validation set is also a biased estimate of 

the predictive performance of the chosen network (Sarle, 2001c). This is because the 

early stopping procedure involves a choice among a potentially large number of 

networks (each iteration of the training process representing one possible network), and 

therefore provides a good deal of opportunity for overfitting the validation set. 

Consequently, in addition to the training set (and validation set if early stopping is 

employed), a separate set of data that is not used in any way during network 

development (referred to as the test set) is required to assess the predictive performance 

of the network. This is in contrast to the way in which predictive performance is 

typically assessed in the context of linear methods. For example, with a single predictor 

it is common to compute a validity coefficient over the entire data available. Similarly, 

when there is more than one predictor it is often the case that a multiple correlation 

coefficient (R) is computed over the entire data and adjusted for upward bias using one 

of the formulae that have been developed for this purpose (see Pedhazur, 1997). 

The simplest approach to obtaining subsets of data, referred to as the hold out

method, involves randomly partitioning the total data into a training set and a test set. 

Prediction equations are then developed using the former set and tested on the latter. A 

common heuristic is to allocate approximately two-thirds of the cases to the training set, 

and the remaining cases to the test set (Weiss & Kulikowski, 1991). If early stopping is 

being used then the training data needs to be further partitioned into a training set and a 

validation set. 



42

The hold out method provides an unbiased estimate of the predictive 

performance associated with a particular prediction equation. It can also be used to 

compare the predictive performance of two prediction equations. However, it is less 

appropriate when the researcher is interested in the predictive performance associated 

with a particular method of generating prediction equations, or with comparing the 

performance of two such methods (Dietterich, 1998). This is because it does not take 

into account variability that occurs as a result of the random choice of the training set. 

The variability in the estimate of predictive performance across different random 

partitions of the data tends to be large (Martin & Hirschberg, 1996; Reed & Marks, 

1999; also see LeBaron & Weigend, 1998). Therefore, misleading results may be 

obtained if one relies on a single partition of the data. A more appropriate approach is 

the use of a resampling procedure. For example, Nadeau and Bengio (2003) outline a 

simple form of resampling that involves repeating the random partitioning of the data 

into a training set and a test set multiple times. For each partition, prediction equations 

are developed using the training set and tested on the test set. Predictive performance is 

estimated by averaging over the multiple test sets. In this way a more stable estimate of 

predictive performance is obtained. 

A second issue concerns the choice of the measures used to assess the predictive 

performance of prediction equations. Artificial neural networks, like linear regression 

equations, are usually trained to minimise squared errors.5 It follows that one potential 

measure of predictive performance is the mean square error on the test set. However, 

squared errors are purely mathematical constructs that are not easily interpreted 

(Masters, 1993). Furthermore, the act of squaring errors magnifies the effects of large 

5 Least-squares error functions have certain properties that are very useful for training prediction 
equations. For example, their derivatives are more easily computed than other error functions, and they 
correspond to maximum likelihood under certain realistic assumptions (see Bishop, 1995).  
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errors, which is not necessarily desirable. Therefore, for the purposes of testing a 

network it is often convenient to use a different error function to that used to train the 

networks (Bishop, 1995), or to at least include other measures of predictive accuracy in 

addition to mean square error. For example, the mean absolute error takes the absolute 

value of the difference between predicted and observed criterion scores for each test 

case and averages across the entire test set. Thus, it indicates the average magnitude of 

the error. The mean absolute error places equal emphasis on large and small errors. 

Furthermore, given that the mean absolute error is expressed in the original scale of the 

criterion, it is more easily interpreted than mean square error.  

Both the mean square error and the mean absolute error assess predictive 

performance as a function of the discrepancy between predicted and observed criterion 

scores. Hence, predictions are evaluated in terms of the absolute agreement between 

predicted and observed scores. Absolute agreement takes into account, among other 

things, the extent to which the prediction equation correctly estimates the mean and 

standard deviation of the observed scores (Kirlik & Strauss, 2003). As a result it is 

useful when one is interested in predicting the specific value of an individual’s criterion 

score. Measures of absolute agreement can be distinguished from relational indices of 

predictive performance such as the test set correlation between predicted and observed 

criterion scores, also referred to as the cross-validity coefficient. The cross-validity 

coefficient is not sensitive to differences in either the magnitude or scale of predicted 

and observed criterion scores (see Kirlik & Strauss, 2003), and is therefore more 

relevant when one aims to predict the relative standing of cases on the criterion rather 

than the actual value of the criterion. Furthermore, although both absolute and relational 

measures are relevant for the assessment of predictive performance, the cross-validity 
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coefficient is more closely related to the validity coefficients that have typically been 

used to evaluate the validity of predictor variables within organisational contexts. 6, 7

Analysing the Role of Predictors

Once a network has been tested and shown to exhibit satisfactory predictive 

performance, one may be interested in investigating the nature of the relationships 

between the predictors and the criterion that are detected by the network. Furthermore, 

the relative importance of the different predictors for predicting criterion scores may 

also be of interest.

It is useful to first consider the manner in which the role of predictors is assessed 

within regression-based methods. In linear regression the weight or coefficient 

associated with each predictor indicates the linear relationship between the predictor 

and the criterion, holding constant the effects of the other predictors (Pedhazur, 1997). 

There are various inferential tests that determine whether each weight is significantly 

different from zero, and the sign of the weight can be used to indicate the direction of 

the relationship. Furthermore, the relative importance of predictors is often (possibly 

inappropriately) determined by standardising the weights and then comparing their 

magnitudes (see Pedhazur, 1997). More complicated forms of regression, such as 

polynomial regression or moderated multiple regression, represent each type of 

relationship as a separate variable (see Cohen, 1978). For example, a quadratic 

relationship is represented by a variable that is the squared value of the predictor 

6 Guion (1998) distinguishes between the concepts of validity and accuracy, and argues that relational 
measures are more closely aligned to the definition of validity whereas absolute measures are more 
appropriately a measure of accuracy. Nevertheless, the two types of measures are related in that accuracy 
is a function of validity. 
7 It should be kept in mind that a negative cross-validity coefficient indicates that the predicted values are 
negatively related to the observed values and therefore that the predictive performance of the prediction 
equation is poor. This contrasts with the interpretation of validity coefficients, for which it is the 
magnitude of the coefficient (rather than both sign and magnitude) that indicates predictive performance. 
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hypothesised to be quadratically related to the criterion. Similarly, a multiplicative 

relationship of two predictors with the criterion is represented by a variable that is the 

product of the two predictors. The weight associated with the variable can then be tested 

to determine whether the hypothesised quadratic or multiplicative relationship is 

statistically significant.8 The actual nature of the quadratic or multiplicative relationship 

is subsequently inferred by referring to the sign of the weight or else by graphical 

methods. 

In contrast, it is a lot more difficult to extract information about the role of the 

predictors in an artificial neural network. The prediction equation represented by a 

network usually takes a very complicated form; and the relationship of each predictor to 

the criterion is not represented by a single weight, but rather is distributed across many 

weights that are transformed in complex ways before linking to the output unit. As a 

result, it is normally not useful to try to interpret the weights in a network (Masters, 

1993). Nevertheless, there are several approaches that can be used to provide insight 

into the role of different predictors in a neural network. Below I discuss graphical 

methods and sensitivity analysis. 

One can use graphs to depict the nature of the relationship between predictors 

and the criterion (e.g., Somers, 1999). For example, a series of two-dimensional graphs 

can be used to visualise the relationship between individual predictors (plotted on the 

horizontal axis) and the criterion (plotted on the vertical axis). The graphs are generated 

by varying the values of the predictor, and determining the predicted criterion score at 

each value of the predictor. When there are multiple predictors, the value of all 

predictors other than the one being examined can be held constant, for example by 

fixing them at their mean values. Configural relationships involving two predictors can 

8 The proper way to conduct this analysis is via hierarchical regression in which the linear effects of 
predictors are held constant when testing the quadratic or multiplicative effects (See Cohen, 1978). 
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be considered using a three-dimensional graph in which the two predictors are plotted as 

the width and depth of the graph and the criterion is plotted as the height. Again, all 

predictors not being examined can be held constant at their mean values. Of course 

graphs derived from neural network analyses cannot be used to assess the statistical 

significance of any particular relationship. However, they are potentially useful 

exploratory tools for suggesting possible nonlinear or configural relationships between 

predictors and the criterion that can then be more precisely examined using other 

techniques, such as regression-based hypothesis testing.  

A direct measure of the relative importance of predictors in a neural network is 

the change in predictive performance that occurs when each predictor is omitted from 

the network (Sarle, 2000). This can be implemented via sensitivity analysis (StatSoft 

Inc., 1999), in which the information provided by a predictor is made unavailable by 

clamping its value to a typical value (for example the mean of the predictor) and 

predictive performance is computed using scores on the other predictors. This is 

repeated for each predictor. A predictor whose omission results in a large deterioration 

in predictions is considered more important for predictive purposes than a predictor 

whose omission has little impact on predictions or else improves predictions. 

Applications to Organisational Psychology 

Artificial neural networks, and in particular multilayer perceptrons, have been 

successfully applied to many real-world problems similar to the problem addressed in 

the present research. For example, neural networks have been used to predict outcomes 

relevant to clinical psychology (Price et al., 2000) and social work (Marshall & English, 

2000). Within organisational contexts there have been successful applications to many 

of the tasks encountered in the manufacturing, marketing, and finance departments of 
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businesses (e.g., Edwards & Murray, 2000; Kuo, Wu, & Wang, 2002; Zhang et al., 

1999). Yet, despite the widespread popularity of artificial neural networks in related 

domains, there have been few attempts to extend this methodology to organisational 

psychology in particular. A review of the literature yielded only a small number of 

published studies that had used artificial neural network methods to address issues 

related to behaviour in organisations. Nevertheless, the few investigations that have 

been conducted hold promise for the usefulness of artificial neural networks in 

organisational psychology research (Hanges, Lord, Godfrey, & Raver, 2002). 

Collins and Clark (1993) were possibly the first researchers to apply artificial 

neural networks to the prediction of workplace behaviour. Using a sample of 81 

managers working in project teams, they sought to predict managers’ perceptions of 

team performance (dichotomised as high versus low) from their perceptions of team 

satisfaction, team cohesion, team task-orientation and work pressure. They developed 

one multilayer perceptron neural network using two-thirds of the data, and assessed the 

predictive performance of the network by calculating a cross-validity coefficient using 

the remaining data. The cross-validity coefficient of the neural network was identical to 

that of an equation developed using the simpler technique of discriminant analysis. 

However, the number of hidden units in the neural network was chosen in an ad-hoc 

manner, and was large relative to the number of training cases. This probably resulted in 

an overfitted prediction equation, as indicated by the large discrepancy between the 

network’s performance on the training set and the test set. In a second analysis only 

indirectly related to work performance, Collins and Clarke investigated whether 

artificial neural networks could be used to distinguish between managers who either 

were or were not incarcerated for white-collar crimes, using scales of the California 

Psychological Inventory (Gough, 1987) as predictors. In this case the sample size was 



48

much larger (N = 649, training n = 435, test n = 214) and fewer hidden units were used 

to develop the neural network than in the first study. The cross-validity coefficient of 

the neural network (r=.70) was higher than that of the discriminant model (r=.66). 

Collins and Clark concluded that their results warranted further research on artificial 

neural networks as a statistical tool for personnel psychologists.

As part of his doctoral dissertation Scarborough (1996) examined the feasibility 

of artificial neural networks as a methodology for criterion validation of employee 

selection testing. The participants were 1085 telephone sales agents working within a 

large service organisation. Thirty-five multilayer perceptrons were developed to predict 

the revenue generated by the sales agents using information from a test battery 

consisting of biographical and personality predictors. The predictive performance of the 

networks was significantly greater than that of a linear regression model and roughly 

equivalent to that of a proprietary nonlinear equation. 

Griffin (1998) used artificial neural networks to assess the validity of 

psychomotor and other aptitude tests for predicting the flight grades earned by student 

naval aviators during the first 6-months of training. Half of the 434 cases were used to 

develop a linear regression equation along with many different types of feedforward 

networks including multilayer perceptrons. Cross-validity coefficients computed on the 

remaining cases showed that the multilayer perceptrons outperformed all the other 

artificial neural networks but were no more accurate than the linear regression equation. 

Griffin speculated that this may have been due to the linear nature of the data. In 

concordance with this claim, a review of 174 studies found that nonlinear relationships 

between aptitude measures and job performance – as opposed to linear aptitude-

performance relationships – do not occur at levels substantially greater than chance 

(Coward & Sackett, 1990). 
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Somers (1999) used artificial neural networks to study the relationship between 

work attitudes (organisational commitment, job satisfaction and job withdrawal 

intentions) and turnover (whether or not the employee left the organisation within the 

subsequent 12 months) among a sample of 577 nurses. A multilayer perceptron with 

three hidden units was developed using 462 training cases, and used to predict turnover 

for each of the 115 nurses assigned to the test set. The network achieved a correct 

classification rate of 88%, which was higher than the 76% achieved by the benchmark 

logistic regression equation. Furthermore, graphical representations were used to 

demonstrate a number of nonlinear relationships between work attitudes and turnover 

that may have accounted for the superior predictive performance of the neural network, 

and these relationships were interpreted in terms of existing theories of turnover.9

More recently, Somers (2001) extended his investigation to attitudinal predictors 

of job performance ratings. He developed a neural network and a linear regression 

equation using a training sample of 185 nurses, and tested the equations on a test set 

consisting of 47 nurses. The cross-validity coefficient of the network (r=.27) was higher 

than that of the regression equation (r=.17). Somers then graphically identified a 

number of nonlinear and multiplicative relationships that may have accounted for the 

findings, and he highlighted the need to incorporate nonlinear effects into existing 

theories of attitude-performance relations. 

In summary, the findings described above suggest that the application of 

artificial neural network methodology to issues encountered in organisational 

psychology is potentially useful. In particular they show that neural networks are 

generally able to deal with the level of noise present in datasets collected within 

9 Somers (1999) also trained and tested a Learning Vector Quantization neural network and found that it 
performed favourably compared to the logistic regression equation. Learning Vector Quantization 
networks are only appropriate for classification tasks (in which the criterion is categorical) and are 
therefore not relevant for the present research, which used continuous critera. 



50

organisational contexts, and yield more accurate predictions (if only slightly) than 

traditional methods when large samples are available and there is some expectation of 

complex relationships between the predictors and the criterion.  

Aims and Preview 

The overriding aim of the present thesis was to compare artificial neural 

networks and linear regression as two methods of evaluating the effectiveness of 

personality variables for predicting work performance. Specifically, the aim was to 

develop prediction equations that relate scores on personality variables to measures of 

work performance, using either neural networks or linear regression to produce the 

equations, and to then compare the predictive performance of the two types of 

equations. A second related aim was to explore the nature and extent of any potential 

nonlinear and configural relationships between personality variables and work 

performance. The findings were anticipated to be relevant to two broad areas of research 

as described below. 

First, the present work represents a comparison of two different methodological 

approaches to evaluating the effectiveness of psychological variables as predictors of 

behaviour in organisations, and is therefore relevant to the literature on organisational 

research methods. Specifically, the flexible representational capability of the neural 

network approach was compared to the simpler and more traditional regression-based 

method that assumes linear and additive relationships among variables. This is in line 

with recent calls for the application of more complex methods to the analysis of 

organisational data (e.g., Hanges et al., 2002; Mount, Barrick, & Ryan, 2003). The 

choice of the best method is contingent on the nature of the data within the domain of 

interest (e.g., the noisiness of the data, the presence of complex relationships, and the 
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number of cases available), and is therefore an empirical question. As described in this 

chapter, the findings from some of the few studies that have applied artificial neural 

networks to organisational data suggest optimism about the usefulness of this method 

for issues encountered in organisational psychology. The present study investigated 

whether this optimism could be extended to the specific case where personality 

variables are used to predict work performance. Furthermore, much of the previous 

work has relied on a single measure of predictive performance, a single partition of the 

data into training and test subsets, or a single approach to developing neural networks. 

Methodological contributions of the present research include the use of multiple 

measures of predictive performance, the use of a resampling procedure, and the 

comparison of two alternate procedures for developing neural networks. 

Second, the present research is relevant to a number of issues within the 

literature on personality and work performance. The research investigated the specific 

nature of the relationships between personality variables and work performance. As 

outlined in chapter 1, current theories of work performance implicitly assume linear and 

additive relationships between personality variables and performance (e.g., Barrick et 

al., 2003); by examining more complex relationships the present research addresses the 

tenability of the linearity and additivity assumptions. Furthermore, the present research 

addresses the effectiveness of different personality variables for predicting work 

performance. Unlike previous research, however, this issue was evaluated in the context 

of a method that is capable of capturing highly nonlinear and configural relationships, 

and therefore the obtained results provide an assessment of the effectiveness of 

personality variables in light of the possibility of such complex relationships.  

The above issues were investigated by conducting a comparison of artificial 

neural networks and linear regression across six datasets that comprised a broad range 
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of occupations, personality inventories, and work performance measures. The details of 

these datasets, along with some preliminary analyses, are presented in chapter 3. 

Chapters 4 and 5 report the results of studies that compared artificial neural networks 

and linear regression using measures of the dimensions of the five-factor model as the 

predictors. Chapter 4 presents analyses for each personality measure individually,

thereby facilitating the exploration of nonlinear relationships between personality and 

work performance. Chapter 5 presents analyses for combinations of the five factor 

measures, thus facilitating the exploration of configural relationships. Chapter 6 reports 

the results of a study that compared the predictive performance of the broad personality 

variables represented by the five-factor model to that of narrower personality variables 

that assess specific facets of these broader constructs. This study also compared 

artificial neural networks and linear regression in the context of narrow personality 

measures. Finally, Chapter 7 presents a general discussion of the findings. 
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CHAPTER 3: The Datasets 

Introduction

Previous studies that have applied artificial neural networks to organisational 

data have relied on one or two datasets from the domain of interest. In such cases one 

cannot easily conclude whether the success of an application is specifically limited to 

characteristics of the particular dataset (for example the occupational group under 

examination or the inventory used), or whether it can be generalised to other datasets 

collected within the domain. The present research compared artificial neural networks 

and linear regression using six datasets that comprise a range of occupations, 

personality inventories, and work performance measures. In this way it was possible to 

assess the extent to which the results generalise across different dataset characteristics. 

This chapter introduces and describes the six datasets that were used as the basis 

of the analysis. The chapter is divided into two sections. The first section describes the 

method by which each dataset was obtained. Detailed descriptions of the participants, 

the measures, and the procedure are provided for each dataset. The second section 

presents the findings from preliminary analyses conducted on each dataset. The analyses 

were carried out to evaluate the validity with which the intended constructs were being 

measured, to assess the reliability of the predictor and criterion scales, and to provide 

some descriptive statistics for the datasets. 

Description of the Datasets 

The present research used both existing and newly collected datasets as part of 

the comparison of neural networks and linear regression. A review of the recent 

literature was used to draw up a list of researchers who had previously conducted 
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organisational-based field studies in which personality and performance measures were 

assessed. Each researcher was contacted by an email that outlined the purpose of the 

research, and access was requested to any relevant datasets that they had collected. For a 

dataset to be suitable for the present research three criteria had to be met. First, the 

dataset had to include a personality instrument that had been explicitly based on the 

five-factor model and all five factors needed to have been assessed. Second, the dataset 

had to include a measure of on-the-job performance or training performance. Third, 

given that large sample sizes are usually required to develop and test artificial neural 

networks, the dataset had to include complete data for at least 100 cases. 

Through the process described above four existing datasets were acquired that 

met the criteria for selection (Datasets 2 to 5 in Table 3.1). In addition, I collected two 

new datasets specifically for the purposes of the present research (Datasets 1 and 6 in 

Table 3.1). This yielded a total of six datasets. 

Table 3.1 

Characteristics of the six datasets used in the present thesis. 

Dataset Sample size Personality inventory Performance measure 

1. University students  227 IPIP-NEO Academic marks 

2. Police recruits  286 NEO PI-R  Test marks 

3. Flight attendants 305 NEO PI Instructor ratings 

4. Managers  179 NEO PI-R Supervisor ratings  

5. Bus drivers  486 HPI Supervisor ratings 

6. Professionals  120 CPS-2 Supervisor ratings 

Note: IPIP-NEO = International Personality Item Pool NEO, NEO PI-R = Revised NEO Personality 
Inventory, NEO PI = NEO Personality Inventory, HPI = Hogan Personality Inventory, CPS-2 = 
Congruence Personality Scale form 2. 
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As can be seen in Table 3.1, the six samples represent a wide range of 

occupations, and encompass both on-the-job performance and performance on training 

programs. The first sample consists of university students, and is therefore not strictly 

an occupational sample. It is included here given that performance on training programs 

often contains an academic component (e.g., Driskell, Hogan, Salas, & Hoskin, 1994). 

The other five samples comprise five of the six major occupational categories included 

in previous meta-analyses (e.g., Barrick et al., 2001; Hurtz & Donovan, 2000), namely: 

police, customer service workers (flight attendants), managers, skilled/semi-skilled 

workers (bus drivers), and professionals; only the sales category is not represented here. 

Datasets 2 and 3 were collected during training programs, and therefore relate to 

training performance. Datasets 4, 5, and 6 relate to on-the-job performance. 

Three of the datasets used the NEO Personality Inventory (NEO PI; Costa & 

McCrae, 1985) or its revised version (NEO PI-R; Costa & McCrae, 1992) to measure 

the five factors. A fourth dataset employed the widely used Hogan Personality 

Inventory (HPI; Hogan & Hogan, 1995). Two five-factor inventories that have been less 

extensively used in organisational research, the International Personality Item Pool 

NEO (IPIP-NEO; International Personality Item Pool, 2001) and the Congruence 

Personality Scale form 2 (CPS-2; Pryor & Taylor, 2000), were used in the remaining 

two datasets. Performance was assessed using scores obtained on objective performance 

tests (Datasets 1 and 2) or ratings provided by supervisors/instructors (Datasets 3, 4, 5, 

and 6). Each dataset is described in more detail below. Given that I was not involved in 

the collection of Datasets 2 to 5 descriptions of these datasets is largely based on notes 

provided by the original researchers and the documentation in published papers. 

Therefore, these descriptions are sometimes less detailed than those for the datasets that 

I collected, namely Datasets 1 and 6. 
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Dataset 1: University students 

Participants. The participants were 234 university students (181 females and 53 

males, mean age = 20) who were enrolled in a 14-week introductory psychology course 

at the University of New South Wales. Seven of the participants were subsequently 

omitted from the analysis due to incomplete or missing performance scores resulting in 

a final sample of 227 students.  

Measures. Personality was assessed using the IPIP-NEO (International 

Personality Item Pool, 2001). This instrument consists of 300 items that are responded 

to on a five-point scale with the labels very inaccurate, moderately inaccurate, neither 

accurate nor inaccurate, moderately accurate, and very accurate.1 The items are scored 

from 1 to 5 (or 5 to 1 for items scored in reverse direction), and are summed to obtain 

30 lower-level scales (10 items per scale). The lower-level scales were designed to 

measure the same constructs as those assessed by the 30 facet scales of the NEO PI-R 

(Table 3.2 lists the facet labels of these two inventories), although the two inventories 

differ in terms of the content of the items and the number of items per scale. The lower-

level scales of the IPIP-NEO are summed to obtain five higher-level scales assessing 

Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness (each 

higher-level scale is the sum of six lower-level scales or 60 items). Higher scores 

indicate greater levels of the personality attribute. 

Performance was measured by the student’s overall mark (out of 100) for the 

course. The overall mark was composed of results obtained in a final examination, as 

well as a research report, a methodology assignment, a tutorial field study, and exams 

completed during the semester. Higher scores indicate better performance.  

1 The items of this inventory are available in the public domain (http://ipip.ori.org/newNEOKey.htm).

http://ipip.ori.org/newNEOKey.htm
http://ipip.ori.org/newNEOKey.htm
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Table 3.2 

The 30 lower-level facet scales of the IPIP-NEO and NEO PI-R. 

Facet IPIP-NEO label NEO PI-R label 

N1 Anxiety Anxiety 

N2 Anger Angry Hostility 

N3 Depression Depression 

N4 Self-Consciousness Self-Consciousness 

N5 Immoderation Impulsiveness 

N6 Vulnerability Vulnerability 

E1 Friendliness Warmth 

E2 Gregariousness Gregariousness 

E3 Assertiveness Assertiveness 

E4 Activity Level Activity 

E5 Excitement-Seeking Excitement-Seeking 

E6 Cheerfulness Positive Emotions 

O1 Imagination Fantasy 

O2 Artistic Interests Aesthetics 

O3 Emotionality Feelings 

O4 Adventurousness Actions 

O5 Intellect Ideas

O6 Liberalism Values 

A1 Trust Trust

A2 Morality Straightforwardness 

A3 Altruism Altruism 

A4 Cooperation Compliance 

A5 Modesty Modesty 

A6 Sympathy Tender-Mindedness 

C1 Self-Efficacy Competence 

C2 Orderliness Order 

C3 Dutifulness Dutifulness 

C4 Achievement-Striving Achievement-Striving 

C5 Self-Discipline Self-Discipline 

C6 Cautiousness Deliberation 

Note: The letters N, E, O, A, C in the first column indicate the higher-level scale that the lower-level facet 
relates to. 
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Procedure. Students were recruited through a web site set up by the School of 

Psychology for this purpose, and participated in the study in return for course credit. 

They completed a paper and pencil version of the personality inventory during the 

semester in groups of up to ten students. At the beginning of each testing session each 

participant was provided with a copy of the personality inventory and a participant 

information statement and consent form. The latter outlined the purpose of the study, 

requested permission to access the student’s psychology grades, and assured the student 

that any information obtained in connection with the study would remain confidential. 

Upon signing the consent form and completing the questionnaire each participant was 

given a debriefing form and provided with the opportunity to ask questions. At the end 

of the semester each student’s mark for the different assessment components of the 

course was accessed. 

Dataset 2: Police recruits

Access to this dataset was provided by Jonathan Black from the New Zealand 

Police. For further details see Black (2000). 

Participants. The participants were 286 police recruits (190 males and 96 

females, mean age = 27) attending a 22-week basic training program at the Royal New 

Zealand Police College. The program was designed to develop the skills and knowledge 

required for police work, and included firearms training, physical training and self-

defence, driving, computer studies, social science skills training, and police law and 

procedures.

Measures. Personality was assessed using the NEO PI-R (Costa & McCrae, 

1992). This instrument consists of 240 self-report items that are responded to on a five-

point scale ranging from strongly disagree to strongly agree. Each item is scored from 0 
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to 4 (or 4 to 0 for reverse scored items). The five higher-level domain scales 

(Neuroticism, Extraversion, Openness to Experience, Agreeableness, and 

Conscientiousness) are defined by groups of lower-level facet scales. Eight items are 

summed to derive each of the thirty facet scales (refer to Table 3.2 for a list of the facet 

labels). Each of the five domain scales is in turn derived by summing the six facet scales 

that relate to that domain. This yields a score ranging from 0 to 192 for each domain 

scale. Higher scores indicate greater levels of the attribute. 

A composite index of overall course performance (out of 1000) was used to 

operationalise the training performance criterion. The index was the aggregate of scores 

on 17 academic (e.g., assignments, exams) and practical (e.g., firearms, driving) tests 

completed as part of the training program. Higher scores indicate better performance. 

Procedure. The recruits completed the personality inventory within a month of 

starting training. They were assured that their results would remain confidential and 

would be used for research purposes only. Performance tests relating to the different 

components of training were completed during the program, and at the end of the 

training course the test scores achieved by each participant were obtained. 

Dataset 3: Flight attendants

Access to this dataset was provided by Douglas Cellar from DePaul University. 

For further details see Cellar, Miller, Doverspike, and Klawsky (1996). 

Participants and procedure. This dataset was collected as part of a 6-week 

training program for 423 flight attendant trainees (361 females, 50 males, and 12 

unspecified) who had recently been recruited by a large international airline. The 

training program involved role-playing exercises, participative exercises, discussions, 

lectures, and take-home study. During the last two weeks of training the trainees 
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completed the personality inventory, and performance ratings were collected from 

instructors. Performance ratings were not available for 98 of the trainees, and an 

additional 20 trainees had missing personality information. The final sample of 305 

trainees consists of those with complete personality and performance data. 

Measures. Personality was assessed using the NEO PI (Costa & McCrae, 1985). 

The NEO PI differs from the revised version in that only three of the five dimensions 

(Neuroticism, Extraversion, and Openness) are defined in terms of lower-level facet 

scales. The inventory does not contain facet scales for Conscientiousness and 

Agreeableness, but rather assesses these dimensions using two 18-item global scales. 

Furthermore, ten of the items that were used in the original version to measure facets of 

the first three dimensions were subsequently replaced in the revised version.

Performance was assessed using ratings provided by instructors on eight 

behaviourally anchored rating scales. Seven of the eight scales measured performance 

on dimensions determined by job analysis to be important for training and flight 

attendant success, namely a) learning and applying knowledge, b) demonstrating 

responsible work habits, c) work-related communications, d) interpersonal skills, e) 

customer interaction, f) teamwork, and g) problem solving. The final scale was a global 

rating of overall training performance. Each scale was rated from 1 to 9, where higher 

scores indicate better performance. Performance was operationalised as the average 

score over the eight items. 

Dataset 4: Managers

Access to this dataset was provided by the Center for Creative Leadership. For 

further details see Dalton, Ernst, Leslie, and Deal (2002). 
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Participants and procedure. The participants were 211 managers (184 males and 

27 females, mean age = 45) from four organisations, who were at approximately the 

same level of management. Ninety-eight managers were from a Swiss-based 

pharmaceutical company, 48 worked for a Swiss-based hospitality and service 

company, 40 were from a Swedish-based truck manufacturing and construction 

company, and 25 were from a U.S.-based technology company. The managers were 

asked to complete the personality inventory along with other questionnaires that formed 

part of the original study. Concurrently, performance ratings were collected from the 

supervisor of each manager. All respondents were assured that their responses would 

remain confidential. One participant was excluded due to 54 missing responses on the 

personality inventory,2 and 31 participants were excluded due to missing performance 

data. The final sample therefore consisted of data for 179 cases. 

Measures. Personality was assessed using the NEO PI-R (Costa & McCrae, 

1992). This instrument was discussed in connection with Dataset 2. Supervisor ratings 

on a 10-item scale designed to assess achievement on the job were used as the 

performance criterion (See Table 3.4 in this chapter for a list of the ten items). The 

items were part of a broader set of scales that were developed and revised in 

consultation with the Director of Executive Development from one of the participating 

companies. The items are responded to on a five-point scale ranging from strongly

disagree to strongly agree. Each item is scored from 1 to 5 where higher scores indicate 

better performance. Performance was operationalised as the average score over the ten 

items. 

2 The NEO PI-R manual (Costa & McCrae, 1992) recommends that the inventory should not be scored if 
41 or more responses are missing. 
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Dataset 5: Bus drivers 

Access to this dataset was provided by Jeffrey Conte from San Diego State 

University. For further details see Jacobs, Conte, Day, Silva, and Harris (1996).

Participants and procedure. The participants were 864 bus drivers from nine 

bus properties across North America who had volunteered to participate in the study in 

return for their hourly wage rate. The participants, who represented a wide range of 

experience levels (from recently hired drivers to those with over 20 years experience), 

completed a predictor battery that included the personality inventory used here. They 

were assured that there responses would be confidential, and that any reports generated 

would be at the aggregate summary level. Subsequently, performance data was obtained 

for 486 of the bus drivers (391 males and 95 females) from six of the properties. This 

group constituted the sample used in this thesis. 

Measures. Personality was assessed using the HPI (Hogan & Hogan, 1995). This 

inventory is based on the five-factor model of personality, and is specifically designed 

for use in organisational settings. It contains 206 items that together define seven scales. 

Four of the scales (labelled Adjustment, Likeability, Prudence, and Intellectance)

roughly correspond to the dimensions Neuroticism (reverse scored), Agreeableness, 

Conscientiousness, and Openness in the five-factor model. Extraversion is 

operationalised as two distinct scales in the HPI, namely Ambition and Sociability. The 

former captures the potency aspects of Extraversion (e.g., competitiveness, energy and 

leadership), whereas the latter relates to the desire to interact with others. Finally, the 

HPI contains a seventh scale, School Success, that assesses the extent to which an 

individual is interested in and has aptitude for academic activities (Hogan & Hogan, 

1995). This scale is most closely related to the Openness dimension. However, given 

that many of the items of School Success assess characteristics associated with 
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cognitive ability, such as the extent of the respondent’s vocabulary and their ability to 

multiply large numbers quickly, this scale was not included in the present research. For 

the six scales included here, the number of items per scale are 37 for the Adjustment 

scale, 29 for Ambition, 24 for Sociability, 22 for Likeability, 31 for Prudence, and 25 

for Intellectance. Each item is responded to as true or false, and scored as 1 or 0. Thus 

the possible scores for each scale range from 0 to the number of items per scale, where 

higher scores indicate greater levels of the personality attribute. 

Performance was assessed using ratings provided by supervisors on nine items. 

As part of the original study a comprehensive job analysis had been conducted. Written 

material (e.g., formal job descriptions, training manuals and research articles), 

observations of bus drivers performing their job, interviews, and a job analysis survey 

had been used to identify the key responsibilities and tasks performed by bus drivers. 

This information had then been used to develop the nine behaviourally anchored rating 

scales that assessed performance on the key elements of the job. The scales assessed a) 

dependability, b) schedule adherence, c) safety, d) drive quality, e) attention to details, 

f) passenger interactions, g) service orientation, h) interactions with supervisors, and i) 

interactions with co-workers. The scores for each scale had been standardised within 

each of the six properties to a mean of 50 and a standard deviation of 10, where higher 

scores indicate better performance. In the present study the average of the standardised

scores over the nine scales was used to operationalise performance. 

Dataset 6: Professionals 

Participants. This dataset was collected as part of a longitudinal study in a large 

Australian-based professional services company that had hired 228 recent university 

graduates. The graduates had started work between December 3, 2001 and July 1, 2002. 
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Upon joining the company they were provided with training relating to the firm’s 

systems and procedures and the jobs that they would perform. They then worked with 

the company’s clients in order to provide solutions to complex business issues related to 

corporate finance and accounting. Of the 228 graduates, 131 agreed to participate in the 

present study (response rate = 57%). An additional 11 participants were subsequently 

omitted due to missing performance data (eight had left the firm and no records were 

available for the other three), resulting in a final sample of 120 participants (64 females, 

55 males, and 1 unspecified) with a mean age of 23.  

Measures. Personality was assessed using the CPS-2 (Pryor & Taylor, 2000). 

This instrument was designed to measure five dimensions (labelled Emotional

Orientation, Social Orientation, Cognitive Orientation, Interpersonal Orientation, and

Task Orientation) that correspond to Neuroticism, Extraversion, Openness, 

Agreeableness, and Conscientiousness. It has the advantage of being brief (most test-

takers require no more than 10 to 15 minutes to complete the inventory), and is 

specifically designed for use within organisational and vocational contexts. The 

instrument consists of 75 behavioural and attitudinal statements that are responded to on 

a 7-point scale with the labels Never, Almost Never, Seldom, Sometimes, Often, Almost

Always, and Always. The items are scored from 1 to 7 (or 7 to 1 for reverse scored 

items). Measures of the five dimensions are obtained by summing the 15 items that 

correspond to each dimension. These scales are in the same direction as the NEO 

instruments. For example, higher levels of Emotional Orientation correspond to higher 

Neuroticism, and higher levels of Task Orientation correspond to higher 

Conscientiousness. 

Information obtained as part of the company’s formal performance appraisal 

system was used to operationalise work performance for this dataset. Specifically, each 
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employee’s overall performance was rated by their supervisor on a five-point scale 

ranging from 1 (labelled Exceptional) to 5 (labelled Below expectations). For the 

purposes of the present research I reverse-scored the item so that higher scores indicated 

better performance. 

Procedure. During July 2002 the graduates were mailed a packet consisting of a 

participant information statement and consent form, a reply-paid envelope, the 

personality questionnaire used in the present study, and other work-related 

questionnaires that were used as part of an unrelated study. The graduates were asked to 

participate in the research by completing the questionnaires and returning them to the 

researchers in the reply-paid envelope. They were assured that their responses would 

remain confidential. All graduates were identified only by code, and any information 

provided to the company was as a group summary. Consistent with the longitudinal 

nature of the study, supervisor ratings of performance were collected approximately 

twelve months after the personality questionnaire had been administered.  

Preliminary Analyses 

Prior to applying artificial neural networks to the data a number of preliminary 

analyses were carried out to evaluate the validity with which the intended constructs 

were being measured, to assess the reliability of the predictor and criterion scales, and to 

provide some descriptive statistics for the datasets.

Construct Validity 

Personality variables. All the personality inventories used in this thesis were 

originally constructed with the aim of achieving content validity in relation to the five-

factor model. That is, items were developed so as to provide an adequate sampling of 

the range of characteristics and traits that underlie the five factors. Furthermore, the 
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construct validity of these inventories is supported by a good deal of previous research. 

For example ample evidence exists for the validity of the HPI and the original and 

revised NEO personality inventories; much of this information can be found in the test 

manuals for these instruments (see Hogan & Hogan, 1995; McCrae & Costa, 1992). 

Similarly, the test manual for the CPS-2 (Pryor & Taylor, 2000) and the associated 

bulletins (see www.congruence.com.au) provide some evidence for the validity of this 

instrument. This includes theoretically expected correlations with other tests that 

measure similar constructs, theoretically expected differences between a sample of 

rehabilitation clients and a sample of students, and an analysis of the factor-structure of 

the items. 

There is also support for the construct validity of the IPIP-NEO scales. 

Correlations (corrected for unreliability) between the 30 lower-level scales of the IPIP-

NEO and the corresponding NEO PI-R facet scales have been shown to range from .86 

to .99 (Goldberg, 1999), thus suggesting that the same constructs are being assessed by 

the two inventories. Furthermore, Johnson (2000) factor-analysed the lower-level scales 

of a web-based version of this instrument and concluded that the scales generally loaded 

on the appropriate factors, although three of the scales (E4, O3, and C6) had primary 

loadings on factors other than the intended ones. In order to further evaluate the factor-

structure of this inventory a principal components analysis with varimax rotation was 

conducted.3 The scree plot associated with the analysis of the IPIP- NEO facet scales 

provided support for the retention of five components (see Figure 3.1), which together 

accounted for 64.9% of the variance in the data. Table 3.3 presents the loadings of each 

scale on the five varimax-rotated components. Taking into account the loadings, it is 

3 Principal components analysis with varimax rotation was used because it is consistent with the 
procedures used in the test manuals of the NEO PI-R and HPI, and Johnson’s (2000) factor analysis of the 
IPIP NEO. However, the analysis was also reconducted using the principal axis method of factoring, and 
the direct oblimin method of rotation, and the results were essentially the same. 

http://www.congruence.com.au
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clear that the components correspond to Neuroticism, Extraversion, Conscientiousness, 

Agreeableness, and Openness. All but two of the facets had their primary loading on the 

intended component. The exceptions were Activity Level (E4) and Emotionality (O3), 

which loaded primarily on the Conscientiousness and Neuroticism components, with 

secondary loadings of .37 and .41 on the intended components. Thus, the findings are 

very similar to those obtained by Johnson’s (2000) analysis of this inventory, and 

support the validity of the IPIP-NEO as an instrument for assessing the five factors. 

igure 3.1 

f the eigenvalues associated with the principal components analysis of the 
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IPIP-NEO subscales. 
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Table 3.3 

mponent (RC) loadings of the IPIP-NEO scales for a five-factor solution. 

5

Rotated co

Facet scale RC1 RC2 RC3 RC4 RC

N1: Anxiety .81 -.30 -.02 -.01 -.20 

N2: Anger .81 -.07 .06 -.21 -.06

N3: Depression .79 -.24 -.30 -.08 .02 

N4: Self-Consciousness .56 -.55 -.20 .18 -.20 

N5: Immoderation .44 .33 -.30 -.17 .22 

N6: Vulnerability .87 -.15 -.23 .05 -.17 

E1: Friendliness -.1  9 .79 .09 .29 .00 

E2: Gregariousness -.08 .88 .02 .02 .04 

E3: Assertiveness -.15 .64 .44 -.28 .25 

E4: Activity Level .00 .37 .62 -.03 .05 

E5: Excitement-Seeking -.10 .66 -.09 -.21 .43

E6: Cheerfulness -.34 .65 -.01 .17 .26 

O1: Imagination .22 .07 -.03 -.05 .66

O2: Artistic Interests .01 .17 .07 .22 .70

O3: Emotionality .57 .09 .25 .28 .41

O4: Adventurousness -.40 .33 .03 .00 .57

O5: Intellect -. -.25 .01 .22 06 .78

O6: Liberalism -.16 .08 -.25 .08 .48

A1: Trust -.32 .40 -.01 .49 .04

A2: Morality -.03 -.12 .26 .73 .00

A3: Altruism -.06 .38 .20 .70 .22

A4: Cooperation -.34 -.09 .01 .69 -.12 

A5: Modesty .25 -.32 -.24 .55 -.03

A6: Sympathy .14 .13 -.04 .73 .16

C1: Self-Efficacy -.52 .20 .63 .04 .27 

C2: Orderliness .21 -.25 .57 .00 -.26

C3: Dutifulness -.11 -.10 .60 .52 -.08 

C4: Achievement-Striving -.06 .13 .84 .02 .15

C5: Self-Discipline -.22 .04 .78 .13 .00 

C6: Cautiousness -.30 -.51 .55 .12 -.11 

Note: L bsolute magnitude are underli oldface i dicates the primary loading 
e

oadings over .40 in a ned. B n of
ach facet.
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Performance measures. Principal components analysis was also applied to some 

of the performance measures used in this thesis. The information required to perform 

this analysis was not available for Dataset 2. Furthermore, Dataset 6 consisted of only 

one performance item and therefore principal components analysis was not applicable. 

In Datasets 1, 3, and 5 only a single component had an eigenvalue greater than 1 and the 

scree plots all supported the retention of one component. In Dataset 1 the first principal 

component accounted for 51% of the variance in the five assessment tasks. The loadings 

were .80 for the during-semester exam, .75 for the assignment, .72 for the research 

report, .72 for the final exam, and .56 for the field study. In Dataset 3 the first principal 

component accounted for 74% of the variance in the eight performance items. The 

loadings were .86 for the learning and applying knowledge item, .85 for the 

demonstrating responsible work habits item, .88 for the work-related communications 

item, .85 for the interpersonal skills item, .84 for the customer interaction item, .83 for 

the teamwork item, .84 for the problem-solving item, and .93 for the overall 

performance item. In Dataset 5 the first principal component accounted for 60% of the 

variance in the nine performance items. The loadings were .56 for the dependability 

item, .66 for the safety item, .82 for the drive quality item, .77 for the interactions with 

coworkers item, .80 for the interactions with supervisors item, .82 for the interactions 

with passengers item, .79 for the attention to details item, .83 for the schedule adherence 

item, and .87 for the service orientation item. These results suggest that within each 

dataset the performance items are tapping into one underlying dimension; this provides 

a rationale for combining the individual performance elements within these datasets in 

order to obtain measures of overall performance. As previously noted, for Dataset 1 

each student’s overall mark for the course was used, and for Datasets 3 and 5 the 

average supervisor rating over all performance items was used. 
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The scree plot relating to the principal components analysis of the performance 

items in Dataset 4 also supported the retention of one component (see Figure 3.2), 

however there were two principal components with eigenvalues greater than 1. Table 

3.4 compares the loadings for the one- and two-component solutions. For the latter case 

the results of an oblique rotation (the direct oblimin method) are presented here as the 

two components were correlated. The one-component solution (which accounted for 

46% of the variance) produced loadings greater than .40 for all ten items on the 

component. The two-component solution (which accounted for 57% of the variance) 

contained one component that was defined by items concerned with job-related 

knowledge (items 1 and 6), and another component that concerned job-related 

achievement in general. Given the strong correlation between the two components 

(r=.44), and the desire to avoid performance scales consisting of only two items, all ten 

items were averaged to obtain the performance criterion for this dataset. 

1 2 3 4 5 6 7 8 9 1 0

C o m p o n e n t  N u m b e r

0

1

2

3

4

5

Ei
ge

nv
al

ue

Figure 3.2 



71

Scree plot of the eigenvalues associated with the principal components analysis of the 

performance items for Dataset 4. 

Table 3.4 

Loadings of the Dataset 4 performance items for one- and two-component solutions. 

Item One-component solution Two-component solution 

I I II
1. Has superior knowledge of the 
business. 

.62 .18 .66

2. Meets company goals and 
expectations for the position. 

.77 .82 -.03 

3. Uses the complexity of the job to 
produce innovative outcomes. 

.66 .56 .19

4. Takes calculated entrepreneurial risk. .73 .66 .14

5. Consistently drives for better 
outcomes. 

.76 .89 -.15 

6. Has broad knowledge of political, 
economic, and technological issues. 

.48 -.14 .93

7. Demonstrates independence and 
initiative. 

.73 .84 -.11 

8. Demonstrates confidence in the face 
of ambiguity. 

.72 .49 .38

9. Is professionally competent. .67 .68 .02

10. Could effectively handle the most 
senior position in the company. 

.61 .36 .39

Note: Loadings over .40 in absolute magnitude are underlined. Boldface indicates the primary loading of 
each subscale.
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Reliability

Reliability refers to the consistency of measurement (Cohen et al., 1996). It is 

important in the present context because measurement error in the predictors or the 

criterion limits the predictive performance that can be achieved by prediction equations 

(Sarle, 2001c). Two of the most commonly used indices of reliability are internal 

consistency and test-retest reliability. The former is an index of the homogeneity of the 

items in a scale, whereas the latter assesses the consistency of measurement from two 

administrations of the scale (Anastasi, 1988). 

Personality variables. The reliability of the original and revised NEO PI is well 

established. A summary of the studies that have found evidence for the test-retest 

reliability of these instruments is presented in the test manual (Costa & McCrae, 1992). 

The internal consistency of the Neuroticism, Extraversion, Openness, Agreeableness, 

and Conscientiousness scales, calculated as coefficient alpha, has been shown to be .92, 

.89, .87, .86, and .90 for the NEO PI-R (Costa & McCrae, 1992). Of the present datasets 

that used the NEO PI or NEO PI-R, the corresponding coefficient alphas were .84, .72, 

.71, .78, and .85 for Dataset 3, and .88, .87, .88, .85, and .90 for Dataset 4.4 Taking the 

conventionally used value of .70 as a rule of thumb for minimum levels of adequate 

reliability (e.g., Nunnally, 1978), each of the above scales exceeds this value.  

Similarly, the scales of the HPI have also been shown to be reliable. The test 

manual (Hogan & Hogan, 1995) reports internal consistency (coefficient alpha) and 

four-week test-retest reliabilities of .89 and .86 for the Adjustment scale, .86 and .83 for 

4 Dataset 2 also employed the NEO PI-R, however scores at the item level were not available and 
therefore it was not possible to calculate alpha coefficients for this dataset. Furthermore, for the same 
reason, alpha coefficients could not be calculated for the HPI scales employed in Dataset 5. 
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the Ambition scale, .83 and .79 for the Sociability scale, .78 and .83 for the Intellectance 

scale, .71 and .80 for the Likeability scale, and .78 and .74 for the Prudence scale. 

Goldberg (1999) reported alpha coefficients for the 30 lower-level scales of the 

IPIP-NEO that ranged from .71 to .88. In the present study, the alpha coefficients for the 

higher-level scales measuring Neuroticism, Extraversion, Openness, Agreeableness, and 

Conscientiousness (calculated using Dataset 1) were .95, .93, .89, .88, and .93. These 

results can be taken as evidence for the reliability of the IPIP-NEO scales.  

The test manual of the CPS-2 (Pryor & Taylor, 2000) reports coefficient alphas 

of .92, .88, .88, .75, and .83 for the Emotional Orientation, Social Orientation, Cognitive 

Orientation, Interpersonal Orientation, and Task Orientation scales. The corresponding 

figures, calculated using the sample of professionals (Dataset 6) in the present research, 

were .85, .78, .82, .67, and .80. Based on these results it seems that the coefficient alpha 

of the Interpersonal Orientation scale is lower than that of the other scales, and borders 

on what is conventionally considered adequate reliability. The other scales, however, 

display adequate reliability. 

Performance measures. Alpha coefficients were also obtained for the 

performance measure in each dataset. The alpha coefficients were .58 for the 

performance measure in Dataset 1, .72 for Dataset 2, .95 for Dataset 3, .86 for Dataset 4, 

and .91 for Dataset 5.5 The relatively low alpha coefficients associated with the 

performance measure of Dataset 1 and to a lesser extent of Dataset 2 are not surprising. 

The elements of these analyses consist of objective performance tests that were 

collected under different formats (e.g., multiple-choice tests, written reports etc.) and at 

different points in time, and would therefore be expected to be more heterogeneous than 

the self-report items that comprised the performance measures for the other datasets. 

5 The performance measure in Dataset 6 consisted of a score on a single item. Therefore an alpha 
coefficient could not be calculated.  
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Overall the results provide some support for the reliability of the work performance 

criteria used in the present research. 

Descriptive Statistics 

Table 3.5 presents the means, standard deviations, and minimum and maximum 

observed values for the variables in the six datasets. The following points are noted. 

First, mean scores for the variables measuring Neuroticism tended to be lower than 

mean scores for measures of the other five dimensions. This pattern is consistent with 

the pattern of means reported in the relevant test manuals. Second, there were a number 

of instances where the means of the personality variables in the present datasets were 

substantially different to the corresponding means in the normative distributions (as 

reported in the relevant test manuals), although for the most part the differences were 

consistent with what would be expected given the nature of the occupations involved. 

For example, the police recruits, flight attendants, and managers scored substantially 

higher on Extraversion and lower on Neuroticism relative to the respective normative 

samples, which is consistent with the idea that these jobs are more likely to attract 

individuals who enjoy interacting with others and who are emotionally stable. Third, the 

standard deviations of the personality variables in the current datasets were often 

slightly smaller than the corresponding standard deviations in the normative samples. 

This is not surprising given that individuals within an occupation are likely to be more 

homogeneous than normative samples, which contain individuals from various 

occupational backgrounds. Nevertheless, even within the current samples there was a 

good deal of variability in personality scores, as can be seen from the broad range of 
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observed scores represented within each variable. Similarly, there was a substantial 

range of individual differences on the performance criteria.6

Table 3.5 

Means, standard deviations, and minimum and maximum observed values for the 

predictor and criterion variables in each dataset set. 

Dataset and variable Mean SD Min Max 

1. University students
Neuroticism 179.2 34.5 104 269 
Extraversion 202.6 29.0 115 273 
Openness 215.7 23.6 156 278 
Agreeableness 217.2 21.2 157 276 
Conscientiousness 207.4 27.6 133 270 
Performance 62.8 9.1 37 93

2. Police recruits
Neuroticism 74.6 18.5 5 121 
Extraversion 123.5 15.4 81 165 
Openness 112.0 15.8 65 166 
Agreeableness 124.0 14.7 77 169 
Conscientiousness 125.1 18.7 65 187 
Performance 832.9 41.8 711 941 

3. Flight attendants
Neuroticism 65.0 19.2 19 129 
Extraversion 129.2 15.3 65 166 
Openness 123.9 15.5 76 178 
Agreeableness 53.8 7.1 31 71
Conscientiousness 52.7 8.1 16 70
Performance 7.1 1.3 2.1 9.0 

4. Managers
Neuroticism 65.9 15.9 20 119 
Extraversion 120.8 16.1 66 160 
Openness 117.4 16.1 78 163 
Agreeableness 118.0 14.7 68 163 
Conscientiousness 130.7 16.5 76 171 
Performance 3.87 0.6 1.5 5.0 

5. Bus drivers
Adjustment 25.2 6.6 5 37
Ambition 22.6 4.8 5 29
Sociability 11.9 4.3 1 23 
Intellectance 14.1 4.6 2 25
Likeability 19.0 2.6 6 22 

6 In addition to the analyses presented here, Appendix A provides correlation matrices that summarise the 
correlations between the variables in each dataset. 
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Prudence 19.5 4.3 2 30
Performance 50.0 7.7 26.6 70.5 

6. Professionals
Emotional Orientation 46.8 10.8 27 75
Social Orientation 73.0 9.0 41 99
Cognitive Orientation 73.2 10.3 47 95 
Interpersonal Orientation 73.4 7.5 45 90
Task Orientation 77.8 9.2 53 99
Performance 2.5 0.7 1 4

Summary 

The present chapter provided a description of the six datasets that were used in 

this thesis. Within each dataset a personality inventory that assessed personality 

variables within the five-factor framework was identified, and a criterion variable 

assessing work performance was defined. Across the six datasets there were a total of 

31 personality variables that could be grouped according to the dimension of the five-

factor model that was being assessed.7 The construct validity and reliability of the 

personality and performance variables were evaluated, and descriptive statistics were 

provided for these variables. The chapters that follow report the results of studies that 

employed these datasets to compare artificial neural networks and linear regression. 

7 The personality inventory for dataset five contained six personality variables and the other five datasets 
contained five variables each. 
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CHAPTER 4: Analyses Using Narrow Personality Variables 

Introduction

As an introduction to the studies reported in this chapter it is useful to 

recapitulate the main arguments from previous chapters. In chapter 1 it was argued that 

the five-factor model has provided researchers with a useful framework for developing 

hypotheses about the validity of personality variables for predicting work performance. 

However, the results of empirical studies have not always supported these hypotheses, 

or have yielded validity coefficients that are low in magnitude (e.g., Hurtz & Donovan, 

2000). The low or zero validity coefficients for personality variables that are 

theoretically expected to predict performance may be due to the presence of nonlinear 

or configural relationships that cannot be detected by the linear methods traditionally 

used in this domain. Several researchers have provided conceptual arguments for 

different forms of complexity in personality-performance relationships (e.g., Murphy, 

1996; Witt, 2002), however the existing theories of work performance provide little 

guidance on the exact functional relationships that might be expected. 

Chapter 2 introduced artificial neural networks as a method that has the 

flexibility to detect many different forms of complex relationships between input 

(predictor) and output (criterion) variables, and may therefore be useful in situations 

where the researcher makes few assumptions about the nature of the underlying 

relationships. However, implementing the method is more complex than conducting the 

traditional linear analyses, and requires various choices to be made regarding the 

training and testing of networks. Furthermore, the greater representational capability of 

neural networks does not guarantee that they will detect the systematic relationships that 

underlie a dataset, or that they will produce more accurate predictions than prediction 
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equations developed using the simpler linear regression method. The choice of the best 

method is contingent on factors related to the nature of the data within the domain of 

interest – such as the presence of complex relationships, the noisiness of the data, and 

the number of cases available – and is therefore an empirical question. 

The studies reported in this chapter and the next compared the predictive 

performance of artificial neural network and linear regression prediction equations using 

measures of the five factors as predictors of work performance. The six datasets 

presented in chapter 3 were used in order to provide a comparison of the two methods 

across a range of occupations, personality inventories, and work performance measures. 

The present chapter considers the specific case where each personality variable is 

included in the prediction equation separately.1 First, a set of hypotheses about the 

expected differences between the predictive performance of the neural network and 

linear regression methods is generated. Following this, I report the findings from a study 

that was designed to provide a test of the hypotheses. Nonlinear relationships between 

personality variables and performance were also examined as part of the analyses. A 

second study is then reported in which linear regression is compared to an alternative 

procedure for developing neural networks. The chapter concludes with a summary of 

the main findings. 

1 The more general case of prediction equations that contain multiple predictors is considered in chapters 
5 and 6. 
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Hypotheses

Based on the arguments for nonlinearity in personality-performance 

relationships presented in chapter 1, the present research tested the hypothesis that 

neural networks would produce more accurate predictions of work performance than 

linear regression equations when personality variables are used as the predictors. 

However it was not expected that neural networks would outperform linear 

regression equations for all personality variables. Specifically, it was not expected 

that neural networks would confer an advantage over linear regression when the 

personality variable was not theoretically relevant to performance in the task under 

consideration.2 This is because if no relationship exists between the personality 

variable and work performance then all the variability in the training set represents 

noise and any attempt to fit a prediction equation (linear or otherwise) to the training 

data will result in overfitting. In this situation a neural network is likely to be less 

accurate than linear regression as it has greater capacity for representing the noise in 

the data.

Consequently, as a first step towards hypothesis development it was 

important to specify whether each personality variable was theoretically relevant to 

performance in the job under consideration. It has been suggested that Neuroticism 

(when conceptualised in terms of it opposite pole Emotional Stability) and 

Conscientiousness are important factors for performance in all jobs as they tap into 

motivational variables that are required for accomplishing all work tasks (Barrick et 

al., 2003). Thus, it was expected that measures of these two factors would be 

relevant in all six datasets. Openness assesses attributes that are associated with 

2 For the present purposes when the term theoretically relevant is applied to a predictor it is used to 
indicate the expectation that the predictor contains information pertaining to the criterion, and 
consequently that there exists some mathematical function relating scores on the predictor to scores on the 
criterion. 
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positive attitudes towards learning experiences (Barrick & Mount, 1991), and is 

therefore important in situations where performance is contingent on learning new 

skills or acquiring knowledge. For the present datasets Openness was expected to be 

relevant for performance in Datasets 1, 2, and 3 (which consisted of participants at 

university or on training programs), and in Dataset 6 (which consisted of recent 

graduates who had only just started their jobs). Extraversion is likely to be important 

for individuals in jobs with a strong social component, especially those involved 

with mentoring, leading or persuading (Barrick et al., 2001), such as the managers in 

Dataset 4. Extraversion is also relevant on training programs that are highly 

interactive, such as police academy training (Dataset 2) and flight attendant training 

(Dataset 3) among others (Barrick & Mount, 1991). Finally, Agreeableness is 

relevant for jobs with strong cooperative demands (Barrick et al., 2003), such as 

jobs that involve high levels of teamwork or the provision of customer service. 

Among the present datasets, customer interaction was an explicit component of the 

performance measure for the flight attendants (Dataset 3) and service orientation 

was explicitly assessed as part of the performance ratings for the bus drivers 

(Dataset 5). Following directly from the above arguments, Table 4.1 provides a 

summary of the personality variables that were specified as theoretically relevant for 

performance in each dataset. A cross ( ) indicates that the predictor was not 

specified as theoretically relevant for that dataset. A tick ( ) indicates that the 

predictor was specified as theoretically relevant for the dataset.  
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Table 4.1 

The personality variables specified as theoretically relevant in each dataset. 

Dataset N E O A C

1. University students 

2. Police recruits  

3. Flight attendants 

4. Managers  

5. Bus drivers 

6. Professionals 

        = Specified as theoretically relevant. 
        = Specified as not theoretically relevant.

Note: For simplicity the labels N, E, O, A, and C were used to denote the predictors in each dataset even 
though the personality inventories in Datasets 5 and 6 use alternative labels for their measures of the five-
factor personality variables. Furthermore, as the specification did not differ for the two scales that 
operationalise Extraversion in Dataset 5, namely Ambition and Sociability, no distinction is made 
between these two predictors in the table. 

Theoretical relevance by itself does not justify the hypothesis that neural 

networks are likely to outperform linear regression equations for a particular 

predictor; it is also important that there are expectations of a nonlinear relationship 

between the predictor and the criterion. In chapter 1, arguments for possible 

nonlinear relationships between personality and performance were presented for all 

five of the personality factors for performance contexts in which they are relevant. 

For example it was suggested that being extreme on any personality variable that is 

relevant for the job (either too low or too high) can impair performance. Similarly, 

the arguments for nonlinearity that derive from theories of traitedness (see chapter 

1) apply to personality traits in general (assuming that the trait is relevant to the 

behaviour being predicted) rather than to specific traits. Consequently I did not 

develop hypotheses about the specific theoretically relevant predictors for which 

neural networks are most likely to outpredict linear regression.
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Study 1 

The primary aim of Study 1 was to compare prediction equations that: a) were 

developed using either artificial neural networks or linear regression, and b) contained a 

measure of one of the five personality factors as the predictor. This facilitated an 

examination of the hypothesis that neural networks would outpredict linear regression 

equations when a theoretically relevant personality variable is used as the predictor. The 

findings can also be used to compare the predictive performance of the different 

personality variables. A second aim of the study was to explore the extent and nature of 

nonlinear relationships between personality variables and work performance.  

Method

All six datasets described in chapter 3 were used in this study. There were three 

major steps involved in conducting the study, namely:  

1. Partitioning the datasets into training and test sets.

2. Developing prediction equations. 

3. Testing the prediction equations. 

Partitioning the Datasets

A resampling procedure was used (see chapter 2 for a discussion of the merits of 

this approach). The total data in each dataset was randomly divided into a training set 

consisting of approximately two-thirds of the total data and a test set consisting of the 

remaining third of the data. This random partitioning of the data was repeated twenty 

times in order to yield twenty training/test set partitions for each dataset. 
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Developing the Prediction Equations

The training cases in each partition were used to develop linear regression and 

neural network prediction equations for each of the 31 predictors (six predictors in 

Dataset 5 and five predictors in each of the other datasets). The STATISTICA Neural 

Networks software package (StatSoft Inc., 1998) was used to implement both types of 

equations. Linear equations were developed using ordinary least squares regression. 

Neural networks were developed according to the following specifications and 

procedures: 3

Architecture. All neural networks were multilayer perceptrons with one input 

layer, one hidden layer, and one output layer. The input layer contained one unit 

that represented the relevant personality variable and the output layer contained 

one unit that represented the performance criterion. The number of hidden units 

in the hidden layer varied, as described below. The hyperbolic tangent activation 

function was used at each hidden unit, and the identity activation function was 

used at the output unit. 

Number of hidden units. I experimented with four different levels of hidden 

units. The actual number of hidden units at each level was determined as a 

function of the number of free parameters (weights and bias terms) relative to 

training cases, and therefore varied between datasets (see Table 4.2). Sarle 

(2001c) suggests that for the types of analyses conducted here one should 

choose the number of hidden units such that there are at least two training cases 

per free parameter. This ratio was used to determine the largest hidden unit level 

for each dataset. I also experimented with four, ten, and twenty times as many 

3 Much of the rationale for implementing neural networks according to these specifications and 
procedures was provided in chapter 2. 
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training cases as free parameters. The latter ratio yields approximately two or 

three hidden units for the majority of the present datasets, which is close to the 

minimum of one hidden unit required for a multilayer perceptron neural 

network. For simplicity, the four levels of hidden units are hereafter referred to 

as H1 (the smallest networks – 20:1 ratio), H2 (10:1 ratio), H3 (4:1 ratio), and 

H4 (2:1 ratio).

Table 4.2 

The number of training and test cases per partition, and the number of hidden units at 

each hidden unit level, by dataset. 

Dataset Training cases Test cases Hidden units at each level  
(H1, H2, H3, H4) 

1. University students 151 76 2, 5, 12, 25 

2. Police recruits 191 95 3, 6, 16, 31 

3. Flight attendants 203 102 3, 6, 16, 33 

4. Managers 119 60 2, 4, 10, 20 

5. Bus drivers 324 162 5, 10, 26, 53 

6. Professionals 80 40 1, 2, 6, 13 

Weight regularisation. The STATISTICA Neural Networks software package 

uses the Weigend weight elimination method of weight regularisation (see 

Weigend et al., 1990). The Weigend penalty term, as implemented by the 

software, is given by i wi
2/(1+ wi

2), where  refers to the regularisation 

coefficient, and wi refers to the value of each weight in the network. This term is 

added to the sum-of-squares error function during training. By penalising 

networks with larger weights, this method encourages networks with smaller 
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weights and hence less curvature. Consequently this procedure provides some 

protection against overfitting the training data. 

Training algorithm. The backpropagation and conjugate gradient algorithms 

were used to train networks. Backpropagation was used during the first 100 

iterations, and this was followed by iterations of conjugate gradient training. The 

backpropagation algorithm requires the specification of a learning rate parameter 

and a momentum parameter that together control the rate at which the weights 

are updated. The software default values (learning rate = 0.1, momentum = 0.3) 

were used. Training was stopped once the error function failed to decrease for 50 

consecutive iterations, and the weights that resulted in the lowest error function 

were used to define the neural network. 

Multiple random restarts. As described in chapter 2, the process of training a 

neural network begins with the assignment of random weights. A characteristic 

of local search processes such as backpropagation and conjugate gradients is that 

for certain sets of initial weights the training process can get trapped in local 

minima in the error function and consequently produce a final set of weights that 

does not fit the training data well.4 A common strategy to avoid this problem is 

to repeat the training process a number of times using different sets of randomly 

selected initial weights, and to select the network that produces the lowest 

training error (Sarle, 2001b). Following Zhang et al. (1999), the training process 

was repeated 15 times at each hidden unit level, and the set of weights that 

provided the best fit to the training data was selected as the operational network 

for that hidden unit level.

4 Networks that contain a large number of hidden units relative to training cases are less likely to 
experience this problem as they contain few if any minima (see Reed & Marks, 1999). 
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In summary, prediction equations were developed for 31 predictors across 20 

partitions. Within each partition the training data was used to develop five prediction 

equations: one linear regression equation and four neural networks (one network at each 

of four hidden unit levels referred to as H1, H2, H3, and H4). Thus, a total of 3,100 

equations (31 predictors x 20 partitions x 5 equations per partition) were obtained that 

formed the basis of the subsequent analyses.  

Testing the Prediction Equations

Each prediction equation was presented with the predictor scores of the relevant 

test cases, and these scores were used to generate predicted criterion scores for the test 

set. The predicted and observed criterion scores for the test set were used to derive two 

measures of predictive performance for each equation: 

1. Mean absolute error (MAE). The difference between the predicted criterion 

score and the observed criterion score for each test case was used to define the 

prediction error of the equation in relation to that case. The absolute value of the 

prediction errors were averaged over the entire test set to obtain an MAE value 

for each equation. The higher the MAE, the lower the predictive performance.5

2. Cross-validity coefficient. A cross-validity coefficient was calculated for each 

equation by correlating the predicted and observed criterion scores on the test 

set. This provided a relational index of predictive performance (see chapter 2). 

Higher coefficients equate to greater predictive performance. Negative 

coefficients indicate poor predictive performance. 

5 Mean square error (MSE) was also derived for each equation, and the correlations between MAE and 
MSE were calculated for each predictor x prediction equation combination. All 155 correlations exceeded 
.68, and the mean of the correlation coefficients was .90. As a result of the strong relation between these 
two measures, and due to the advantages of MAE outlined in chapter 2, only MAE values were included 
in the subsequent analyses. 
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Data analysis

To formally test for statistically significant differences in predictive performance 

between neural networks and linear regression, two planned contrasts were tested for 

each of the 31 predictors. The first contrast tested the difference in MAE between the 

linear regression equations and the neural networks, where the results for the neural 

networks were averaged across the four hidden unit levels. The second contrast was 

identical to the first with the exception that the cross-validity coefficients were 

substituted as the measure of predictive performance. 6 Thus both contrasts compared 

the predictive performance of the twenty linear equations that were developed for the 

predictor in question to the predictive performance of the corresponding eighty neural 

networks. Each contrast was tested for significance at Type I error rates of  = .05 and 

= .01. As there are five predictors in all but one of the datasets, the latter figure 

corresponds roughly to carrying out a Bonferroni adjustment for the number of 

predictors within each dataset. 

Given that within each partition the linear equations and neural networks are 

developed using the same training set and evaluated using the same test, it is possible to 

test the above contrasts by computing a contrast score (linear - the average of the hidden 

unit levels) within each partition and to then conduct a t-test on the contrast scores from 

the twenty partitions (see Nadeau & Bengio, 2003). This is similar to conducting a 

paired samples t-test where each partition represents one observation. However, a 

difficulty in applying this test to the resampling procedure adopted above is that the 

overlap of the training sets (and usually also the test sets) across partitions creates 

6 The distribution of an observed correlation coefficient r is skewed when the population correlation  is 
non-zero, and consequently some researchers advocate the use of Fisher’s Z transformation when 
averaging across r (e.g., Corey, Dunlap, & Burke, 1998; cf. Hunter & Schmidt, 1990). In the present 
research, the arithmetic operations and statistical tests involving cross-validity coefficients were 
conducted with both transformed and untransformed values. The results were essentially the same and 
therefore for simplicity only the untransformed results are reported. 
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unknowable dependencies between the partitions, and consequently violates the 

independence of observations assumption associated with traditional hypothesis testing 

procedures (Neal, 1998). Specifically, the standard error of the contrast will be 

underestimated, and the risk of a type I error will be increased. To remedy this, Nadeau 

and Bengio (2003) propose a corrected t-test procedure in which the standard error is 

estimated by multiplying the standard deviation of the contrast scores by  {(1/J) + (n2/

n1)}, where  refers to the square root function, J refers to the number of partitions, n1

refers to the number of training cases per partition, and n2 refers to the number of test 

cases per partition. They show that under the assumption that the predictive 

performance estimates of the methods under consideration depend on the number of 

training cases but not on the actual training cases themselves then the adjustment 

proposed above results in an unbiased estimate of the standard error of the contrast. 

When this assumption is not met (as is likely to occur with neural networks) then the 

standard error may be either underestimated, in which case the procedure will result in 

liberal inferences, or overestimated, in which case inferences will be conservative. 

However, Nadeau and Bengio conducted a simulation with artificial data that found any 

departures from the nominal type I error rate (either on the conservative or liberal side) 

tended to be small, and that good statistical power was achieved with J = 15 partitions 

(in the present study J =20). Therefore, in the present research this corrected t-test was 

used to conduct the significance tests when comparing neural networks and linear 

equations.7

7 An Excel spreadsheet was developed to conduct the corrected t-test. A template of this spreadsheet can 
be found in Appendix B. 
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Results and Discussion 

Artificial Neural Networks Versus Linear Regression 

The comparison of the neural network and linear regression equations are 

discussed separately below for each of the two measures of predictive performance. 

MAE. Table 4.3 presents the MAE values for the linear regression and neural 

network equations by predictor and dataset. The results are averaged across the twenty 

partitions within each dataset.8 The values in boldface are averages across the predictors 

within each dataset. The first two columns of numbers provide the MAE values for the 

linear equations and the average of the four neural network hidden unit levels. The final 

four columns provide a breakdown of the neural network results by hidden unit level. 

Underlined values indicate that the neural network MAE was lower than that of the 

corresponding linear regression equations.9

It is clear from Table 4.3 that the linear regression equations generally 

outperformed the neural networks with respect to MAE. Comparing the bold values in 

the first two columns of Table 4.3, it can be seen that the linear equations produced 

lower MAE than the neural networks for all six datasets when the results were averaged 

across predictors. When each predictor was considered separately the linear equations 

outperformed the neural networks for 28 of the 31 predictors. Furthermore, the final 

four columns of Table 4.3 indicate that for the majority of predictors the linear 

equations outperformed all four hidden unit levels, including networks with only a small 

number of hidden units. Thus, the typically high MAE values of the neural network 

equations relative to the linear equations in the present datasets seems to generalise 

8 Appendix C provides the MAE value and cross-validity coefficient for every prediction equation that 
was developed as part of the studies reported in this thesis, as well as summary statistics (means and 
standard deviations) for the predictive performance measures across the twenty partitions in each dataset. 
The results for Study 1 and 2 can be found in Table C1 to Table C31 of Appendix C. 
9 In this and subsequent tables there were occasions where more decimal places than shown in the table 
were required to determine whether the neural networks outperformed the linear equations. 
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across hidden unit levels. Moreover, for most of the predictors MAE increased as the 

number of hidden units increased. For example, of the four hidden unit levels, the H1 

networks produced the lowest MAE (averaged across predictors) in four of the datasets, 

and came second to the H2 networks in the remaining two datasets. Therefore, the 

increased representational capability associated with more hidden units was a 

disadvantage rather than an advantage for the present datasets. 

In the few instances where the neural networks produced lower MAE than the 

linear regression equations the magnitude of the differences are best described as small. 

For example, in Dataset 1 the largest difference in favour of the neural networks 

occurred for the H1 networks that used Neuroticism as the predictor. The average MAE 

for these networks (MAE = 7.382) was 0.013 of a unit less than that obtained by the 

corresponding linear equations (MAE = 7.395). This represents a decrease of less than 

0.2%, and is trivially small when one considers that the criterion in this dataset was a 

mark out of 100. Across all datasets the largest percentage decrease in MAE as a result 

of adopting neural networks occurred for the Intellectance measure in Dataset 5. In this 

case the H4 networks obtained an MAE that was approximately 1% smaller than that 

obtained by the corresponding linear equations. It should also be noted that the contrasts 

that tested for differences between the two types of equations using the corrected t-test 

procedure outlined in the Data Analysis section were all statistically nonsignificant.10

10 The results of the corrected t-tests for all comparisons between neural networks and linear regression 
that were conducted in this thesis are presented in Appendix D. Refer to Tables D1 and D2 for the results 
pertaining to Study 1. 
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Table 4.3 

MAE values for the linear regression (LR) and artificial neural network (ANN) 

equations, by dataset and predictor. 

Dataset and predictor  LR  ANN  H1  H2  H3  H4 

1. University students
Neuroticism 7.395 7.394 7.382 7.384 7.403 7.406 
Extraversion 7.289 7.292 7.291 7.297 7.281 7.300 
Openness 7.329 7.362 7.344 7.358 7.370 7.378 
Agreeableness 7.401 7.444 7.410 7.446 7.447 7.473 
Conscientiousness 7.226 7.257 7.273 7.260 7.253 7.243 

7.328 7.350 7.340 7.349 7.351 7.360 
2. Police recruits
Neuroticism 32.39 32.61 32.57 32.62 32.61 32.63 
Extraversion 32.53 32.57 32.62 32.63 32.53 32.51
Openness 32.97 33.35 33.28 33.36 33.39 33.35 
Agreeableness 32.53 32.89 32.84 32.90 32.88 32.93 
Conscientiousness 31.55 31.68 31.66 31.65 31.71 31.71 

32.40 32.62 32.59 32.63 32.62 32.62 
3. Flight attendants
Neuroticism 1.063 1.069 1.068 1.068 1.069 1.069 
Extraversion 1.063 1.068 1.067 1.068 1.067 1.068 
Openness 1.070 1.075 1.075 1.075 1.075 1.076 
Agreeableness 1.061 1.075 1.072 1.075 1.076 1.077 
Conscientiousness 1.063 1.064 1.064 1.065 1.064 1.065 

1.064 1.070 1.069 1.070 1.070 1.071 
4. Managers
Neuroticism 0.488 0.494 0.490 0.493 0.497 0.498 
Extraversion 0.505 0.506 0.506 0.506 0.506 0.507 
Openness 0.507 0.514 0.511 0.513 0.516 0.516 
Agreeableness 0.509 0.514 0.509 0.515 0.516 0.516 
Conscientiousness 0.480 0.483 0.482 0.483 0.483 0.484 

0.498 0.502 0.500 0.502 0.504 0.504 
5. Bus drivers
Adjustment 6.155 6.164 6.162 6.162 6.164 6.169 
Ambition 6.140 6.152 6.151 6.150 6.152 6.154 
Sociability 6.165 6.195 6.192 6.195 6.197 6.197 
Intellectance 6.160 6.105 6.113 6.104 6.106 6.097
Likeability 6.146 6.162 6.161 6.159 6.166 6.161 
Prudence 6.081 6.094 6.094 6.090 6.096 6.094 

6.141 6.145 6.145 6.143 6.147 6.145 
6. Professionals
Emotional Orientation 0.604 0.612 0.613 0.611 0.613 0.611 
Social Orientation 0.609 0.613 0.611 0.611 0.614 0.615 
Cognitive Orientation 0.596 0.606 0.602 0.606 0.607 0.609 
Interpersonal Orientation 0.596 0.638 0.637 0.631 0.647 0.636 
Task Orientation 0.613 0.612 0.614 0.611 0.612 0.612

0.603 0.616 0.615 0.614 0.619 0.617 

Note: Underlined values indicate that the neural networks outperformed the associated linear equations. 
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Cross-validity coefficients. Table 4.4 presents the cross-validity coefficients for 

the linear regression and neural network equations by dataset and predictor. The results 

are averaged across the twenty partitions within each dataset. The same presentation 

format as in Table 4.3 is used. Once again the linear equations generally outperformed 

the neural networks. Table 4.4 indicates that the linear equations had higher cross-

validity coefficients than the average of the four hidden unit levels for 24 of the 31 

predictors, and outperformed all four hidden unit levels for 22 of the predictors. 

Furthermore, the nine instances where at least one hidden unit level outperformed linear 

regression were spread across personality constructs and datasets, and occurred about as 

often for variables that were not theoretically relevant for the dataset as it did for those 

that were. In the cases where neural networks did obtain a higher average cross-validity 

coefficient than the associated linear equations the difference was typically small and 

rarely exceeded .05 of a coefficient. The only exception occurred for the Intellectance 

measure in Dataset 5 for which the neural networks obtained an average cross-validity 

coefficient (r = .10) that was .15 of a coefficient higher than that obtained by the linear 

regression equations (r = -.05). This was also the only contrast that yielded a statistically

significant difference, corrected t(19) = -4.63, p < .01 (see Appendix D). However note 

that Intellectance was not a theoretically relevant predictor for this dataset and therefore 

it had not been expected that neural networks would outperform linear regression for 

this predictor. 
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Table 4.4 

Cross-validity coefficients for the linear regression (LR) and artificial neural network 

(ANN) equations, by dataset and predictor. 

Dataset and predictor  LR  ANN  H1  H2  H3  H4 

1. University students
Neuroticism .02 .06 .06 .06 .06 .06
Extraversion  .16  .15  .15  .15  .15  .15 
Openness  .13  .08  .12  .08  .07  .05 
Agreeableness -.08 -.09 -.08 -.09 -.10 -.10 
Conscientiousness  .22  .20  .19  .20  .20  .20 

 .09  .08  .09  .08  .07  .07 
2. Police recruits
Neuroticism  .13  .09  .10  .09  .09  .09 
Extraversion  .16  .12  .11  .12  .12  .13 
Openness  .05  .04  .03  .04  .04  .04 
Agreeableness  .09  .04  .05  .05  .04  .03 
Conscientiousness  .26  .25  .25  .25  .24  .24 

 .14  .11  .11  .11  .11  .11 
3. Flight attendants
Neuroticism  .12  .08  .08  .08  .07  .07 
Extraversion  .15  .13  .13  .13  .13  .13 
Openness  .12  .09  .10  .10  .09  .09 
Agreeableness  .17  .13  .14  .13  .13  .13 
Conscientiousness  .10  .08  .09  .09  .09  .08 

 .13  .10  .11  .10  .10  .10 
4. Managers
Neuroticism  .19  .13  .17  .14  .11  .11 
Extraversion .10 .14 .13 .14 .14 .14
Openness -.07 -.02 -.06 -.03 .01 .00
Agreeableness  .01 -.09 -.06 -.10 -.10 -.11 
Conscientiousness  .26  .25  .25  .25  .25  .24 

 .10  .08  .09  .08  .08  .08 
5. Bus drivers
Adjustment  .08  .06  .06  .06  .06  .05 
Ambition  .08  .07 .08  .07  .07  .07 
Sociability -.06 -.09 -.09 -.09 -.10 -.09 
Intellectance -.05 .10 .09 .10 .09 .10
Likeability  .09  .07  .07  .07  .07  .07 
Prudence .14 .14 .15 .15  .14 .14

 .05 .06 .06 .06 .06 .06
6. Professionals
Emotional Orientation -.04 -.01 -.03 -.02 .01 .00
Social Orientation -.03 -.07 -.05 -.04 -.08 -.09 
Cognitive Orientation  .10  .01  .05 -.01 -.01  .01 
Interpersonal Orientation  .03  .02 .04  .02  .03  .01 
Task Orientation -.13 -.10 -.12 -.12 -.08 -.08

-.01 -.03 -.02 -.03 -.03 -.03 

Note: Underlined values indicate that the neural networks outperformed the associated linear equations.



94

Training set correlations. A possible reason for the poor predictive performance 

of the neural networks may be the failure to learn the relationships that are present in the 

training set. Despite the large representational capability of neural networks, it is 

possible for the training process to get trapped in a local minimum in the error function 

and consequently produce a final set of weights that does not fit the training data well 

(Reed & Marks, 1999). To examine this possibility the correlation between predicted 

and observed criterion scores in the training set was used as an index of the fit of the 

network to the training data. The training set correlation coefficients, averaged across 

the twenty data partitions, are presented in Table 4.5. It can be seen that the neural 

networks provided a better fit to the training data than the linear equations for all 31 

predictors and across all four hidden unit levels. Therefore, the typically poor test set 

performance of the neural networks cannot be attributed to the failure to learn the 

relationships present in the training set. Rather, it is more likely that the neural networks 

are performing poorly because they are overfitting the datasets. This is supported by the 

fact that there was a tendency for the training set correlations to increase as the number 

of hidden units increased, whereas the test set measures of predictive performance 

tended to decrease with increasing hidden units.
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Table 4.5 

Training set correlations for the linear regression (LR) and artificial neural network 

(ANN) equations, by dataset and predictor. 

Dataset and predictor LR ANN H1 H2 H3 H4

1. University students
Neuroticism .06 .14 .13 .14 .14 .14
Extraversion .12 .15 .14 .15 .15 .15
Openness .11 .13 .12 .12 .13 .13
Agreeableness .06 .08 .07 .08 .08 .09
Conscientiousness .19 .21 .21 .22 .22 .22

.11 .14 .13 .14 .14 .15
2. Police recruits
Neuroticism .17 .19 .18 .19 .19 .19
Extraversion .16 .23 .23 .23 .24 .24
Openness .13 .16 .15 .16 .16 .16
Agreeableness .12 .14 .14 .14 .14 .15
Conscientiousness .28 .29 .28 .28 .29 .29

.17 .20 .20 .20 .20 .20
3. Flight attendants
Neuroticism .12 .13 .13 .13 .13 .13
Extraversion .15 .16 .16 .16 .16 .17
Openness .16 .18 .17 .17 .18 .18
Agreeableness .17 .19 .19 .19 .20 .20
Conscientiousness .12 .13 .13 .13 .13 .13

.15 .16 .16 .16 .16 .16
4. Managers
Neuroticism .21 .22 .21 .21 .22 .22
Extraversion .11 .20 .19 .21 .20 .19
Openness .04 .13 .08 .12 .16 .16
Agreeableness .08 .12 .10 .13 .13 .13
Conscientiousness .28 .29 .28 .29 .29 .29

.14 .19 .17 .19 .20 .20
5. Bus drivers
Adjustment .09 .10 .10 .10 .10 .10
Ambition .12 .12 .12 .12 .12 .12
Sociability .03 .06 .05 .05 .06 .06
Intellectance .03 .15 .14 .15 .15 .15
Likeability .10 .12 .12 .12 .12 .12
Prudence .14 .17 .17 .17 .17 .17

.08 .12 .12 .12 .12 .12
6. Professionals
Emotional Orientation .10 .16 .12 .16 .19 .18
Social Orientation .08 .10 .08 .09 .10 .11
Cognitive Orientation .12 .19 .15 .17 .22 .22
Interpersonal Orientation .09 .19 .14 .17 .22 .21
Task Orientation .06 .12 .07 .11 .16 .16

.09 .15 .11 .14 .18 .18

Note: Underlined values indicate that the neural networks outperformed the associated linear equations.
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Differences in Predictive Performance Between Predictors

The findings reported in Tables 4.3 and 4.4 can also be used to evaluate 

differences in predictive performance between the predictors within each dataset, and to 

therefore draw some conclusions about effectiveness of the different personality 

variables for predicting work performance. Conscientiousness generally emerged as the 

best predictor of work performance. Referring to first two columns of numbers in 

Tables 4.3 and 4.4, it can be seen that Conscientiousness produced the lowest MAE 

values and highest cross-validity coefficients in Datasets 1, 2 and 4 regardless of the 

type of prediction equation, with cross-validity coefficients of approximately .20 or 

higher under both the linear regression and neural network methods. Similarly, in 

Dataset 5 the Prudence scale (which was constructed with the Conscientiousness factor 

of the five-factor model in mind, Hogan & Hogan, 1995) obtained lower MAE and 

higher cross-validity coefficients than any other predictor under both methods of 

generating prediction equations. 

 The predictive performance of measures of the other factors varied by dataset 

and the results were generally consistent with the expectations that were outlined in 

Table 4.1. Neuroticism was the best predictor of work performance after 

Conscientiousness in Dataset 4 (the managers). Furthermore, under the linear method 

low though non-trivial cross-validity coefficients were observed for this factor in 

Datasets 2 and 3 (the police recruit and flight attendant trainee samples). Extraversion 

predicted work performance for the three samples that were collected on training 

programs (the university students, police recruits and flight attendant trainees), and also 

for the sample of managers. Openness obtained low non-trivial cross-validity 

coefficients in two of the samples collected on training programs (the university 

students and flight attendant trainees) though only under the linear regression method. 
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Agreeableness obtained the highest cross-validity coefficients in Dataset 3 (the flight 

attendants), although in most of the datasets it was a poor predictor of the work 

performance criterion.  

Finally, it should be noted that in Dataset 6 the predictive performance of all the 

predictors was low. One possible reason for this is that the work performance criterion 

that was available for this dataset consisted of a single item and is therefore probably 

less reliable than the criteria used in the other datasets. Furthermore, prediction in this 

dataset occurred over a longer time span than in the other datasets and this too may have 

contributed to the lower levels of predictive performance.  

Nonlinear Relationships Between Personality Variables and Work Performance

That the neural networks failed to outperform the linear regression equations for 

all but one predictor (namely Intellectance in Dataset 5) provides some indirect 

evidence against the idea that personality variables are nonlinearly related to work 

performance. Nevertheless, neural networks can perform poorly compared to linear 

regression even in the presence of systematic sources of nonlinearity, for example as 

might occur if the neural networks detect highly nonlinear (and sample-specific) 

relationships in the training set when the functions underlying the data are only mildly 

nonlinear. Consequently, as a further test of some specific forms of nonlinearity, 

polynomial regression was applied to the total data in each dataset to test for the 

presence of quadratic and cubic relationships. For each of the 31 personality measures 

two new variables were defined by raising the relevant personality variable to the power 

of two (in order to test the quadratic effect) and to the power of three (to test the cubic 

effect). Following Pedhazur (1997), the quadratic effect was tested by regressing the 

performance criterion on to the quadratic variable while holding the linear effect 
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constant; and the cubic effect was tested by regressing performance on to the cubic 

variable while holding the linear and quadratic effects constant. Table 4.6 presents the 

change in R2 associated with the linear, quadratic, and cubic components, and the sum 

of the change in R2 associated with the quadratic and cubic components.11

 Table 4.6 indicates that the evidence for nonlinear personality-performance 

relationships was not strong. For most of the predictors, the quadratic and cubic 

components together accounted for less than 1% additional variance above what was 

already accounted for by the linear component. The only statistically significant 

nonlinear effect was a cubic relationship between Intellectance and work performance 

in Dataset 5, t(482) = 2.75, p < .01. A graphical representation of the third degree 

polynomial equation (see Figure 4.1) suggests that at the lower end of Intellectance 

there is a relatively steep increase in work performance as Intellectance increases. 

Performance peaks then decreases slightly through the mid-range before increasing 

again at the higher end of the personality variable. This is similar to the type of 

nonlinearity suggested by theories of traitedness (see Sinclair et al., 1999) where 

personality is more strongly related to performance at the extremes than in the middle. 

Nevertheless, Intellectance had not been expected to be a relevant variable in this 

sample, and it is not clear why a low level of this variable (which assesses creativity, 

brightness, and interest in intellectual matters) has such a detrimental effect on the 

performance of bus drivers, some of whom had been on the job for over 20 years. Given 

the relatively large number of significance tests that were conducted, and that 

nonlinearity had not been hypothesised for this predictor, it is possible that the effect 

was obtained purely by chance.

11 Complete results for the polynomial regression analyses are provided in Appendix E. 
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Table 4.6 

Change in R2 associated with the linear, quadratic, cubic, and quadratic + cubic terms.

Dataset and predictor Linear Quadratic Cubic Quadratic + 
Cubic 

Psychology students
Neuroticism .003 .011 .001 .012
Extraversion .017 .007 .000 .007
Openness .015 .000 .000 .000
Agreeableness .001 .001 .000 .001
Conscientiousness .040** .004 .004 .008

Police recruits
Neuroticism .026** .001 .001 .002
Extraversion .026** .006 .012 .018
Openness .011 .000 .008 .008
Agreeableness .012 .001 .002 .003
Conscientiousness .075** .000 .001 .001

Flight attendant trainees
Neuroticism .014* .000 .001 .001
Extraversion .023** .002 .000 .002
Openness .022** .002 .001 .003
Agreeableness .030** .000 .006 .006
Conscientiousness .013* .002 .000 .002

Managers
Neuroticism .039** .000 .003 .003
Extraversion .011 .017 .004 .021
Openness .000 .005 .004 .009
Agreeableness .006 .005 .000 .005
Conscientiousness .076** .000 .001 .001

Bus drivers
Adjustment .007 .000 .000 .000
Ambition .011* .001 .000 .001
Sociability .000 .000 .000 .000
Intellectance .000 .005 .015** .020**
Likeability .009* .002 .002 .004
Prudence .021** .005 .001 .006

Professionals
Emotional Orientation .007 .014 .000 .014
Social Orientation .005 .000 .000 .000
Cognitive Orientation .016 .000 .022 .022
Interpersonal Orientation .012 .005 .000 .005
Task Orientation .000 .004 .000 .004

* p < .05, ** p < .01 
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Figure 4.1 

A graphical representation of the third-degree polynomial equation relating 

Intellectance to work performance in the bus driver sample. 

In light of the relatively weak nonlinear structure of the data it is not surprising 

that the linear regression equations typically outperformed the neural networks. In the 

absence of a systematic nonlinear relationship between the predictor and the criterion 

any additional representational capacity of neural networks over linear regression will 

simply capture the noise in the training set and therefore result in lower predictive 

performance. To illustrate, Figure 4.2 depicts the relationships between the Openness 

scale and the performance criterion in Dataset 1 that were detected by the H4 networks 

(panel a) and the linear regression equations (panel b) from the training cases in the 

twenty partitions. The sum of the quadratic and cubic components for this predictor 

over the entire data was approximately zero. Figure 4.2 shows that the H4 networks are 
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very sensitive to the particular training sets such that the functions detected across 

training sets show high levels of variability (see panel a). The linear equations also 

show some sensitivity to the training sets, though to a far lesser extent than the neural 

networks. The greater variability of the neural network functions arises directly as a 

result of their greater representational capability and has the result of decreasing the 

expected predictive accuracy for new cases (see Bishop, 1995; Geman et al., 1992). 

However, the current results also provide some optimism about the benefits of 

neural networks in the presence of nonlinearity. Figure 4.3 depicts the relationships 

between Intellectance and the work performance criterion in Dataset 5 that were 

detected by the H4 networks and the linear regression equations. As described above, 

the data was characterised by a steep increase in work performance as one moves from 

low levels of Intellectance to the mid-range that then decreases slightly through the mid-

range before increasing again at the upper extreme. Figure 4.3 shows that the neural 

networks were able to detect this relationship from the training sets (see panel a), 

whereas the linear regression equations – which are restricted to maintaining a constant 

gradient over the entire range of the predictor scores – could not (see panel b). Thus, in 

this case, the tendency of neural networks to represent noise in the data was more than 

offset by the benefits of being able to capture the systematic nonlinearity in the data, as 

reflected by the higher predictive performance of the networks. As further support for 

the benefits of neural networks in the presence of nonlinearity, note that the networks 

outperformed the linear regression equations with respect to cross-validity coefficients 

on four of the six occasions where the change in R2 of the quadratic and cubic 

components of a predictor was more than .01 (67% success rate), compared to only 

three out of 25 occasions when it was less than .01 (12% success rate; refer to Tables 

4.4 and 4.6). 
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a) H4 Neural Networks
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b) Linear Regression Equations
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ps between Openness and performance that were detected by the twenty H4 

neural networks (panel a) and twenty linear regression equations (panel b) in the 

university student sample (Dataset 1). 
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b) Linear Regression Equations
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Figure 4.3 

Relationships between Intellectance and work performance that were detected by the 

twenty H4 neural networks (panel a) and twenty linear regression equations (panel b) 

 the bus driver sample (Dataset 5).in



104

To summarise, this study found little evidence that neural networks produce 

better predictions of work performance than linear regression equations when 

personality variables are used to predict work performance. The poor predictive 

performance of neural networks was attributed to the lack of systematic nonlinearity in 

the data; in this context the additional representational capability of neural networks 

over linear regression only serves to fit the noise in the data. Conversely, there was 

some evidence that neural networks could improve predictive performance, at least with 

respect to cross-validity coefficients, on the small number of occasions where there was 

some evidence for reliable nonlinearity in the data.  

In Study 2, I experimented with a different procedure for developing neural 

networks, one that provides feedback during the training process about the extent to 

which the network is fitting the noise in the data, and thus enables training to be stopped 

once the network starts to overfit the training set. It was anticipated that if this could be 

successfully implemented then the neural networks would match the predictive 

performance of linear regression for the many instances where nonlinear relationships 

were absent, and outperform linear regression for the small number of instances that 

were characterised by nonlinearity. Consequently, the neural networks would be slightly 

more accurate than the linear equations on average. The results of this study are 

reported next. 
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Study 2 

In Study 2 neural networks were developed using the early stopping procedure 

escribed in chapter 2, and the predictive performance of the networks was compared to 

at of the linear equations and neural networks developed in Study 1. It has been 

hown that the complexity of the relationships detected by neural networks increases as 

a function of the number of training iterations (Caruana et al., 2000). Hence, during the 

initial s

ise in 

 can 

ear

d

th

s

tages of training, the expected predictive performance of the network for unseen

cases improves as the complexity of the network approaches the complexity of the 

underlying function; however as training progresses the network starts to fit the no

the training data and consequently the network’s expected performance for unseen cases 

deteriorates. The early stopping procedure monitors prediction error on a separate 

validation set during the training process and stops training once this error starts to rise. 

Thus, if the relationship underlying the data is linear then error on the validation set

be expected to rise once the network begins to fit the nonlinear idiosyncrasies of the 

training set and training is stopped. In this way the network will provide a very close 

approximation to a linear solution. On the other hand if there are systematic nonlin

components underlying the data then this too should be reflected in the validation set 

and error on the validation set should continue to fall until the network has fitted these 

components. One may therefore expect neural networks trained with early stopping to

provide a close match to the predictive performance of linear regression when the 

underlying relationships are linear, and to exceed the predictive performance of linear 

regression when there are generalisable nonlinearities in the data.
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Method

There are a number of issues that are relevant to the implementation of the early 

stopping procedure. First, early stopping requires some of the training data to be 

allocated to a validation set that is used to monitor prediction error during the training 

process, but which cannot be used to set the weights of the network. As a result the 

procedure has been criticised for its inab e all the training data for training the 

networ

ng and 

ta,

r the 

rly

f

Moreov

ility to us

k (e.g., Utans, 1997). This limitation can be partially mitigated by training 

multiple networks using different random divisions of the training data into traini

validation sets, and taking the average prediction of the multiple networks as the 

predicted score for any new cases presented to the committee of networks (e.g., Vars

Heikkonen, Millan, & Mourino, 2000).

A second issue relates to the proportion of cases that should be set aside fo

validation set. Sarle (1995) used artificial datasets to experiment with proportions 

ranging from 10% to 50% of the total data available for training but did not obtain

clear-cut results. Nevertheless, allocating 25% of the training data to a validation set 

provided good results across his datasets.

Third, a large number of hidden units should be used with the early stopping 

(Sarle, 1995). It has been shown that (given enough hidden units to model the 

underlying function) the test set performance of a neural network developed with ea

stopping varies little as a function of increasing hidden units, even when the number o

free parameters far exceeds the number of training cases (e.g., Tetko et al., 1995). 

er, the use of a large number of hidden units decreases the likelihood of the 

training algorithm converging to a poor local minimum (Reed & Marks, 1999).
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Following from the above, all neural networks in this study were developed

using the largest number of hidden units that were included in Study 1 (the H4 level)

order to facilitate comparisons with the equations developed in Study 1 the same

. In 

 twenty 

training/test partitions that were used in that study were also used here. However, each 

networ d

e

f the 

ing

e

s.12

k was developed using only 75% of the training data to adjust the weights, an

the remaining 25% of the training data was allocated to the validation set which 

provided feedback on when to stop training. Error for the validation cases was 

computed after each iteration, and training was stopped once this error failed to decreas

(or increased) for 50 consecutive iterations. The weights that produced the lowest error

on the validation set were used to define the resulting neural network. For each o

twenty partitions defined in Study 1 the above process was repeated 15 times us

different random divisions of the training data into training and validation sets. The 15 

resulting networks were then combined to form one committee for each partition and 

the predictive performance of the committee was assessed on the relevant test set 

(which was not involved in training in any way). Specifically, for each test case a 

predicted criterion score was generated by taking the average of the scores predicted by

the 15 networks. The predictions were compared to the observed criterion scores for th

test cases in order to derive an MAE value and cross-validity coefficient for each 

committee. This entire process was repeated separately for each of the 31 predictor

12

functions, and the use of weight regularisation) were the same as those used in Study 1. It could be argue
that the use of weight regularisation is not necessary for this experiment as the early stopping procedu

 All other specifications for developing the networks (such as the training algorithm, activation 
d

re 
provides protection against overfitting. Nevertheless, there is some previous evidence that the 
performance of the early stopping procedure is enhanced when combined with weight regularisation (e.g., 

that Finnoff et al., 1993). Furthermore, post-hoc analyses conducted on the present datasets suggested 
network performance was impaired when weight regularisation was turned off. These analyses are not 
reported here. 
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Results and Discussion 

Table 4.7 presents the MAE values and cross-validity coefficients for the early 

stopping neural network commit NN2). The 

results

rks

rked by 

rmation improved the predictive performance of 

neural

s

hen 

ors in 

when 

in five of the six datasets (see bold values in Table 4.7).13

tees developed in this study (labelled A

are averaged across the twenty partitions. For comparison the corresponding 

values for the Study 1 linear regression equations and neural networks are also 

presented (labelled LR and ANN1). Underlined values indicate that the neural netwo

outperformed the corresponding linear regression equations. Values that are ma

an asterisk indicate that the committees of early stopping neural networks outperformed 

the networks developed in Study 1.

It is clear from the number of asterisks in Table 4.7 that the use of the early 

stopping procedure and committee fo

networks for almost all predictors. Of the 31 predictors there were only 4 

instances where MAE did not decrease and 6 instances where cross-validity coefficient

did not improve. However, there were few predictors for which the early stopping

committees were able to outperform the linear equations. Similar to the findings of 

Study 1, the network committees were more likely to outpredict linear regression w

the predictor-criterion relationships were characterised by a certain degree of 

nonlinearity (e.g., Intellectance in Dataset 5). However, the network committees 

typically performed worse than the linear equations for the majority of predict

which the quadratic and cubic components of the data were small. Consequently, 

the results were averaged across the predictors in each dataset the linear equations 

obtained lower MAE values and higher cross-validity coefficients than the committees 

13 As in Study 1, the MAE and cross-validity coefficients of the network committees developed in this 
study were compared to the linear regression equations using the corrected t-test outlined in the Data 
Analysis section of Study 1. All differences were statistically nonsignificant (see Appendix D). 
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Table 4.7 

MAE values and cross-validity coefficients for the linear regression equations and 

artificial neural networks generated in Study 1 (LR and ANN1), and artificial neural 

enerated in Study 2 (ANN 2). networks g

Dataset and predictor MAE Cross-validity coefficients
LR ANN1 ANN2  LR  ANN 1 ANN 2 

1. University students       
Neuroticism 7.395 7.394 7.379*  .02  .06 .05
Extraversion 7.289 7.292 7.275*  .16  .15 .17*
Openness 7.329 7.362 7.338*  .13  .08 .12* 
Agreeableness 7.401 7.444 7.400* -.08 -.09 -.08*
Conscientiousness 7.226 7.231*  7.257 .22  .20 .21*

7  .328 7.350 7.324*  .09  .08 .09*
2. Police recruits
Neuroticism 32.39 32.61 32.42*  .13  .09 .12*
Extraversion 32.53 32.57 32.60   .16  .12 .14*
Openness 32.97 33.35 32.96*  .05  .04 .05*
Agreeableness 32.53 32.89 32.67*  .09  .04 .07*
Conscientiousness 31.55 31.68 31.60*  .26  .25 .25*

32.40 32.62 32.45*  .14  .11 .13*
3. Flight attendants
Neuroticism 1.063 1.069 1.066*  .12  .08 .10*
Extraversion 1.063 1.068 1.063*  .15  .13 .14*
Openness 1.070 1.075 1.072*  .12  .09 .11*
Agreeableness 1.061 1.075 1.067*  .17  .13 .16*
Conscientiousness 1.063 1.064 1.067  .10  .08 .09*

1.064 1.070 1.067*  .13  .10 .12*
4. Managers
Neuroticism 0.488 0.494 0.490*  .19  .13 .18*
Extraversion 0.505 0.506 0.504*  .10  .14 .14*
Openness 0.507 0.514 0.508* -.07 -.02 -.06
Agreeableness 0.509 0.514 0.510* .01 -.09 -.05*
Conscientiousness 0.480 0.483 0.482*  .26  .25 .26*

0.498 0.502 0.499*  .10  .08 .09*
5. Bus drivers
Adjustment 6.155 6.164 6.163*  .08  .06 .07*
Ambition 6.140 6.152 6.148*  .08  .07 .08*
Sociability 6.165 6.195 6.187* -.06 -.09 -.09*
Intellectance 6.160 6.105 6.133 -.05  .10 .04
Likeability 6.146 6.162 6.151*  .09  .07 .04
Prudence 6.081 6.094 6.093*  .14  .14 .15*

6.141 6.145 6.146  .05  .06 .05 
6. Professionals
Emotional Orientation 0.604 0.612 0.605* -.04 -.01 -.01*
Social Orientation 0.609 0.613 0.608* -.03 -.07 -.07
Cognitive Orientation 0.596 0.606 0.598*  .10  .01 .06*
Interpersonal Orientation 0.596 0.638 0.603*  .03  .02 .07*
Task Orientation 0.613 0.612 0.615 -.13 -.10 -.15

0.603 0.616 0.606* -.01 -.03 -.02*
    
Note: Underlined values indicate that the neural networks outperformed the associated linear equations. 
An asterisk (*) indicates that the ANN2 networks outperformed the corresponding ANN1 networks.
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Figure 4.4 

Relationships between Openness and performance that were detected by the twenty 

early stopping neural network committees in the university student sample (Dataset 1).

Figure 4.4 plots the relationships between the Openness scale and the 

ance criterion in Dataset 1 that were detected by the twenty neural network 

paring this figure to Figure 4.2 (which plots the corresponding 

relationships that are detected, and that the networks are less likely to fit the noise of the 

training se ining 

perform

committees. Com

relationships detected by the H4 neural networks of Study 1) it can be seen that the use 

of early stopping and committee formation has reduced the complexity of the 

ts. However, the committees are still slightly more sensitive to the tra

sets than the linear equations (as reflected in the slightly greater variability and non-

linearity of the functions detected) and this may explain the marginally poorer 

performance of the committees relative to the linear equations for this predictor. 
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Figure 4.5 

Relationships between Intellectance and work performance that were detected by the 

twenty early stopping neural network committees in the bus driver sample (Dataset 5).

Figure 4.5 plots the relationships between the Intellectance scale and the work 

performance criterion in Dataset 5 that were detected by the twenty early stopping 

neural network committees. While the committees detect some of the nonlinearity in the 

training sets, the relationships show far less curvature than the corresponding H4 

networks from Study 1 (refer to Figure 4.3). In this case the greater simplicity of the 

functions detected by the network committees impairs their predictive performance as 

they fail to fully capture the steep increase in work performance at the lower extreme of 

the predictor or the slight increase at the higher end of the predictor. This is reflected in 

the higher MAE values and lower cross-validity coefficients of the committees relative 

to the Study 1 networks for this predictor. 
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Conclusions

The main findings resulting from the research reported in this chapter can be 

summarised as follows. First, it was found the for the majority of personality variables 

e neural networks failed to improve predictive performance compared to the 

predictive performance achieved by li n. This finding generalised across 

two me al

e

rediction equations. 

ity

.

 predict a criterion 

variabl

s

th

near regressio

asures of predictive performance, two different procedure for developing neur

networks, and four hidden unit levels. 

Second, for the majority of the datasets the predictive performance of th

measure of the Conscientiousness factor was higher than that of the other factors that 

comprise the five-factor model. This occurred regardless of whether neural networks or 

linear regression was used to generate p

Third, there was little support for nonlinear relationships between personal

variables and work performance; the only personality variable for which a statistically

significant nonlinear relationship was obtained had not been hypothesised to be relevant 

for work performance in the sample in which it was assessed

Thus, the findings reported in this chapter provide little justification for the 

adoption of neural networks as a tool for deriving prediction equations for individual 

personality variables. However, in practice it is often useful to take into account the 

information provided by multiple predictors when attempting to

e, and it is in these types of situations that neural networks are typically 

implemented. Consequently, the next chapter examines the extent to which difference

in predictive performance between artificial neural networks and linear regression 

generalise to instances in which multiple personality variables are included in the 

prediction equations. 
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CHAPTER 5: Analyses Using Combinations of Personality Variables 

Introduction

In the previous chapter neural networks were compared to linear regression in 

the context of single-predictor equations. To the extent that different personality 

variables provide nonredundant information relating to the criterion, improvements in 

prediction can often be gained by considering equations that combine the information 

from multiple personality variables (e.g., Goldberg, in press). Therefore, to obtain a 

more complete picture of the usefulness of the neural network methodology for the 

types of datasets considered here, it is also important to compare neural networks to 

linear regression within the context of multiple-predictor equations. 

A key determinant of the usefulness of the neural network method within the 

context of multiple predictors concerns the nature of the information provided by the 

predictors. On the one hand, if the underlying predictor-criterion relationships are linear 

and additive then this can be represented by a linear regression equation and any 

additional representational capacity provided by neural networks can only serve to fit 

the noise in the datasets. On the other hand, if the relationship between a particular 

predictor and the criterion depends on the level of other predictors then this cannot be 

represented by a linear additive equation; hence improvements in predictive 

performance may be realised by combining the predictor information using neural 

networks. In chapter 1 conceptual perspectives that were consistent with such configural 

relationships between personality variables and work performance were presented. 

Based on those arguments it was hypothesised that neural networks would produce 

more accurate predictions than linear regression for combinations of personality 
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variables. The present chapter reports the findings from studies that were conducted to 

test this hypothesis.

An important consideration in conducting such studies involves deciding which 

combinations of personality variables to test. A number of researchers, both in the 

personnel psychology domain (e.g., Guion, 1998) and more generally in the behavioural 

sciences (e.g., Babyak, 2004), endorse an approach in which the predictors to be 

included are specified a priori based on their hypothesised relevance to the criterion 

being predicted. The advantage of such an approach is that it avoids the capitalisation 

on chance that occurs when many different combinations of predictors are considered 

(Cohen, 1990), or when predictors are pulled in and out of the equation based on their 

relation with the criterion (Babyak, 2004). On the other hand, it has been argued that it 

is wasteful to limit the analysis of data to that which has been preplanned (e.g., Tukey, 

1969); and even among proponents of a hypothesis driven approach it is acknowledged 

that there is some value in going beyond the a priori analyses in order to further explore 

the data, although less confidence should be ascribed to such post-hoc analyses (e.g., 

Babyak, 2004).  Accordingly, a two-phase approach was adopted for testing 

combinations of personality variables. In the first study reported in this chapter (labelled 

Study 3) prediction equations were developed and compared for the combination of 

personality variables that had been identified as theoretically relevant in each dataset. 

Configural relationships between personality variables and work performance were also 

examined as part of this study. The second study reported in this chapter (labelled Study 

4) adopted an exploratory approach in which a predictor-selection procedure was used 

to empirically identify other combinations of the personality variables that were 

potentially useful for predicting work performance, and the neural network and linear 

regression methods were also compared for these combinations. 
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Study 3 

The primary aim of this study was to compare linear regression and neural 

networks for the combination of personality variables that had been specified to be 

theoretically relevant for work performance in each dataset. These variables were 

identified in the previous chapter based on arguments presented in the literature, and are 

reproduced below in Table 5.1. Based on the conceptual arguments for configural 

relationships between theoretically relevant personality variables and work performance 

that were presented in chapter 1, it was hypothesised that neural networks would 

outperform linear regression for these datasets. A second aim of Study 3 was to 

empirically examine the extent and nature of configural relationships between 

personality variables and work performance. 

Table 5.1 

The personality variables in each dataset that had been specified to be theoretically 

relevant for work performance. 

Dataset Theoretically relevant personality variables 

1. University students Neuroticism, Openness, Conscientiousness 

2. Police recruits Neuroticism, Extraversion, Openness, Conscientiousness 

3. Flight attendants Neuroticism, Extraversion, Openness, Agreeableness, Conscientiousness 

4. Managers Neuroticism, Extraversion, Conscientiousness 

5. Bus drivers Adjustment, Likeability, Prudence 

6. Professionals Emotional Orientation, Cognitive Orientation, Task Orientation 
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Method

All six datasets described in chapter 3 were used in this study. The prediction 

equations for the present study were developed using the same procedures and the same 

twenty training/test set partitions as in Studies 1 and 2. The only difference being that in 

the present study prediction equations were developed using the combinations of 

predictors specified in Table 5.1, whereas in the study reported in the previous chapter 

prediction equations were developed separately for each predictor. Thus, for each of the 

twenty training set partitions within each dataset I used the specified predictors to obtain 

one linear regression equation, four neural networks that were developed without early 

stopping (with the number of hidden units corresponding to the H1, H2, H3, and H4 

levels used in Study 1), and a committee of 15 early stopping neural networks. All 

prediction equations were tested on the relevant test cases in order to obtain MAE 

values and cross-validity coefficients that formed the basis of the subsequent analyses.1

Results and Discussion 

Artificial Neural Networks Versus Linear Regression 

Table 5.2 presents the MAE values and cross-validity coefficients for the linear 

regression equations, the neural networks developed without early stopping (labelled 

ANN1), and the early stopping neural network committees (labelled ANN2). The results 

are averaged across the twenty partitions within each dataset. Furthermore, the results 

for the ANN1 networks are averaged across the four hidden unit levels. Underlined 

values are used to indicate instances where neural networks outperformed linear 

regression.

1 Tables C32 to C37 of Appendix C provide the predictive performance results for the individual 
prediction equations developed in Study 3. 
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Table 5.2 

MAE values and cross-validity coefficients for the linear regression (LR) equations and 

artificial neural networks (ANN1 and ANN2), by dataset. 

Dataset MAE Cross-validity coefficient
LR ANN1 ANN2 LR ANN 1 ANN 2 

1. University students 7.121 7.274 7.120  .26  .21  .25 
2. Police recruits 32.24 32.68 32.03  .22 .23 .23
3. Flight attendants 1.079 1.139 1.095  .09  .01  .08 
4. Managers 0.484 0.502 0.485  .25  .22 .26
5. Bus drivers 6.125 6.185 6.138  .10  .08  .10 
6. Professionals 0.603 0.623 0.596 -.02 .08 .00

Note: Underlined values indicate that the neural networks outperformed the associated linear equations. 

Table 5.2 indicates that the neural networks developed without early stopping 

(ANN1) performed poorly compared to the linear regression equations. The ANN1 

equations produced higher MAE values than linear regression for all six datasets, and 

lower cross-validity coefficients for four of the six datasets. However, it should be noted 

that for Dataset 6 the ANN1 equations obtained a cross-validity coefficient that was on 

average .10 of a unit higher than that of the corresponding linear regression equations. 

This is a non-trivial improvement. 

The predictive performance of the early stopping neural network committees 

(ANN2) was similar to that of the linear regression equations, and any differences 

between the two methods were small in magnitude. For example, the MAE difference 

between the linear regression and ANN2 equations for Dataset 6 represents a reduction 

of only approximately 1% (as a percentage of the linear regression MAE), yet this was 

the biggest reduction in favour of the ANN2 equations across all the datasets. Similarly, 

the difference in the average cross-validity coefficients between the linear regression 

and ANN2 equations did not exceed .02 for any of the datasets.  
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The corrected t-test procedure outlined in the Data Analysis section of Study 1 

was used to perform significance tests for the differences in MAE values and cross-

validity coefficients between the linear regression equations and neural networks. For 

each dataset, the ANN1 and ANN2 networks were separately compared to the linear 

regression equations. These were analyses that had been planned prior to examining the 

data, and were designed to be consistent with the contrasts tested in Studies 1 and 2. 

The only statistically significant difference occurred for Dataset 3, in which the linear 

regressions equations produced significantly lower MAE than the ANN1 equations, 

corrected t(19) = -2.32, p < .05.2

Table 5.3 

MAE values and cross-validity coefficients for the neural networks developed without 

early stopping, by dataset and hidden unit level (linear regression results are also 

presented for comparison).

Predictive performance 
measure and dataset 

LR H1 H2 H3 H4

MAE
1. Tertiary students  7.121  7.185  7.272  7.299  7.341 
2. Police recruits  32.24  32.98  32.89  32.61  32.26 
3. Flight attendants  1.079  1.123  1.136  1.153  1.142 
4. Managers  0.484  0.490  0.502  0.508  0.506 
5. Bus drivers  6.125  6.164  6.187  6.197  6.192 
6. Professionals  0.603  0.631  0.628  0.603  0.629 

Cross-validity coefficients
1. Tertiary students  .26  .24  .20  .20  .20 
2. Police recruits  .22  .20 .23 .24 .26
3. Flight attendants  .09  .05  .01 -.01  .00 
4. Managers  .25  .25  .21  .21  .21 
5. Bus drivers  .10 .09  .09  .08  .08 
6. Professionals -.02 -.03 .08 .14 .13

Note: Underlined values indicate that the neural networks outperformed the associated linear equations.

2 See Tables D5 and D6 in Appendix D for complete results of these statistical tests. 
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Table 5.3 provides a breakdown of the ANN1 results by hidden unit level. The 

linear regression results are also presented for comparison. The MAE associated with 

almost all hidden unit levels in all datasets was higher than that of the corresponding 

linear regression equations. The only exception occurred for the H3 networks in Dataset 

6, which produced MAE approximately equal to that of linear regression. Thus, 

regardless of the number of hidden units, neural networks developed without early 

stopping were unable to outperform the linear regression equations with respect to the 

absolute measure of predictive performance. However, there were two datasets in which 

some of the networks outperformed linear regression with respect to cross-validity 

coefficients. In Dataset 2 the H2, H3, and H4 networks obtained cross-validity 

coefficients that were .01, .02, and .04 of a coefficient larger than that of the linear 

regression equations. More noticeably, in Dataset 6 the H2, H3, and H4 networks 

obtained cross-validity coefficients that were .10, .16, and .15 of a coefficient larger 

than that of the associated linear regression equations. 

Overall then, contrary to what was expected, the present study found little 

evidence that neural networks generally outperform linear regression for the types of 

datasets considered here. With the exception of Dataset 6, differences in predictive 

performance between linear regression and neural networks were either approximately 

equivalent or else in favour of the linear equations.
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Configural Relationships Between Personality Variables and Work Performance

To examine the evidence for specific forms of configurality in personality-

performance relationships moderated multiple regression was applied to the total data in 

each dataset. Only personality variables that had been hypothesised to be theoretical 

relevant for performance in the dataset in question were included in the analyses. For 

each dataset all possible product terms (two-way, three-way, and where applicable four- 

and five-way) between the theoretically relevant personality variables were calculated 

and each product term was represented as a separate variable. Following Pedhazur 

(1997), the analyses were conducted hierarchically: Each of the two-way product 

variables (e.g., x1x2) was tested by regressing the work performance criterion onto the 

variable while holding the two individual personality variables (x1 and x2) constant; 

each three-way variable (e.g., x1x2x3) was tested by regressing performance on to it 

while holding the three individual personality variables (x1, x2, and x3) and three two-

way product terms (x1x2, x1x3, and x2x3) constant; and so on. Thus, across the six 

datasets a total of 53 product terms were tested for significance (four in each of the four 

datasets that contained three theoretically relevant personality variable, 11 in the dataset 

with four theoretically relevant personality variables, and 26 in the dataset with five 

relevant variables).3

Table 5.4 presents the change in R2 associated with each step of the analysis for 

the highest product term in each dataset. The change in R2 associated with entering all 

the product terms simultaneously is presented in the final column.4

3 Note that the multiplicative functions tested here do not encompass all possible forms of configural 
relationships that could exist between predictors and a criterion, or that could be detected by a neural 
network. Nevertheless, the analyses are likely to provide a good representation of many plausible 
configural relationships between personality variables and work performance. 
4 The results for all the other product terms are provided in Appendix F. 
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Table 5.4 

Change in R2 associated with entry of the theoretically relevant personality variables 

(Step 1), the two-way product terms (Step 2), the three-way product term(s) (Step3), the 

four-way product term(s) (Step 4), the five-way product term (Step 5), and the sum of all 

product terms (Steps 2-5). 

Dataset    Step1   Step 2   Step 3    Step 4 Step 5 Steps 2-5 

1. University students .074** .002 .004 NA NA .006
2. Police recruits .085** .032 .051** .001 NA .084**
3. Flight attendants .040* .019 .027 .026 .001 .073
4. Managers .087** .024 .008 NA NA .032
5. Bus drivers .022* .007 .001 NA NA .008
6. Professionals .022 .070* .026 NA NA .096*

* p < .05, ** p < .01, NA = Not Applicable. 

Table 5.4 indicates that in five of the six datasets the theoretically relevant personality 

variables, when combined linearly and additively, accounted for a statistically 

significant proportion of the criterion variance (step 1). In contrast, the evidence for 

multiplicative relationships was limited. The increment in the proportion of the variance 

accounted for by the product terms was statistically significant in Datasets 2 and 6, but 

not in any other datasets. The specific nature of the configural relationships is indicated 

by the results of the tests that were applied to the separate product terms, as outlined 

above. Of the 53 separate product terms that were tested, only five were statistically 

significant at  = .05. In Dataset 6 there were two statistically significant effects. First, 

the Emotional Orientation x Cognitive Orientation product term accounted for a 

significant proportion of the variance above that accounted for by the additive effects of 

these two scales, t(116) = -2.30, p < .05; and second, there was a significant Emotional 

Orientation x Task Orientation effect t(116) = -2.40, p < .05. Figures 5.1 and 5.2 plot 

the moderated multiple regression equations associated with these two effects.  
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Figure 5.1 

The moderated multiple regression equation relating Emotional Orientation and 

Cognitive Orientation to work performance in Dataset 6.

Figure 5.2 

ted multiple regression equation relating Emotional Orientation and Task 

Orientation to work performance in Dataset 6. 

The modera
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Figure 5.1 shows that the direction of the relationship between Cognitive 

Orientation and work performance changes as the level of Emotional Orientation 

increas

igher

f

en

ted,

th)

k

 Conscientiousness 

effect, t(278)

hat were 

es. Specifically, the relationship between Cognitive Orientation and work 

performance is positive at lower levels of Emotional Orientation, but negative at h

levels of Emotional Orientation. Figure 5.2 indicates a similar moderating effect o

Emotional Orientation on the relationship between Task Orientation and work 

performance. Alternatively, the two effects could be interpreted as the moderating 

effects of Cognitive Orientation and Task Orientation on the relationship betwe

Emotional Orientation and work performance. Regardless of the interpretation adop

the type of moderation effect detected here – where the direction (rather than streng

of the relationship between a personality variable and work performance changes as a 

function of another personality variable – does not correspond to the theoretical 

rationale for moderator effects presented in chapter 1. While the positive effects of Tas

orientation and Cognitive Orientation on performance at low levels of Emotional

Orientation are not unexpected, it is not clear why either variable would be negatively

related to performance at high levels of Emotional Orientation.  

Additionally, in Dataset 2, three of the four three-way product terms were 

statistically significant: namely, the Neuroticism x Extraversion x

t(278) = 2.53, and the Neuroticism x Openness x Conscientiousness effect, 

= 2.12, were both significant at  = .05, and the Extraversion x Openness x 

Conscientiousness effect, t(278) = -2.69, was significant at  = .01. These effects were 

typically difficult to interpret, and given the large number of product terms t

tested for this dataset some of the effects may simply be due to chance. Nevertheless, 

the latter effect showed some similarity to the findings of Witt (2002), and could be 

meaningfully interpreted in terms of these findings. The two graphs in Figure 5.3 
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provide a graphical representation of the moderated multiple regression equation for 

which the Extraversion x Openness x Conscientiousness term was significant. The

multiplicative effect of Extraversion x Conscientiousness is plotted at low (panel a) an

high (panel b) levels of Openness, where low and high were defined as one standard

deviation above or below the mean of the Openness scale.

Panel a of Figure 5.3 shows that, at low levels of Openness, Conscientiousnes

is more strongly related to performance when Extraversion i

d

s

s high than when it is low. 

Witt (2

ly

ss are 

.

he

differen n

f

002) obtained a similar Extraversion x Conscientiousness effect on work 

performance in three separate samples. He argued that Extraversion reflects a tendency 

to interact with others, and that without this tendency an employee will fail to ful

capitalise on the benefits of Conscientiousness in jobs involving interpersonal 

interaction. Likewise, for interactive training programs such as the police academy 

training considered here, it could be the case that the effects of Conscientiousne

enhanced when the individual engages in the type of behaviours associated with 

Extraversion such as asking more questions and actively interacting with other trainees

In contrast, panel b of Figure 5.3 shows that, at high levels of Openness, t

strength of the relationship between Conscientiousness and performance varies little at 

t levels of Extraversion. In other words, the moderating effect of Extraversio

on Conscientiousness no longer occurs when Openness is high. This could reflect the 

idea outlined in chapter 1 that high levels of certain attributes compensate for low levels 

of other attributes. Specifically, within the context of a training program, high levels o

Openness may provide the motivation that is normally provided by Extraversion to 

actively participate in the program and ask questions. Therefore, the relatively weak 

relationship between Conscientiousness and performance only eventuates for 

individuals who are low on both Openness and Extraversion. 
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a) Low Openness (1 SD below mean of Openness scale)

a) High Openness (1 SD above mean of Openness scale)

Figure 5.3 

The moderated multiple regression equation relating Extraversion and 

Conscientiousness to work performance for low (panel a) and high (panel b) levels of 

 Dataset 6. Openness in
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Additionally, it can be noted that the two datasets in which there

evidence for configural relationships between personality and work performance are 

also the same datasets in

 was some 

 which the neural networks performed the best relative to linear 

regress den

t

which 

are

onsidered theoretically relevant to performance and excludes those that are not serves 

as a useful starting point for comparing nd linear regression. 

Nevert

ay have 

relevant variables, even when these variables are empirically related to the criterion and 

ion. Specifically, Datasets 2 and 6 were the only ones in which any of the hid

unit levels obtained cross-validity coefficients that were more than .02 of a coefficien

higher than that of the corresponding linear equations. In the latter dataset the difference 

was as high as .16 for the larger hidden unit levels. Therefore, despite the overall 

negative conclusion, the present study provides some grounds for optimism about the 

benefits of neural networks when configural relationships are present. Furthermore, it 

motivates a consideration of other combinations of personality variables, some of 

may be configurally related to work performance. This was examined in Study 4. 

Study 4 

The combination of personality variables that includes those variables that 

c

neural networks a

heless, there are a number of reasons why it is also desirable to compare the two

methods for other combinations of personality variables. First, as alluded to in the 

previous study, the failure of neural networks to outperform linear regression m

resulted from the choice of predictor combinations that were, in general, not 

configurally related to the criterion. By exploring other combinations of personality

variables one can obtain a better indication of the extent of predictive performance that 

can be achieved by neural networks for the present datasets.

Furthermore, predictive performance can sometimes be improved by omitting
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uncorrelated with other predictors in the equation (see Blum & Langley, 1997 for a 

discussion of different conceptions of relevance in the context of predictor selection). 

This oc

 relating to the criterion. In the present study the predictive performance of 

neural

lable

 of 

curs because there is less tendency to fit the noise in the training set when there

are fewer parameters to be estimated (e.g., Reed & Marks, 1999). Hence, the omission 

of a predictor may improve predictive performance for unseen cases if the resulting 

decrease in overfitting more than offsets the loss of the information provided by the 

predictor.  

Based on the above reasoning, it is possible that the performance of the neural 

networks in Study 3 was attenuated either as a result of the inclusion of too many 

variables, or else due to the omission of variables that contain important configural 

information

networks was explored for other combinations of personality variables. As it is 

not feasible (nor necessarily desirable) to test all possible combinations of the avai

predictor variables, a predictor-selection procedure was employed to identify subsets

predictors that were potentially useful for predicting the criterion, and that varied in the 

number of included predictors. The neural network and linear regression methods were

compared for these combinations. Given the exploratory nature of the study, no 

hypotheses were developed about which combination of predictors would produce the 

most accurate predictions, or whether neural networks would outperform linear 

regression for any particular combination.5

5 It should be kept in mind that the use of an automated predictor-selection procedure does not avoid the 
capitalisation on chance that occurs when many different combinations of predictors are considered 
(Cohen, 1990), and therefore the results from such an analysis need to be interpreted tentatively. 
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Method

Certain decisions need to be made as part of the implementation of a predictor-

selection procedure. First, one must decide on the type of prediction equation that will 

guide the selection process. The simplest alternative is to use a linear equation, however 

this approach will fail to identify combinations of predictors that are useful because of 

the configural and/or nonlinear nature of their relationship with the criterion. As it is in 

the pre

cedures the decision about 

which v ch

n

sist

ard

Another issue concerns the strategy used to determine the relative importance of 

sence of these types of relationships that neural networks are of most use, and as

the focus of this study is on the predictive performance that can be achieved by neural 

networks for the present datasets, the identification of potentially useful subsets of 

predictor variables was guided by neural network equations.

Second, a search algorithm needs to be chosen. Two popular choices are 

forward selection, in which one commences with an empty equation and predictors are 

added to the equation one at a time, and backward elimination, in which one 

commences with an equation that contains all the available predictors and then 

sequentially removes predictors (Pedhazur, 1997). In both pro

ariable to add/remove at each step is determined by the contribution of ea

variable to prediction in the context of the variables currently in the equation. It has 

been argued that forward selection, though computationally more efficient tha

backward elimination, results in weaker subsets because the importance of each

predictor is not evaluated in the context of predictors that are not included yet (Guyon & 

Elisseeff, 2003). Consequently this algorithm can fail to identify key subsets that con

of predictors that are interdependently related to the criterion. For this reason, backw

elimination was used in the present study. 

predictors at each step of the analysis, and consequently to decide which variable to 



129

remove at that step. Chapter 2 introduced sensitivity analysis as one method of 

assessing the relative importance of predictors. At each step of the analysis the 

information provided by each predictor is in turn made unavailable by clamping its 

value to a typical value (such as the mean of the predictor), and test set error is 

computed. The variable whose ‘unavailability’ is associated with the smallest 

deterio

emented 

ns were 

ons 

e

stopping

tial equations developed here was that the former combined the information 

from th

or

sence most often 

resulted as

ration (or largest improvement) in test set predictive accuracy is eliminated at 

that step. 

The predictor-selection procedure adopted in the present study was impl

with the above considerations in mind. First, for each dataset prediction equatio

developed and tested using all of the personality measures in the dataset. The equati

were developed and tested using the same twenty training/test partitions, the sam

procedures, and the same type of equations (linear, H1, H2, H3, H4, and early 

committees) as in Study 3. Thus, the only difference between the equations of Study 3

and the ini

e personality variables that were identified as theoretically relevant, whereas the 

latter combined the information from all of the personality variables. 

Sensitivity analysis was then conducted on the H4 networks. These networks 

were used as the basis of the sensitivity analysis as they have the greatest capacity f

representing any nonlinear and configural relationships that may be present. For each of 

the twenty H4 networks in each dataset the sensitivity of each predictor was determined

separately by clamping its value to the mean of the predictor and computing the 

network’s test set error in the absence of the information provided by the predictor. 

Across the twenty H4 networks in each dataset, the predictor whose ab

 in the smallest decrement (or greatest improvement) in predictive accuracy w

eliminated. New sets of equations (linear, H1, H2, H3, H4, and early stopping 
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committees) were then developed and tested with the combination of the remaining 

predictors, and backward elimination via sensitivity analysis was once again 

implemented to determine which predictor to next eliminate. The above process w

repeated until there was only one predictor remaining within each dataset.

as

d from 

e other 

d

e MAE 

alues and cross-validity coefficients of the prediction equations for the different 

combinations. The label ANN2 y stopping committees. The 

results

ence

ur

6

Results and Discussion 

Table 5.5 presents the combinations of personality variables that resulte

the backward elimination procedure for each of the datasets. Consistent with the 

previous conclusions about the importance of Conscientiousness relative to th

personality factors, note that in the majority of datasets measures of this factor emerge

as the final variable remaining in the equation. Tables 5.6 and 5.7 present th

v

is used to denote the earl

for the different hidden unit levels of the networks developed without early 

stopping are presented separately (labelled as H1, H2, H3, and H4), hence the abs

of the ANN1 label (which was used in previous studies to denote the average of the fo

hidden unit levels). The results can be summarised in terms of three main findings, 

namely:  

1. Differences between neural networks and linear regression equations. 

2. The effect of variations in the number of predictors. 

3. The interaction between equation type and the number of predictors.

6 Tables C38 to C59 of Appendix C provide the predictive performance results for each prediction 
equation developed in Study 4. Some of the combinations that resulted from the backward elimination 
procedure were those that had been developed and tested in the previous studies. The statistics for these 
combinations can be found in the Appendix C tables relating to those studies. 
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Table 5.5 

The combinations of personality variables that resulted from the backward elimination 

procedure, by dataset and number of predictors. 

Dataset and Personality variables remaining after backward elimination 
number of predictors 
1. Univ tersi y students
One predictor  Conscientiousness 
Two predictors Conscientiousness, Extraversion 
Three predictors Conscientiousness, Extraversion, Openness
Four predictors Conscientiousness, Extraversion, Openness, Neuroticism 
Five predictors Conscientiousness, Extraversion, Openness, Neuroticism, Agreeableness 

2. Police recruits
One predictor Conscientiousness
Two predictors Conscientiousness, Extraversion 
Three predictors Conscientiousness, Extraversion, Neuroticism 
Four predictors Conscientiousness, Extraversion, Neuroticism, Openness 
Five predictors Conscientiousness, Extraversion, Neuroticism, Openness, Agreeableness 

3. Flight attendants
One predictor Agreeableness
Two predictors Agreeableness, Conscientiousness 
Three predictors Agreeableness, Conscientiousness, Neuroticism 
Four predictors Agreeableness, Conscientiousness, Neuroticism, Openness 
Five predictors Agreeableness, Conscientiousness, Neuroticism, Openness, Extraversion 

4. Managers
One predictor Conscientiousness 
Two predictors onscientiousness, Openness C
Three predictors Conscientiousness, Openness, Agreeableness 
Four predictors Conscientiousness, Openness, Agreeableness, Extraversion 
Five predictors Conscientiousness, Openness, Agreeableness, Extraversion, Neuroticism

5. Bus drivers
One predictor Prudence 
Two predictors rudence, Ambition P
Three predictors Prudence, Ambition, Adjustment 
Four predictors n, Adjustment, Likeability Prudence, Ambitio
Five predictors Prudence, Ambition, Adjustment, Likeability, Intellectance 
Six predictors Prudence, Ambition, Adjustment, Likeability, Intellectance, Sociability 

6. Professionals
One predictor ognitive O. C
Two predictors ognitive O., Emotional O. C
Three predictors nal O., Task O. Cognitive O., Emotio
Four predictors Cognitive O., Emotional O., Task O., Interpersonal O. 
Five predictors Cognitive O., Emotional O., Task O., Interpersonal O., Social O. 
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MAE values for the linear regression (LR) equations and artificial neural networks (H1, 

H d ANN2), f predictors. 

ctors 
4 ANN2 

Table 5.6 

2, H3, H4, an  by dataset and number o

Dataset and  
number of predi

LR H1 H2 H3 H

1. University students
One predictor  7.226 7.273 7.260 7.253 7.243 7.231 
Two predictors 7.109 7.175 7.193 7.207 7.184 7.121 
Three predictors 6.928 7.096 7.193 7.164 7.216 7.011 
Four predictors 6.958 7.199 7.404 7.501 7.480 7.030 
Five predictors 7.018 7.279 7.619 7.824 8.081 7.105 

2. Police recruits
One predictor 31.55 31.66 31.65 31.71 31.71 31.60 
Two predictors 31.83 32.33 32.29 32.35 32.39 32.05 
Three predictors 31.98 32.06 32.02 31.94 31.95 31.93
Four predictors 32.11 32.94 33.26 33.10 33.04 32.03
Five predictors 32.43 34.01 34.19 34.76 33.89 32.45 

3. Flight attendants
One predictor 1  1  1  1  1  .061 .072 .075 .076 .077 1.067 
Two predictors 1.064 1.079 1.088 1.082 1.083 1.067 
Three predictors 1.068 1.089 1.086 1.090 1.093 1.071 
Four predictors 1.074 1.098 1.117 1.113 1.125 1.085 
Five predictors 1.079 1.123 1.136 1.153 1.142 1.095 

4. Managers
One predictor 0.480 0.482 0.483 0.483 0.484 0.482 
Two predictors 0. 2 0.48 487 0.492 0.496 0.494 0. 248
Three predictors 0. 8 0. 3 0. 4 0. 6 0. 3 0. 548 49 50 50 50 48
Four predictors 0.491 0.509 0.543 0.532 0.539 0.487
Five predictors 0.490 0.509 0.546 0.566 0.556 0.486

5. Bus drivers
One predictor 6.081 6.094 6.090 6.096 6.094 6.093 
Two predictors 6. 8 6.10 142 6.146 6.139 6.138 6. 710
Three predictors 6. 4 6. 9 6. 7 6. 5 6. 4 6. 4 12 16 16 18 19 13
Four predictors 6.143 6.210 6.241 6.269 6.260 6.146 
Five predictors 6.164 6.287 6.280 6.321 6.353 6.174 
Six predictors 6.182 6.290 6.326 6.388 6.347 6.190 

6. Professionals
One predictor 0. 6 0.59 602 0. 6 0.60 607 0.609 0.598
Two predictors 0. 9 0. 6 0. 259 61 58 0. 058 0. 358 0. 459
Three predictors 0.603 0.631 0.628 0.603 0.629 0.596
Four predictors 0.599 0.640 0.647 0.714 0.828 0.601 
Five predictors 0.608 0.651 0.660 0.840 1.193 0.608 

N  values indicate e neu orks rme quations.
B s the best perform ombi of predicto in  type of n an
d

ote: Underlined
ldface indicate

 that th ral netw
na

outperfo
rs with

d the associated linear e
 e cho ing c tion a  equatio d

ataset.
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T

C coefficients for he linear

H d ANN2), b set a ber edict

ctors 

able 5.7 

ross-validity  t equations and artificial neural networks (H1, 

2, H3, H4, an y data nd num  of pr ors.

Dataset and  
number of predi

 LR  H1  H2  H3  H4  ANN2 

1. University students
One predictor   .22  .19  .20  .20  .20  .21 
Two predictors  .28  .25  .25  .24  .25  .28
Three predictors  .34  .28  .25  .27  .25  .32 
Four predictors  .32  .27  .21  .19  .19  .31 
Five predictors  .29  .27  .23  .21  .18  .29 

2. Police recruits
One predictor  .26  .25  .25  .24  .24  .25 
Two predictors  .25  .22  .22  .22  .21  .24 
Three predictors  .24  .24  .24 .24  .24  .23 
Four predictors  .22  .20  .23 .24 .26 .23
Five predictors  .20  .16  .18  .17  .20  .21 

3. Flight attendants
One predictor  .17  .14  .13  .13  .13  .16 
Two predictors  .15  .11  .10  .11  .10  .14 
Three predictors  .13  .09  .10  .09  .09  .12 
Four predictors  .11  .07  .06  .06  .05  .08 
Five predictors  .09  .05  .01 -.01  .00  .08 

4. Managers
One predictor  .26  .25  .25  .25  .24  .26 
Two predictors  .25  .22  .21  .19  .19  .24 
Three predictors  .   .23  .20  .21  .21  .2625
Four predictors  .25  .21  .17  .18  .18  .26
Five predictors  .25  .18  .15  .18  .17 .27

5. Bus drivers
One predictor  .14 .15 .15  .14 .14 .15
Two predictors  .12 .13  .12  .12  .12 .13
Three predictors  .   .10  .09  .09  .09  .1110
Four predictors  .09  .09  .08  .09  .09  .11
Five predictors  .08 .07  .07  .07  .07 .09
Six predictors  .07 .05  .05  .05  .06 .07

6. Professionals
One predictor  .10  .05 -.01 -.01  .01  .06 
T .14 .20 .19 .07wo predictors  .  .0101 
Three predictors -.  -.   .0802 03 .14 .13 .00
Four predictors -.03 -.04 -.01 -.03 -.01 -.03 
Five predictors -.07 -.11 -.08 -.06 -.03 -.07

N values indicate he neur works o formed ssociated linear equations. 
B s the best perfor  combin  of pred in  type of tion an
d

ote: Underlined  that t al net utper  the a
oldface indicate ming ation ictors with  each  equa d
ataset.
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A l Networks V s Lin egres

ural network tions d loped 

r curate than th ear reg ns. T 5.6 ind es that across 

a  were only two combinations of predictors for which any of the neural 

networks developed without early stopping produced lower MAE than the 

er

AE than linear regression for the three-predictor combination in Dataset 2, and the 

2, H3, and H4 networks produced lower MAE than linear regression for the two-

 the previous study, both these 

predict

n cross-

cur

s 

rtificial Neura ersu ear R sion

The ne eq au e ev without early stopping (H1 to H4) were 

arely more ac e lin ression equatio able icat

ll datasets there

corresponding linear equations. Specifically, the H3 and H4 networks produced low

M

H

predictor combination in Dataset 6. As documented in

or combinations were characterised by a statistically significant multiplicative 

effect with the criterion, and therefore these results reflect the capability of neural 

networks to incorporate information about the configural relationship between the 

predictors and the criterion. A similar pattern of findings was obtained whe

validity coefficients were used as the measure of predictive performance (see Table 

5.7). Once again the linear regression equations typically outperformed the networks 

that were developed without early stopping, and the instances where this did not oc

were mostly clustered in Datasets 2 and 6. Of particular note, for the two-predictor 

combination in Dataset 6, the H3 and H4 networks produced cross-validity coefficient

that were on average .19 and .18 higher than the coefficients produced by the 

corresponding linear equations. 

In contrast, differences between the early stopping committees (ANN2) and 

linear regression equations were less apparent. For the 31 combinations of predictors

listed in Tables 5.6 and 5.7, the early stopping committees produced lower MAE than

the corresponding linear regression equations 9 times, and higher cross-validity 

coefficients 14 times. Moreover the magnitude of the differences were smaller than 



135

those between the networks developed without early stopping and linear regression. For 

example, for all 31 predictor combinations, the difference in MAE between the

stopping committees and linear r

 early 

egression equations was approximately 1% or less of 

the line e of 

 no 

f 

The Eff

ally in 

ar regression MAE. Thus, any reduction in MAE that was achieved by the us

early stopping neural network committees could be described as trivially small. 

Similarly, for 28 of the 31 predictor-combinations the difference between the average 

cross-validity coefficient of the linear equations and early stopping networks was

more than .02 of a coefficient. The largest difference occurred for the combination o

two predictors in Dataset 6. In this case the average cross-validity coefficient of the 

early stopping committees was .07, which was .06 of a unit higher than the average 

coefficient obtained by the corresponding linear equations, but not as high as the cross-

validity coefficients obtained for this predictor-combination by the neural networks 

developed without early stopping.  

Overall then, the pattern of findings with respect to differences between neural 

networks and linear regression was similar to the results obtained in Study 3: For the 

majority of predictor-combinations the neural networks performed worse than or 

similarly to the linear regression equations, whereas for the small number of 

combinations that were characterised by configural relationships the networks with a

large number of hidden units were able to outperform linear regression, at least in terms 

of the obtained cross-validity coefficients. 

ect of Variations in the Number of Predictors

To best illustrate the effect of the number of predictors on predictive 

performance, the values presented in Tables 5.6 and 5.7 have been plotted graphic

Figures 5.4 and 5.5. 
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Dataset 1: University students
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Figure 5.4

The relationship between the number of predictors included in the equation and MAE, 

by equation type and dataset. 
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Dataset 1: University students
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Figure 5.5

The relationship between the number of predictors included in the equation and cross-

validity coefficient (CVR), by equation type and dataset. 
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Figure 5.4 plots the relationship between the number of predictors included in 

the equation and MAE for each type of equation within each dataset. It can be seen that 

across the datasets there tended to be a positive relationship between the number of 

predictors in the equation and MAE. In Datasets 2, 3, 4, and 5 the lowest MAE was 

obtained by single-predictor equations. In Dataset 6 the lowest MAE was obtained by 

the two-predictor equations, although this only applied to the H2, H3, H4, and ANN2 

equations; the linear regression equations and H1 networks did best with a single 

predictor. This presumably occurred because the bulk of the information about the 

criterion carried by the second predictor was due to its configural relationship with the 

first predictor. As the linear equations cannot represent configural relationships (and the 

H1 networks only have a limited capability to do so), it is not surprising that the second 

predictor was of little use in the context of these equations. Finally, in Dataset 1, three 

predictors were optimal.  

A similar relationship occurred between the number of predictors and predictive 

performance measured in terms of cross-validity coefficients. Figure 5.5 indicates that 

, 3, 4, 5, and 6 cross-validity coefficients tended to be decrease as the 

of

ven

ratic

in Datasets 2

number of predictors in the equation increased. In Dataset 1 cross-validity coefficients 

peaked for the three-predictor combination. 

The inverse relationship between the number of predictors and predictive 

accuracy can be interpreted in terms of the increased capitalisation on chance that 

occurs as the number of predictors is increased. Specifically, increasing the number 

predictors also increases the number of parameters that need to be estimated and – gi

a fixed training set – decreases the ratio of training cases to free parameters. A 

consequence of trying to estimate a greater number of parameters with a fixed number 

of training cases is that one is more likely to capture relationships that are idiosync
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to the training sample but do not generalise to the population from which the sampl

drawn (Babyak, 2004). Of course additional predictors can also improve predictive 

performance to the extent that they provide nonredundant information about the 

criterion. However, the above findings suggest that this was generally not the case for 

the datasets considered here – most if not all of the benefits of personality variables for 

predicting work performan

e is 

ce were realised by including one or two personality 

variabl

ease in MAE as a function of an increase in 

the num d

ing

.

ed for 

 the 

greatest decrease in error for these types of equations, but not necessarily for the linear 

es, and the inclusion of additional variables beyond that typically resulted in 

poorer predictions. 

The Interaction Between Equation Type and Number of Predictors

Figure 5.4 also indicates that the incr

ber of predictors occurred at a faster rate for the neural networks develope

without early stopping (especially the H3 and H4 networks) than for the early stopp

committees or the linear regression equations. This trend occurred in all six datasets. 

Similarly, cross-validity coefficients decreased at a faster rate for the larger neural 

networks that were developed without early stopping than for the early stopping

committees or the linear regression equations, although this is not as apparent for all six

datasets (see Figure 5.5). Thus, in general, the predictive performance of the neural 

networks developed without early stopping was hampered more than that of the linear 

regression equations as the number of predictors included in the equations increased

It could be argued that the above finding is an artefact of the procedure us

selecting the combination of personality variables to test at each level of the number of

predictors. Specifically, the backward elimination process was guided by the H4 

networks, and was therefore biased towards eliminating predictors that produced
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regression equations. Yet note that the predictor combination tested at the higher 

extreme of the number of predictors included all the available predictors, and therefore 

as not influenced by the predictor-selection procedure. Furthermore, for all datasets 

gle predictor 

regardl

f

or

s to 

w

the predictor tested at the lower extreme turned out to be the best sin

ess of whether the H4 networks or linear regression was used to generate the 

equations (this can be verified by referring back to the results of Study 1, specifically

see Tables 4.3 and 4.4). Therefore, the predictor tested at this point could also be said to

be independent of the procedure used to select combinations of predictors. If the 

interaction between equation type and number of predictors was purely an artefact o

the predictor-selection process, one would expect that differences between the H4

networks and linear equations to be approximately equivalent at the higher and lower 

extremes (given that the predictor combinations tested at both these points were 

independent of the predictor-selection procedure). However, it can be seen from Figure

5.4 that this is clearly not the case in any of the datasets. 

A more likely explanation for the interactive effect of equation type and number 

of predictors on predictive performance relates to the growth in the number of 

parameters that occurs as predictors are increased. Specifically, the increase in the

number of parameters (as predictors are added to the equation) occurs at a faster rate f

neural networks than for equations developed using linear regression. In the case of 

linear regression, the addition of each predictor increases the number of parameter

be estimated by one, whereas for neural networks the increase in the number of 

parameters is equal to the number of hidden units.7 To the extent that additional 

predictors carry configural information about the criterion, the extra parameters of

neural networks can be useful for representing such information. However, the extra 

network, and each connection constitutes a parameter that needs to be estimated. 
7 This occurs because each input unit (i.e., predictor) is connected to every hidden unit in the neural 
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parameters also increase the likelihood of capturing the noise in the training sets (Reed 

& Marks, 1999). Therefore, in the absence of configural relationships (or if such 

relationships are weak), the predictive performance of neural networks can be expecte

to deteriorate at a faster rate than that of linear regression as the number of predicto

increased.

However, note that the use of early stopping committees provides a certai

of protection against the rapid deterioration in predictive performance that occurs for the

neural networks developed without early stopping. For ex

d

rs is 

n level 

ample, it can be seen in Figure 

5.4 tha

out early 

s

 cases) 

t al., 

e

 – increases as a function of the number of training iterations (Weigend, 

1994). Specifically, it has been shown that at the initial stages of training, when the 

t the increase in MAE (as a function of increasing predictors) occurs at a slower 

rate for the early stopping committees than for the H4 networks developed with

stopping. This occurs despite the fact that the networks that comprise the committee

contained the same number of hidden units as the H4 networks developed without early 

stopping, and therefore had the same potential capacity for fitting the training sets. 

The robustness of the early stopping procedure against the adverse effects of 

having a large number of parameters (relative to the number of available training

has been previously documented (e.g., Caruana et al., 2000; Sarle, 2001c; Tetko e

1995), and can been explained in terms of the notion of effective complexity. The 

effective complexity of a network refers to the extent to which the network uses its 

representational capacity to fit the training set, and is related to both the actual number 

of parameters and the size of the parameters (e.g., Wang et al., 1994). Whereas th

number of parameters is fixed prior to training and reflects the network’s potential for 

fitting the training set, the size of the parameters – and hence the effective complexity of

the network

weights of the network (the parameters to be estimated) are small in size, neural 
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networ

t

early st

e

e

d.

ks learn relatively simple relationships; and that it is only after training has 

progressed that the networks develop the large weights required to more closely fit the 

training sets. By monitoring prediction error on a separate validation set, the early 

stopping procedures allows the training process to be stopped before the network has an

opportunity to use its large number of parameters to fit the noise in the training set. 

To illustrate the above points, the correlation between the predicted and 

observed criterion scores in the training set (which indicates the extent to which an 

equation fits the training data) was calculated for the H4 networks developed withou

opping, the early stopping committees (ANN2), and the linear regression 

equations. The training set correlations, averaged across the twenty partitions, are 

presented in Figure 5.6. First, it can be seen that the extent to which the equations fit th

training data increases as the number of predictors is increased. Second, the increas

occurs at a faster rate for both types of neural network equations than for linear 

regression equations, which reflects the fact that the representational capacity of neural 

networks increases more quickly than that of linear equations as predictors are adde

Finally, the increase occurs at a slower rate for the early stopping committees (ANN2) 

than the H4 networks (developed without early stopping) despite the fact that both types 

of equations have the same representational capability. The early stopping procedure

limits the extent to which the networks make use of their representational capability.
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Dataset 1: Tertiary students
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Dataset 3: Flight attendants
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Dataset 4: Managers
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Dataset 5: Bus drivers
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Dataset 6: Professionals
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Conclusions

A number of conclusions can be drawn based on the results presented in this 

chapter. First, there was little evidence that neural networks outperform linear 

regression when combinations of personality variables are used as the predictors. For 

the majority of predictor combinations that were considered in this chapter the linear 

equations performed as well if not better than the various neural networks. This 

occurred for combinations that were identified a priori based on theoretical grounds, as 

well as combinations that resulted from the backward elimination procedure. 

Furthermore, it should be noted that these results occurred despite the fact that the 

backward elimination procedure was directed towards identifying predictor 

combinations that produced the best predictive performance for neural networks, but not 

necessarily for the linear equations. 

Second, there were a small number of predictor combinations for which neural 

networks were able to outperform linear regression with respect to cross-validity 

coefficients, and these combinations were characterised by statistically significant 

elationships between the predictors and the criterion. However, configural 

sily

igurality that had been proposed.

Finally, the results highlight the dangers of capitalisation on chance when 

multipl

iousness,

f

r

configural r

relationships occurred infrequently, and when they did occur they could not be ea

interpreted in terms of the theoretical rationale for conf

e personality variables are used to predict work performance. For most of the 

datasets considered here the inclusion of a single predictor, typically Conscient

was optimal for predictive purposes. The detrimental effect of increasing the number o

predictors occurred for both neural networks and linear regression, however the effect

was stronger for the networks developed without early stopping than for the linea
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equations. The use of the early stopping procedure of developing neural netwo

provided a certain level of protection against this effect. 

Taken together, the findings presented in this chapter and the previou

provided little support for the hypothesis that the effectiveness of measures of the five 

personality factors for predicting wo

rks

s chapter 

rk performance would be higher when using 

artificia

vels

thin

analyse

y

l neural networks than when using linear regression equations. However, as 

pointed out in chapter 1, personality variables can be conceptualised at different le

of breath, and the broad dimensions of the five-factor model represent one level wi

this hierarchy. It has been argued that there are benefits of considering personality 

variables at a lower level within the hierarchy for the purposes of prediction (e.g., 

Mount et al., 2003; Tett, Steele, & Beauregard, 2003). Consequently, additional 

s were conducted to determine whether the conclusions drawn in relation to

measures of the five broad dimensions generalised to narrower measures of personalit

traits, and these analyses are reported in the next chapter.
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CHAPTER 6: Analyses Using Narrow Personality Variables 

Introduction

The personality scales that were used as predictors in chapters 4 and 5 assessed 

each participant’s standing on the five broad personality dimensions. However, there are 

other ways that the items included in personality inventories can be aggregated to form 

personality scales. Particularly, as outlined in chapter 1, in the first instance personality 

items can be combined to obtain measures of narrower personality traits that assess 

specific facets of the broader constructs represented by the five factors. In recent years 

some researchers have argued that representing personality variables in this way forms a 

better basis for the purposes of prediction than aggregating them into broad measures 

(e.g., Paunonen, Haddock, Forsterling, & Keinonen, 2003; Paunonen, Rothstein, & 

Douglas, 1999). The purpose of the research reported in the present chapter was two-

fold. The first aim was to contribute to the literature on the relative merits of broad 

versus narrow personality variables by empirically comparing the predictive 

performance of personality variables at the broad and narrow levels. The second aim 

was to compare artificial neural networks and linear regression within the context of 

narrow personality measures in order to determine whether the conclusions drawn about 

the comparative predictive performance of these two methods for broad personality 

variables could also be extended to narrower measures. 

One difficulty that arises when studying narrow personality constructs is that 

there has been little agreement among researchers about the number or nature of factors 

at the lower trait level (Mount et al., 2003). For example, Barrick et al. (2001) note that 

the number of lower-level constructs in four popular inventories based on the five-factor 

model range from 12 to 45. In the study reported in this chapter, personality scales that 
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were designed to assess the 30 lower-level constructs of the NEO PI-R were employed. 

This is a good choice as the instrument itself is a popular measure that is often used in 

both research and practice, and there is a good deal of evidence to support the reliability 

and validity of its lower-level facets (see Costa & McCrae, 1992). Furthermore, given 

the overlap between the constructs assessed by the scales from various personality 

inventories, the results obtained here are also likely to have some generality to scales 

from other inventories. 

A second issue relates to the type of criterion that is employed. Broad and 

narrow personality variables have been compared with respect to the prediction of many 

socially significant criteria, such as dating frequency, drug use, alcohol consumption, 

occupational profiles, workplace delinquency, and traffic violations (Ashton, 1998; 

Ashton, Jackson, Paunonen, Helmes, & Rothstein, 1995; Goldberg, in press; Mershon & 

Gorsuch, 1988; Paunonen, 1998; Paunonen et al., 2003). Consistent with the focus of 

this thesis, here we are concerned with broad work performance criteria, such as overall 

measures of academic performance, training performance and job performance. Broad 

performance measures are frequently used in organisational psychology research, and 

often form the basis for important decisions about employees. Moreover, it has been 

contended that narrow personality variables are not suited to the prediction of such 

broad criteria (e.g., Ones & Viswesvaran, 1996), a claim that requires empirical 

verification.

In the study reported in this chapter (Study 5), I first review the arguments and 

evidence relating to the merits of broad versus narrow personality variables for the 

purposes of predicting broad work performance criteria. Following this a rationale is 

provided for comparing linear regression and neural networks in the context of narrow 

personality variables. The findings from Study 5 are then presented and discussed. 
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Study 5 

Facet scores were available for three of the datasets presented in chapter 3 

(Datasets 1, 2, and 4), and therefore these samples were used as the basis of the analyses 

in the present study. One aim of the study was to compare the predictive performance of 

broad versus narrow personality measures with respect to the prediction of broad work 

performance criteria. The second aim was to compare the predictive performance of 

artificial neural networks and linear regression for predicting work performance when 

narrow personality variables are used as predictors. The background literature and 

expectations in relation to each of these aims is outlined in more detail below. 

Broad Versus Narrow Representation of Personality 

In discussing the relative merits of representing personality variables either 

broadly or narrowly it is useful to first note that the total variance in a set of predictor 

variables can be attributed to a) variance that is common to two or more variables, b) 

non-error variance that is specific to a variable, and c) variance due to measurement 

error. Whereas measurement error limits the accuracy of predictions that can be 

achieved, predictive performance is facilitated to the extent that either the common or 

specific non-error sources of variance overlap with the criterion.

As broad personality scales are typically derived by summing scores on a 

number of narrower facet scales, they contain more items than their narrower 

counterparts and are therefore more reliable measures of the common variance 

underlying the facets (e.g., Ones & Viswesvaran, 1996). To the extent that it is the 

common variance that overlaps with the criterion, the greater reliability of broad 

measures facilitates their ability to predict the criterion. Furthermore, based on 

proposals regarding the appropriate bandwidth of predictors (see Cronbach, 1960), 
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proponents of the broad approach have argued that optimal prediction is achieved when 

there is a match between the breadth of the predictor and that of the criterion, and 

therefore that any single personality facet is unlikely to correlate highly with a 

multifaceted criterion such as job performance (e.g., Hogan & Roberts, 1996; Ones & 

Viswesvaran, 1996). For example, Ones & Viswesvaran (1996) suggest that the 

factorial purity of a narrower personality measure will lower correlations with broad 

criteria because the narrow personality measure is likely to share its variance with only 

one of the dimensions of the factorially complex criterion, whereas a broad predictor is 

likely to tap into multiple dimensions of the criterion.  

On the other hand, one loses information about the specific non-error variance 

associated with lower-level facets when they are aggregated to the level of the five 

broad dimensions (Ashton et al., 1995). Correlations between facet scales within the 

same broad personality dimension are often only low to moderate in magnitude (see 

Costa & McCrae, 1992 for examples from the NEO PI-R), suggesting that much of the 

variance captured by the facet scales is specific to those scales. To the extent that the 

specific variance components of the facets overlap differentially with the criterion, 

predictive performance may be diminished through aggregation (Paunonen et al., 1999; 

Van Iddekinge, Taylor, & Eidson; 2005). For example, take a situation where some of 

the facets within a broad dimension are positively related to the work performance 

criterion (i.e., are desirable traits for that occupation) and others are negatively related to 

the criterion (i.e., are undesirable traits). An individual can obtain the same score on the 

broad personality scale either as a result of scoring highly on the desirable facets and 

moderately on the undesirable ones, or else moderately on the desirable facets and 

highly on the undesirable ones. An individual with the former personality profile is 

likely to perform better than an individual with the latter profile, yet one cannot 
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distinguish between the two based purely on their score on the broad measure. 

Similarly, when only a subset of the facets are related to the criterion, aggregating the 

relevant and irrelevant facets into a broad measure can make it difficult to distinguish 

between those who possess the relevant lower-level traits and those who do not. 

The discussion above suggests that the usefulness of the narrow level of 

representation compared to the broad approach depends on the extent to which the 

facets within a broad dimension tap into specific aspects of the construct that in turn are 

differentially related to the criterion. As this is likely to differ across dimensions and 

across different performance contexts, it is unlikely that one approach will be more 

useful than the other for all five factors in all performance contexts. Consequently, the 

conceptual arguments and empirical evidence regarding the relative usefulness of the 

broad and narrow approaches are summarised separately for each factor below, with 

particular emphasis on the performance contexts investigated in the present study. 

Neuroticism. The lower-level facet scales of the Neuroticism factor tend to be 

highly intercorrelated, at least with respect to the NEO PI-R instrument.1 This suggests 

that the common source of variance captured by these scales is large relative to the 

specific variance captured by each facet, and therefore that there will be few criteria that 

are differentially related to the facets of this factor. Indeed it has recently been argued 

that the Neuroticism factor itself is too narrowly defined for the purposes of predicting 

job performance, and that the construct should be broadened to incorporate traits such as 

locus of control, self-esteem, and generalised self-efficacy (Judge, Van Vianen, & De 

Pater, 2004). Possibly for these reasons Neuroticism and its lower-level facets have 

received little empirical attention with respect to the broad versus narrow issue within 

1 The average correlation between the facet scales of the Neuroticism factor (r = .48), calculated using the 
intercorrelation matrix presented in Costa and McCrae (1992), was higher than that of any other factor. 
The average facet intercorrelations for Extraversion, Openness, Agreeableness, and Conscientiousness 
were .35, .28, .33, and .45. 
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performance contexts. In one of the few studies that included measures of this factor, 

Stewart, Barrick, and Parks (2003) compared the narrow and broad measures of the 

Personal Characteristics Inventory using a sample of 110 participants from a wide 

dispersion of job types, and concluded that there was generally no evidence that the 

narrow facets were superior predictors for predicting job performance ratings. On the 

other hand, Chamorro-Premuzic and Furnham (2003) used the aggregated examination 

grades of British university students as the criterion, and obtained some support for the 

usefulness of the Neuroticism facets from the NEO PI-R. The validity coefficients for 

these facets ranged from r = .13 for the Self-Consciousness scale to r = -.29 for the 

Anxiety scale, suggesting that at least some of the facets are differentially related to 

academic performance, and therefore that there may be a benefit associated with 

preserving the specific variance captured by the facet scales. Moreover, the latter 

correlation was larger in magnitude than that obtained by the broad Neuroticism 

measure (r = -.16). The strong effect of the Anxiety scale relative to the broad 

Neuroticism measure in this context is perhaps due to the nature of the criterion, which 

consisted entirely of performance in examinations. The negative effects of anxiety under 

exam conditions are well established, whereas there is little evidence to suggest that 

subclinical levels of other negative emotions such as depression or anger are related to 

test performance in this way (see Zeidner & Matthews, 2000).

Extraversion. In contrast to the Neuroticism factor, the facets of Extraversion 

tend to only be moderately correlated (average r = .35, see footnote 1 on page 5). This 

raises the possibility that these facets are more strongly defined by their specific 

variances, which in turn may overlap differentially with a given criterion. Within 

performance contexts such differential relationships between the facets of the 

Extraversion factor would often be expected on rational grounds. For example, traits 
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such as being energetic and assertive are likely to facilitate performance in many 

contexts, whereas craving excitement is not; and the importance of being sociable is 

likely to vary from one context to the next. In support of this assertion, when Costa, 

McCrae, and Kay (1995) asked ten experts to rate the desirability of the various 

characteristics assessed by the NEO PI-R facets for entry-level police they found that 

within the Extraversion domain assertiveness was rated on average as between 

somewhat desirable to very desirable, whereas excitement-seeking was rated as 

somewhat to very undesirable. The other facets within this domain were rated as being 

between irrelevant to somewhat desirable. 

There is also empirical support for the claim that the facets of Extraversion are 

differentially related to work performance. Hough (1992) distinguished between the 

traits of Extraversion related to potency (such as impact, energy, and influence) and the 

traits associated with affiliation (such as sociability and friendliness). In a review of 237 

studies, she found that measures of potency were positively related to overall job 

performance across occupations, whereas measures of affiliation were unrelated to job 

performance. The findings from subsequent studies have largely been consistent with 

Hough’s results. Rothstein, Paunonen, Rush, and King (1994) found that the Dominance 

and Exhibition scales of the Personality Research Form were significantly and 

positively associated with the GPA of graduate business school students, whereas the 

Affiliation scale and a broad Extraversion measure were not. Vinchur et al. (1998) 

included measures of the affiliation and potency components of Extraversion in their 

meta-analysis of the predictors of sales performance, and found that the validity of 

potency measures for predicting ratings of sales performance (corrected r = .28) was 

higher than that of the global Extraversion measure (corrected r = .18), whereas the 

validity coefficient for affiliation was lower (corrected r = .12). Stewart, Barrick, and 
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Parks (2003) failed to obtain statistically significant relations between overall job 

performance and any of the Extraversion facets of the Personal Characteristics 

Inventory, however the Surgency and Sociability scales were related to job performance 

in the opposite direction (r = .09 and r = -.16), and both facets were more strongly 

related to job performance than the broad Extraversion composite (r = -.03). Chamorro-

Premuzic and Furnham (2003) found that the Activity and Gregariousness facet scales 

of the NEO PI-R were negatively related to university examination marks, whereas the 

other facets and the broad Extraversion measure were unrelated to academic 

performance. Additionally, based on a review of 43 studies that had used the Hogan 

Personality Inventory to predict job performance, Hogan and Holland (2003) concluded 

that job performance is predicted by the Ambition scale (which assesses characteristics 

associated with the potency component of Extraversion), but not with the Sociability 

scale. Therefore, taken together, the results with respect to the Extraversion factor 

suggest that the component of this factor to do with potency is typically more strongly 

related to performance criteria than the component to do with affiliation, and that often 

the former produces a higher validity coefficient than the corresponding broad 

Extraversion measure.

Openness. Of the five factors, the facets of the Openness factor are the least 

intercorrelated (average r = .28, see footnote 1 on page 5), and therefore may possess 

enough specific non-error variance to outpredict their sum. Openness is particularly 

relevant in situations where performance is contingent on learning new skills and 

acquiring knowledge, such as on training programs or in academic settings. Within such 

contexts one might expect intellectual curiosity to be more important for predicting 

performance than other aspects of the factor, such as receptivity to one’s inner feelings 

or sensitivity to art and beauty. Indeed, intellectual curiosity has been rated as the most 
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desirable traits of the Openness factor for entry-level police, whereas other traits such as 

being open to fantasy have been rated as somewhat undesirable (Costa et al., 1995). 

Similarly, based on rational grounds, expert judges have rated measures of the 

intellectual curiosity facet of Openness, such as the Understanding scale of the 

Personality Research Form and the Ideas scale of the NEO PI-R, as being among the 

most useful lower-level traits for the purposes of predicting academic performance (e.g., 

Paunonen & Ashton, 2001a). Paunonen and Ashton (2001b) empirically compared the 

Understanding scale of the Personality Research Form to a broad Openness composite, 

and found that the validity coefficient of the narrow measure (r = .23) was significantly 

greater than that of the broad measure (r = -.04) when predicting university course 

grades. In contrast, Chamorro-Premuzic and Furnham (2003) obtained low and 

nonsignificant validity coefficients for the broad Openness measure and all of its facets 

when predicting university examination marks. 

Outside of academic contexts, one may still expect differential relationships 

between the various facets of Openness and job performance, although facets of the 

Openness factor other than intellectual curiosity probably also play an important role. 

For example, taxonomies of managerial competencies emphasise the importance of 

various aspects of open-mindedness such as tolerance, adaptability, and creative 

thinking (Tett, Guterman, Bleier, & Murphy, 2000), not just intellectual curiosity. In a 

recent study, Griffin and Hesketh (2004) hypothesised that openness to external 

experiences (as measured by a composite of the Adventurousness, Intellect, and 

Liberalism facet scales of the IPIP-NEO) would be positively related to job performance 

whereas openness to internal experiences (measured by a composite of the Imagination, 

Artistic interests, and Emotionality facet scales) would be negatively related to job 

performance. They tested their hypotheses using a combined sample of 186 employees 
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from two organisations. Neither of the two subdimensions nor the Openness composite 

was significantly correlated with job performance ratings, however the Intellect facet 

scale was significantly related to both task performance and adaptive performance 

ratings. Interestingly then, this study provided further support for the importance of the 

intellectual curiosity facet of Openness for predicting performance, even outside of 

academic contexts. 

Agreeableness. Of the five factors, Agreeableness is of least interest in the 

present study. This factor had not been hypothesised to be theoretically relevant in any 

of the datasets used in this study (see Table 4.1 in chapter 4), and the few empirical 

studies that have compared the broad and narrow scales within this factor have found 

little evidence that any of the narrow facets is more valid than the broad measure for 

predicting either academic performance or job performance (e.g., Chamorro-Premuzic 

& Furnham, 2003; Stewart et al., 2003). Consequently, it was not expected that 

representing these facets narrowly would provide any advantage over a broad 

representation for the datasets used in this study. 

Conscientiousness. Most of the research that has compared broad and narrow 

personality measures for predicting performance criteria has concentrated on the 

Conscientiousness factor. This is perhaps surprising given that the traits associated with 

this factor – such as competence, orderliness, dutifulness, achievement-striving, self-

discipline, and deliberation – would in most performance contexts be expected to be 

related to performance in the same direction, namely positively. Furthermore, the facets 

are highly intercorrelated (average r = .45, see footnote 1 on page 5), suggesting that 

they are predominantly tapping into a common source of variance. Hough (1992) 

presented evidence that measures of the achievement facet of Conscientiousness were 

more strongly related to overall job performance than measures of the dependability 
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facet. Her study, however, did not include a broad measure of Conscientiousness and 

therefore it was not possible to determine whether the narrow facets outperformed the 

broad measure. A number of subsequent meta-analyses have included a broad 

Conscientiousness measure and have found that this measure typically results in validity 

coefficients that are comparable to the best performing narrow measure. For example, 

Mount and Barrick (1995) compared measures of the Conscientiousness factor to 

measures of the narrower traits of achievement and dependability across a number of 

occupations, and found that the validity coefficients of the narrow traits were similar to 

each other and to that of the broad Conscientiousness when the criterion was a broad 

measure of work performance. Similarly, a meta-analysis of the predictors of 

salesperson performance conducted by Vinchur et al. (1998) obtained comparable 

validity coefficients for measures of the Conscientiousness factor and the achievement 

trait when predicting job performance ratings (corrected validity coefficients = .21 and 

.25), although the narrow trait outperformed the broad dimension when specifically 

predicting sales volume (corrected coefficients = .31 and .41). A more recent meta-

analysis by Dudley, Orvis, and Lebiecki (2003) derived validity coefficients for four 

narrow traits of Conscientiousness (achievement, dependability, order, and 

cautiousness) in four occupational categories (sales, customer service, managers, and 

skilled/semi-skilled workers). Although the narrow trait with the highest validity 

coefficient varied across the four occupational categories, in all four categories the 

validity coefficients for the four narrow traits were smaller than or at best similar to that 

of a global Conscientiousness measure when predicting overall job performance.2

2 It should be noted that the findings reported here do not imply that the specific variance associated with 
the narrow traits of Conscientiousness are unrelated to overall job performance. On the contrary, it has 
been shown that the narrow measures account for statistically significant amounts of variance in work 
performance above that accounted for by the broad measure (e.g., Dudley et al., 2003; Stewart, 1999). 
However, the results do suggest that if one is to select a single predictor for predicting overall 
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Similar results have been obtained when the Conscientiousness factor has been 

studied within academic settings. Paunonen and Ashton (2001a) found that the validity 

coefficient of the Achievement scale of the Personality Research Form (r = .26) was 

higher than that of a Conscientiousness composite derived from the same inventory (r = 

.21) when predicting course grades, although this difference was not statistically 

significant. Gray and Watson (2002) found that the validity of the Achievement-

Striving (r = .39) and Self-Discipline (r = .36) scales of the NEO PI-R for predicting 

university GPA were significantly greater than those of the other Conscientiousness 

facets, although the former was only slightly more accurate than the Conscientiousness 

composite (r = .36). Lievens, Coetsier, Fruyt, & De Maesseneer (2002) concluded that 

the Achievement-striving and Self-Discipline scales predict medical student 

performance better than some of the other Conscientiousness facet scales from the NEO 

PI-R, yet they found little evidence that either facet scale outpredicts the broader 

domain scale. Chamorro-Premuzic and Furnham (2003) found that within the 

Conscientiousness domain the Dutifulness and Achievement-Striving scales were the 

facets that were the most strongly related to performance (r = .38 and .35). The validity 

coefficients for these two scales were approximately the same as those for the 

Conscientiousness composite (r = .36).  

To summarise, the empirical studies that have compared broad and narrow 

personality measures as predictors of performance criteria have largely focused on the 

Conscientiousness factor, and to a lesser extent on the Extraversion factor. Although 

differences between the narrow facets of Conscientiousness have been found, the 

validity of broad Conscientiousness is typically comparable to that of the best 

performance, there is little if any additional gain associated with selecting a narrow facet of 
Conscientiousness over a more global measure of the construct. 
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performing narrow facet. In contrast, often at least one of the lower-level traits of 

Extraversion – typically a trait associated with the potency component – produces a 

higher validity coefficient than the corresponding broad measure. Less research has 

been conducted using the other factors, however of the work that has been done there is 

some indication that the facet of Openness that is related to intellectual curiosity may be 

more valid for predicting performance than broad measures of Openness, and that the 

anxiety facet of Neuroticism may be a more valid predictor of performance in academic 

settings (where performance is often assessed by exams) than the corresponding broad 

measure.  

A methodological difficulty that arises when comparing broad and narrow 

variables, and that is a limitation of much of the research cited above, stems from the 

disparity between the number of predictors at the broad and narrow levels. The larger 

number of variables for the latter increases the likelihood that a narrow variable will 

outperform the corresponding broad counterpart, though purely due to chance. One 

could address this problem by reducing the number of narrow traits that are examined, 

for example by hypothesising about and selecting the narrow facet within each domain 

that would be expected to be the best predictor of the criterion based on previous 

empirical findings or on rational grounds (see Paunonen & Ashton, 2001b). This 

hypothesis-driven approach, however, entails the loss of the specific information 

captured by all but the selected facet, and can be problematic if there is little reason for 

preferring one facet over the others, or else if multiple facets within a domain are 

expected to be related to the criterion though in the opposite direction. A second 

approach is to combine the information from the narrow facets using multiple 

regression, and to then cross-validate these equations on unseen data (Paunonen et al., 

1999). This approach has the advantage of retaining and incorporating the specific 
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information captured by the multiple narrow facets. However, it has the drawback of 

increasing the number of parameters that need to be estimated. As discussed in chapter 

5, increasing the number of parameters to be estimated also increases the likelihood of 

capitalising on chance, and therefore that predictive performance will be lower upon 

cross-validation. Consequently, under this methodological approach the broad versus 

narrow debate takes on a different flavour: The benefit of retaining the specific 

information associated with lower-level facet scales needs to outweigh the risk of 

increased capitalisation on chance if the narrow approach is to yield more accurate 

predictions for unseen cases. With limited sample sizes this is an issue that needs to be 

assessed empirically (see Goldberg, 1993). 

Variants of both approaches were used in the present study. Consistent with the 

latter approach, prediction equations that included all the facets within a broad domain 

were developed and subsequently tested on unseen data, and these results were 

compared to the findings for broad personality variables that were presented in the 

previous chapters of this thesis. Additionally, consistent with the hypothesis-driven 

approach, there was an expectation that specific facets within some of the domains 

would outperform the broad domain measure based on the conceptual arguments and 

empirical studies that were summarised above, and consequently analyses were 

performed to test these specific hypotheses: 

1. It was hypothesised that, within the Neuroticism domain, the anxiety facet of 

this factor would be a more valid predictor of performance than the broad 

measure in Datasets 1 and 2, as the criteria in these datasets were primarily 

composed of performance under exam conditions.  
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2. It was hypothesised that, within the Extraversion domain, facets associated with 

the potency component would be more valid predictors of performance than the 

broad measure in all three datasets.  

3. It was hypothesised that, within the Openness domain, the facet of this factor 

related to intellectual curiosity would be a more valid predictor of performance 

than the broad measure in all three datasets. 

Based on the literature that was reviewed, it was not expected that any of the facets of 

the Agreeableness or Conscientiousness factor would yield significantly greater validity 

coefficients than the corresponding broad measure, and therefore no specific hypotheses 

were proposed for these factors. 

Neural networks and Narrow Personality Variables 

 Given the limited evidence for nonlinear and configural relationships between 

broad personality measures and work performance, and the consequent poor predictive 

performance of neural networks in the context of broad personality measures, is there 

any reason to expect neural networks to outperform linear regression when narrow 

personality variables are used as the predictors? One possibility is that nonlinear and/or 

configural relationships exist at a narrower level of personality representation but that 

these relationships are submerged when the narrow traits are aggregated into broad 

composites. For example, Murphy’s (1996) arguments that Conscientiousness and 

Extraversion may be quadratically related to performance are expressed in terms of 

specific facets within each domain, rather than the domain in its entirety. Namely, for 

certain occupations job performance may be hampered if an individual is excessively 

rule-bound (a behavioural response that is presumably associated with high levels of the 

cautiousness facet of Conscientiousness), or else if they spend too much time interacting 
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with others at the expense of their own work (a behavioural response that is presumably 

associated with high levels of the sociability facet of Extraversion). The same type of 

reasoning is not easily applied to other facets within these domains, such as the 

achievement facet of Conscientiousness or the activity facet of Extraversion, which are 

more likely to be monotonically related to performance. Similarly, it is specifically the 

anxiety trait of Neuroticism that has been proposed to be related to academic 

performance and job performance in an inverted-U fashion (e.g., Braden, 1995; Stewart 

et al., 2003). This is because this trait is associated with arousal, which is most useful in 

moderate amounts for the purposes of facilitating performance (Matthews & Deary, 

1998). Other traits of Neuroticism, such as depression or hostility, are unlikely to be 

related to performance in this way. If the broad approach was used for the examples 

cited above, the variability added by the other facets that are aggregated to obtain the 

broad measure would obscure the nonlinear relationship between the specific facet and 

work performance, and consequently there would be little benefit in using neural 

networks rather than linear regression. On the other hand, if the personality variables 

were represented at the facet level, then a neural network with an adequately large 

number of hidden units could detect the specific nonlinear relationships and potentially 

improve predictive performance. 

It is also not difficult to think of circumstances where configural relationships 

are submerged by the aggregation of narrow traits into broad measures. This can occur 

in at least two ways. First, if the configural relationship occurs between two facets 

within the same personality dimension then such a relationship may only be detected 

and exploited for predictive purposes by representing each facet separately. For 

example, it may be that success in managerial jobs requires at least moderate levels of 

both sociability and assertiveness, and conversely that a low level of either facet results 
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in the failure to perform well (regardless of the level of the other facet). As these two 

facets of the Extraversion domain are not strongly correlated (see Costa & McCrae, 

1992), it is possible to obtain the same broad Extraversion score either by scoring 

moderately on both facets or by scoring high on one facet and low on the other. 

However, it is only the former configuration that is associated with successful 

performance in this case, and therefore representing the Extraversion factor broadly 

would not allow one to exploit this configural relationship in order to distinguish 

between the high and low performing manager.  

Second, configurality may exist between specific facets that are from different 

broad dimensions. For example, in the previous chapter it was suggested that in the 

context of training programs Openness and Extraversion represent alternative 

motivations to actively participate in the program and ask questions, and that high levels 

of one factor may compensate for low levels of the other such that optimal performance 

is achievable as long as at least one factor is high. However, within the Openness 

domain, it is specifically intellectual curiosity that is likely to motivate the individual in 

this way; whereas other attributes associated with this factor such as being open to one’s 

feelings or having a deep appreciation for art and beauty are unlikely to provide this 

motivation. Similarly, within the Extraversion domain, some facets (eg., activity and 

assertiveness) are likely to be more relevant as motivating factors in training contexts 

than other facets (e.g., warmth). To the extent that it is the specific facets that form the 

basis of the configural relationships, such relationships are more easily discernible if 

personality variable are represented at the narrower facet level rather than at the broad 

level, and consequently the narrow level of representation may well provide a context in 

which neural networks outpredict linear regression. 
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Of course there is also a cost associated with the neural network method in that 

it is more likely to capitalise on chance than linear regression, and this cost is likely to 

be greater in the context of narrow predictors than broad ones given the larger number 

of narrow predictors and the typically lower reliability of these measures. Consequently 

the benefit of detecting any systematic nonlinearity or configurality in the data needs to 

be strong enough to outweigh this cost in order for neural networks to be useful in this 

context. This too, therefore, is an issue that needs to be assessed empirically. 

Method

Scores on the 30 lower-level facet scales of the IPIP-NEO or NEO PI-R were 

available for each of the participants in Datasets 1, 2 and 4, and these scores were used 

as the basis of the analyses performed in this study.3 Prediction equations were 

developed and tested for each of the combination of personality facets listed below, 

using the same procedures and the same twenty training/test set partitions that were 

used in all previous studies, with the exception that in the present study only one level 

of hidden units (the H4 level) was used for the neural networks developed without early 

stopping. Thus, for each combination listed below, the twenty training/test sets were 

used to develop and test linear regression equations, neural networks without early 

stopping (with H4 hidden units), and early stopping committees (also with H4 hidden 

units).

Within each dataset prediction equations were developed using the following six 

combinations of the facet scales: 

1. All facets of the Neuroticism factor. 

2. All facets of the Extraversion factor. 

3 The labels for the facet scales of these instruments can be found in Table 3.2 of chapter 3. 
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3. All facets of the Openness factor. 

4. All facets of the Agreeableness factor. 

5. All facets of the Conscientiousness factor. 

6. All facets of the combination of theoretically relevant factors. 

The first five combinations consisted of six predictor variables each, and 

allowed me to address the broad versus narrow issue separately for each of the five 

factors. However, it is not possible to capture configural relationships that may exist 

between facets from different factors with these combinations, which is relevant for the 

analyses that compared linear regression and neural networks. For this reason a sixth 

combination was developed for each dataset that consisted of all the facets from the 

combination of theoretically relevant factors tested in Study 3. For Datasets 1 and 4 this 

latter combination consisted of 18 predictors, whereas for Dataset 2 it consisted of 24 

predictors.4

To address the first aim of this study, the predictive performance of the linear 

regression equations developed here (which used the facet scales as predictors) were 

compared to the predictive performance of the corresponding linear regression 

equations that had been developed in chapters 4 and 5 (which used the broad domain 

measures as predictors). Furthermore, the validity coefficients for individual facets were 

compared to the corresponding broad domain-level validity coefficients in order to test 

the specific hypotheses that had been proposed. To address the second aim of the study, 

the predictive performance of the neural networks and linear regression equations 

developed in the present study were compared to each other. 

4 Tables C60 to C77 of Appendix C provide the predictive performance results for each prediction 
equation developed in Study 5. 
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Results and Discussion 

Broad Versus Narrow Representation of Personality Variables 

Table 6.1 presents the MAE values and cross-validity coefficients for the linear 

regression equations that were developed using the narrow facet variables of the NEO 

inventories. The results for the corresponding broad linear regression equations, which 

were initially documented in chapters 4 and 5, are also presented here for the purposes 

of comparison. The findings are presented for each of the five factors within each 

dataset, and for the combination of theoretically relevant factors within each dataset.  

Table 6.1 

MAE values and cross-validity coefficients for the linear regression equations that were 

developed using either the broad (domain) variable(s) or the narrow (facet) variables 

within each domain.

Dataset and MAE Cross-validity coefficient
predictor domain Broad Narrow Broad Narrow 

1. University students
Neuroticism 7.395 7.166  .02 .19
Extraversion 7.289 7.321  .16  .16 
Openness 7.329 7.232  .13 .20
Agreeableness 7.401 7.595 -.08 -.03
Conscientiousness 7.226 7.325  .22  .16 
Theoretical Combination 7.121 7.078  .26 .29

2. Police recruits
Neuroticism 32.39 33.06  .13  .08 
Extraversion 32.53 32.09  .16 .23
Openness 32.97 32.69  .05 .14
Agreeableness 32.53 32.84  .09  .07 
Conscientiousness 31.55 32.62  .26  .18 
Theoretical Combination 32.24 33.65  .22  .19 

4. Managers
Neuroticism 0.488 0.498  .19  .15 
Extraversion 0.505 0.510 .10 .14
Openness 0.507 0.496 -.07 .19
Agreeableness 0.509 0.520 .01 .02
Conscientiousness 0.480 0.484  .26  .26 
Theoretical Combination 0.484 0.503  .25  .20 

Note: Underlined values indicate that the neural networks outperformed the associated linear equations.
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Table 6.1 indicates that of the 18 comparisons between the broad and narrow 

levels of representation, the narrow approach produced lower MAE than the broad 

approach 6 times, and higher cross-validity coefficients 9 times. In Dataset 1 the largest 

gains in cross-validity coefficients occurred for the Neuroticism and Openness factors, 

and in Datasets 2 and 4 the largest gains occurred for the Openness and Extraversion 

factors. Importantly, therefore, the results for the Openness factor, and to a lesser extent 

the Extraversion factor, showed some consistency across the datasets. Consequently, 

although the results cannot be taken as evidence for the general usefulness of 

representing personality variables at the facet level, they do indicate that for these two 

domains a narrow level of representation may be more appropriate, and that within 

academic settings the Neuroticism factor too may benefit from the narrow approach. In 

contrast, there was no benefit associated with the narrow approach within the 

Conscientiousness domain – in all three datasets MAE was higher and average cross-

validity coefficients were lower for the narrow level of representation. Finally, with 

respect to the Agreeableness factor, the narrow approach resulted in small 

improvements in cross-validity coefficients (but not MAE) in two of the datasets, 

however despite these improvements the magnitude of the coefficients remained 

trivially small. 

To address each of the specific hypotheses that were previously outlined, the 

validity coefficient for the relevant narrow measure was compared to validity 

coefficient for the corresponding broad measure (both derived using the entire data in 

each dataset) and tested for significance using Meng, Rosenthal and Rubin’s (1992) 

procedure for comparing correlated correlation coefficients. Given the directionality of 

the hypotheses, one-tailed tests were employed. 
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Hypothesis 1. To test the hypothesis that the narrow anxiety trait is a more valid 

predictor than broad Neuroticism when performance is predominantly assessed under 

exam conditions, the validity coefficient for the Anxiety facet scale and Neuroticism 

domain scale were compared in Datasets 1 and 2. In Dataset 1 the validity coefficient 

for the Anxiety scale (r = .07) was slightly higher in magnitude than the validity 

coefficient for Neuroticism (r = .05), although this difference was not statistically 

significant (z = -0.58, p > .05). In Dataset 2 the validity coefficient for Anxiety (r = -

.10) was smaller in magnitude than that of Neuroticism (r = -.16). Hypothesis 1 was 

therefore not supported. 

Hypothesis 2. The second hypothesis was that the potency component of 

Extraversion would better predict performance than the corresponding broad 

Extraversion measure. There is no one facet within the NEO PI-R that assesses potency, 

although the Assertiveness and Activity scales closely resemble descriptions of the 

potency component (see Hough, 1992), and therefore this hypothesis was tested by 

aggregating scores on these two facets within each dataset to obtain a measure of 

potency.5 In Dataset 1 the magnitude of the validity coefficient of the potency measure 

(r = -.02) was smaller than that of Extraversion (r = -.13). However, in Datasets 2 and 4 

the narrow measure was more strongly related to performance (r = .25 and .23) than was 

the broad measure (r = .16 and .11), and both these differences were statistically 

significant (z = -2.11 and -1.99, p < .05). Therefore, there was partial support for 

hypothesis 2. 

Hypothesis 3. The third hypothesis was that the facet of Openness specifically to 

do with intellectual curiosity would better predict performance than the corresponding 

5 Additional support for the appropriateness of summing these two scales comes from principal 
components analyses of the Extraversion facet scales within the three datasets considered here. In each 
dataset there was justification for the extraction of two components, one of which was most strongly 
defined by the Assertiveness and Activity facets after direct oblimin rotation. 
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broad measure. Within the NEO PI-R, intellectual curiosity is assessed by the Ideas 

scale, and within the IPIP NEO it is assessed by the scale labelled Intellect. In Dataset 1, 

the validity coefficient for the Intellect scale (r = .20) was higher in magnitude than that 

of the broad Openness measure (r = .12), and this difference was statistically significant 

(z = -1.80, p < .05). Similarly, in Datasets 2 and 4, the Ideas scale was more strongly 

related to performance (r = .24 and .19) than was broad Openness (r = .10 and .02), and 

both differences were statistically significant (z = -2.79 and -2.96, p < .01). Hypothesis 

3 was therefore supported. 

Exploratory analyses. To further explore the data, Table 6.2 presents the validity 

coefficients for each personality scale within the three datsets. The validity coefficients 

for the broad scales are presented in bold. The validity coefficients provide some insight 

into why the narrow approach outpredicted the broad approach for the factors in which 

it did. For example, for the Neuroticism factor in Dataset 1, it can be seen that the 

superior predictive performance of the narrow approach was not driven by the Anxiety 

scale, as had been hypothesised, but rather by a positive correlation between the Self-

Consciousness scale and the criterion (see Table 6.2). The validity coefficients for the 

other facets within this factor were trivially small, and so it is not surprising that when 

the six facets were combined into a broad measure the coefficient for this measure was 

also trivially small. One can speculate about why the Self-Consciousness scale was 

more strongly related to performance than the other facets of Neuroticism. One 

possibility is that the results were obtained purely due to chance. However, Chamorro-

Premuzic and Furnham (2003) also obtained a significant positive correlation between 

this facet and academic performance that did not occur for any of the other Neuroticism 

facets, and that was strongest for first year university students (the same population 

examined in Dataset 1). Therefore, it is plausible that this facet is capturing specific  
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Table 6.2 

Validity coefficients for the personality scales within each dataset. 

Personality scale Dataset 1 
University students

Dataset 2 
Police recruits 

Dataset 4 
Managers 

Neuroticism   .05 -.16 -.20 
N1: Anxiety  .07 -.10 -.11 
N2: Anger  .02 -.13  .00 
N3: Depression  .01 -.12 -.17 
N4: Self-Consciousness  .19 -.07 -.18 
N5: Immoderation/Impulsiveness -.03 -.17 -.17 
N6:Vulnerability .00 -.17 -.26 

Extraversion -.13  .16  .11 
E1: Friendliness/Warmth -.15  .02  .03 
E2: Gregariousness -.17  .05  .00 
E3: Assertiveness -.04  .19  .25 
E4: Activity Level  .01  .24  .14 
E5: Excitement-Seeking -.13  .07  .03 
E6: Cheerfulness/Positive Emotions -.06  .07  .03 

Openness  .12  .10  .02 
O1: Imagination/Fantasy  .16 -.02 -.09 
O2: Artistic Interests/Aesthetics -.01  .01 -.03 
O3: Emotionality/Feelings  .05  .05  .04 
O4: Adventurousness/Actions -.03  .05 -.03 
O5: Intellect/Ideas  .20  .24  .19 
O6: Liberalism/Values  .07  .05 -.01 

Agreeableness  .03  .11 -.08 
A1: Trust -.04  .18 -.04 
A2: Morality/Straightforwardness  .11  .07 -.06 
A3: Altruism -.03  .07  .03 
A4: Cooperation/Compliance  .02  .06 -.15 
A5: Modesty  .02  .02 -.08 
A6: Sympathy/Tender-Mindedness  .05  .01 -.01 

Conscientiousness  .20  .27  .28 
C1: Self-Efficacy/Competence  .14  .24  .18 
C2: Orderliness/Order  .15  .20  .06 
C3: Dutifulness .10  .22  .21 
C4: Achievement-Striving  .14  .22  .27 
C5: Self-Discipline  .12  .25  .22 
C6: Cautiousness/Deliberation  .21  .15  .26 

Note: The validity coefficients for the broad measures are presented in boldface. 
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information that is relevant for academic performance in the first year of university and 

that is not captured by the other facets of this factor. Unlike the other traits of the 

Neuroticism factor, self-consciousness is specifically characterised by negative 

emotions towards social situations, having been described as akin to social anxiety or 

shyness (Costa & McCrae, 1992). The Self-Consciousness scale may therefore provide 

information about participation in social activities that is relevant to the academic 

success of first-year university students. Researchers have noted that the developmental 

transitions experienced by first-year university students can result in a distracting social 

environment, and that the extent to which students engage in this environment is 

negatively related to their first-year academic performance (Bauer & Liang, 2003). 

Thus, the positive correlation between this scale and academic performance may be due 

to the dissuading effects of being highly self-conscious on participation in social 

activities. As support for this claim, note that facet scales of Extraversion that are also 

likely to provide information about participation in social activities (though in the 

opposite direction to the Self-Consciousness scale), such as the Gregariousness, 

Friendliness, and Excitement-Seeking scales, were negatively related to academic 

performance in Dataset 1. 

In contrast to the Neuroticism factor, within the Extraversion and Openness 

domains the superior predictive performance of the narrow approach was accounted for 

by the facets that had been hypothesised to be the strongest predictors of work 

performance. Thus, it can be seen from Table 6.2 that in Datasets 2 and 4 the scales that 

assess traits of Extraversion to do with potency, namely the Assertiveness and Activity 

scales, were more strongly related to the criterion than the other facets of Extraversion. 

In Dataset 2 it was the Activity scale that was the strongest predictor of performance, 

which is consistent with Barrick et al.’s (2001) theorising that Extraversion is related to 
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performance in training programs because of the greater activity of highly extraverted 

trainees during training. In Dataset 4 the Assertiveness scale was the strongest predictor 

of performance, which is also not surprising given that high scorers on this facet often 

become group leaders (Costa & McCrae, 1992), and that leadership in turn has been 

rated as one of the most important attributes of good managers (see Raymark, Schmit, 

& Guion, 1997). Furthermore, given the positive effects of the Activity and 

Aseertiveness scales in Dataset 2 and 4, and that conceptually an active and assertive 

student might be expected to perform better than a passive student, one can speculate 

about why neither of these scales was positively related to performance in Dataset 1. A 

possible reason for this finding is that part of the variance captured by these scales is 

that which is common to the various facets of Extraversion; as alluded to above, being 

highly extraverted can be an undesirable quality for academic success in the first year of 

university, given the socially distracting environment. In support of this explanation, 

when the effect of broad Extraversion was statistically controlled in Dataset 1, the 

potency measure (the aggregation of the Assertiveness and Activity scales) was 

positively related to academic performance, t(224) = 1.95, p = .05,  = 2.39. 

With respect to the Openness factor, and as had been hypothesised, the 

Ideas/Intellect facet was the strongest predictor of performance in all three datasets (see 

Table 6.2). The results for Datasets 1 and 2, therefore, support the intuition that 

intellectual curiosity is more relevant than other traits of Openness for performance in 

academic and training contexts, whereas the result for Dataset 4 suggests that it may 

also be more relevant outside of such contexts, within organisational settings. The 

superior validity of measures of intellectual curiosity for predicting performance may be 

explained by the relationship of this trait to cognitive ability. The Openness factor has 

traditionally been viewed as distinct from but related to cognitive ability, especially 
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crystallised intelligence (Goff & Ackerman, 1992). Moreover, it is specifically the 

intellectual curiosity facet of Openness that is most strongly related to scores on 

cognitive ability tests (e.g., Ackerman & Goff, 1994; Ashton, Lee, Vernon, & Lang, 

2000), and that has been suggested to contribute to the development of intellectual 

potential (Costa & McCrae, 1992). In light of the fact that cognitive ability tests are 

among the most valid methods for predicting performance across many different 

contexts (Schmidt & Hunter, 1998), it is not surprising that measures of intellectual 

curiosity too are useful for predicting performance across contexts. This point is 

discussed in greater detail in the general discussion of chapter 7. 

Finally, within the Agreeableness and Conscientiousness domains, there was 

little evidence for differential validity coefficients among the facet scales. In all three 

datasets the validity coefficients for the broad Agreeableness measure and its narrower 

facet scales were mostly trivially small. Therefore these results are consistent with the 

earlier claim that this personality factor is not relevant for performance in the datasets 

considered here. On the other hand Conscientiousness is relevant for performance in all 

three datasets, as evidenced by the positive non-trivial validity coefficients for the 

narrow and broad scales of this factor (see Table 6.2). However, differences between the 

facets were typically small, and in all three datasets the broad measure obtained a 

correlation coefficient that was higher than or at least similar to that of the best narrow 

facet. This finding is consistent with much of the previous research on this factor (e.g., 

Mount & Barrick, 1995; Dudley et al., 2003), and suggests that it is the common 

variance underlying the facets of Conscientiousness that predominantly overlaps with 

work performance criteria. 
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Artificial Neural Networks Versus Linear Regression

Table 6.3 presents the MAE values and cross-validity coefficients for the neural 

networks that were developed using the six facet scales within each factor. The results 

for the corresponding linear regression equations, which were initially presented in 

Table 6.1, are also reproduced here. Consistent with the presentation in previous 

studies, the neural networks that were developed without early stopping are labelled 

ANN1, and the early stopping committees are labelled ANN2. However note that in 

previous chapters the former represented an average over different hidden unit levels 

whereas in the present study only the H4 level was included.

Table 6.3 

MAE values and cross-validity coefficients for the linear regression equations and 

neural networks that were developed using the six facet variables within each factor. 

Dataset and predictors MAE Cross-validity coefficient
LR ANN1 ANN2 LR ANN1 ANN2 

1. University students
Neuroticism facets 7.166 8.022 7.199  .19  .14  .19 
Extraversion facets 7.321 8.223 7.342  .16  .05  .14 
Openness facets 7.232 7.689 7.216  .20  .17  .19 
Agreeableness facets 7.595 8.964 7.704 -.03 -.07 -.06
Conscientiousness facets 7.325 8.601 7.393  .16  .00  .14 
Theoretical combination 7.078 16.254 7.174  .29  .09  .27 

2. Police recruits
Neuroticism facets 33.06 34.84 33.06  .08 .11  .08 
Extraversion facets 32.09 35.58 32.38  .23  .10  .18 
Openness facets 32.69 35.94 33.11  .14  .07  .12 
Agreeableness facets 32.84 36.10 33.29  .07  .03  .03 
Conscientiousness facets 32.62 35.38 32.71  .18  .11  .16 
Theoretical combination 33.65 60.15 33.01  .19  .12 .20

4. Managers
Neuroticism facets 0.498 0.762 0.501  .15 -.05  .12 
Extraversion facets 0.510 0.674 0.509  .14  .04  .12 
Openness facets 0.496 0.600 0.496  .19  .09  .17 
Agreeableness facets 0.520 0.641 0.517  .02 .06 .08
Conscientiousness facets 0.484 0.557 0.487  .26  .06  .25 
Theoretical combination 0.503 0.996 0.493  .20  .02 .20

Note: Underlined values indicate that the neural networks outperformed the associated linear equations.
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Table 6.3 indicates that the networks developed without early stopping (ANN1) 

performed poorly compared to the linear regression equations. They produced higher 

MAE values than the linear regression equations for all 18 comparisons, and also 

produced lower cross-validity coefficients for 16 of the 18 comparisons. Differences 

between the two types of equations were particularly large for the comparisons 

involving the combinations of theoretically relevant factors, especially with respect to 

MAE. In all three datasets the difference in MAE was statistically significant, Dataset 1: 

corrected t(19) = -7.10, p < .01; Dataset 2: corrected t(19) = -4.24, p < .01, Dataset 4: 

corrected t(19) = -4.66, p < .01.6 In these cases the number of predictors included in the 

equations was substantially greater than when each factor was considered separately, 

and therefore these results once again reflect the rapid deterioration in predictive 

performance that occurs for neural networks trained without early stopping when the 

number of predictors is increased. The result for the combination of theoretically 

relevant factors in Dataset 2 is an interesting case in point. In Study 3, where each of the 

four theoretically relevant factors was represented in terms of one global domain 

measure, it was found that the average cross-validity coefficient of the H4 networks was 

.04 of a unit higher than that of the linear regression equations (see Table 5.3 in Chapter 

5). Whereas in this study, each of the four factors was represented in terms of six facets 

(that together comprised the same items that were used to derive the domain measure), 

and the average cross-validity coefficient for the networks was .07 lower than that of the 

linear regression equations (see Table 6.3). It would seem then that, for neural networks 

developed without early stopping, the increased capitalisation on chance that results 

6 These were the only MAE differences that were statistically significant at  = .01, however a number of 
other statistically significant MAE differences (all in favour of the linear regression equations) were 
obtained at the less conservative type I error rate of  = .05. None of the cross-validity coefficient 
differences were significant at the more conservative rate (see Tables D9 and D10 in Appendix D for 
complete results). 
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from the greater number of parameters to be estimated when representing personality 

variables narrowly more than offsets any benefit that arises from retaining the facet-

specific information, at least in the present datasets. 

The early stopping network committees (ANN2) were also typically less 

accurate than the linear regression equations. Of the 18 comparisons, they performed 

worse than linear regression 11 times with respect to MAE, and 15 times with respect to 

cross-validity coefficients. However, the differences in MAE values and cross-validity 

coefficients were generally smaller in magnitude than the differences between the 

ANN1 networks and linear regression equations. Indeed all comparisons between the 

ANN2 networks and linear regression were statistically nonsignificant with respect to 

both MAE and cross-validity coefficients.7 Furthermore, the ANN2 networks were less 

likely than the ANN1 networks to be prone to the deterioration in predictive 

performance that occurs as a function of an increase in the number of parameters. 

Indeed, as can be seen in Table 6.3, if anything the ANN2 networks performed slightly 

better than the linear regression equations (and a lot better than the ANN1 networks) for 

the theoretically relevant combinations in Datasets 2 and 3, which involved 24 and 18 

predictors respectively.

Conclusions

The study reported in this chapter obtained evidence that for some factors the 

predictive benefit of retaining the specific information associated with facets of the five 

broad factors outweighs the predictive cost of increased capitalisation on chance. For 

the Extraversion and Openness factors, and for Neuroticism within an academic context, 

predictive performance was higher when personality variables were represented at the 

7 The results of these statistical tests are provided in Table D11 and D12 of Appendix D. 
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narrower facet level than at the broad domain level. As had been hypothesised, within 

the Extraversion domain it was the scales associated with potency – namely the 

Assertiveness and Activity scales – that were typically more strongly related to the work 

performance criterion than the broad measure. Similarly, the hypothesis that the 

intellectual curiosity facet of Openness would outpredict the corresponding broad 

measure was also supported. However, for the Neuroticism factor within an academic 

setting, it was not the anxiety trait that accounted for the success of the narrow approach 

as had been hypothesised but rather the self-consciousness trait. It was suggested that 

the positive relationship between this trait and academic performance in the first year of 

university may be due to the dissuading effects of self-consciousness on participation in 

social activities. 

The present study also provided evidence in relation to the usefulness of neural 

networks compared to linear regression in the context of narrow personality variables as 

predictors of work performance. As in the previous studies reported in this thesis, the 

neural networks generated predictions that were less accurate or at best similar in 

accuracy to those generated by linear regression, and these results held across different 

combinations of personality facets and different datasets. Furthermore, as in previous 

studies, the early stopping neural network committees tended to perform better than the 

networks developed without early stopping, and were also less prone to the adverse 

effects of capitalisation on chance that occurs when the number of parameters to be 

estimated is increased. Consequently, it would seem that the conclusions drawn about 

the comparative accuracy of linear regression and neural networks for broad personality 

variables also generalise to instances where personality variables are represented 

narrowly.
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CHAPTER 7: General Discussion 

Introduction

The research reported in this thesis compared artificial neural networks and 

linear regression as two methods of evaluating the effectiveness of personality variables 

for predicting work performance. Additionally, the nature and extent of the relationship 

between different personality variables and work performance was examined with 

special emphasis on the role of nonlinearity, configurality, and predictor breadth. It was 

expected that the findings would have implications for two broad areas of research, 

namely, the literature on organisational research methods and the literature on 

personality and work performance. This final chapter is divided into two parts in order 

to reflect this dichotomy. In the first section, the results relevant to the comparison 

between artificial neural networks and linear regression are reviewed and compared to 

previous findings. Some of the methodological strengths of the thesis that contribute to 

a better understanding of the findings are also discussed. The second section discusses 

the findings in terms of three issues relevant to the literature on personality and work 

performance. First, the evidence for complex relationships between personality and 

work performance is evaluated, and the theoretical and practical implications of the 

conclusions are considered. Second, differences between personality variables in the 

extent to which they predict performance and in their importance within theories of job 

performance are discussed, especially with respect to differences between broad and 

narrow variables. Third, the optimal number of personality variables to include in 

prediction equations is addressed. The chapter concludes with some recommendations 

for future applications of artificial neural networks to organisational psychology 

research.
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Artificial Neural Networks Versus Linear Regression 

Principal Findings 

The results of the present research did not support the hypothesis that neural 

networks would produce more accurate predictions than the linear regression method. 

The networks for the most part performed poorly or at best similarly compared to linear 

regression equations. This finding generalised across hidden unit levels, two procedures 

of developing neural networks, and two measures of predictive performance. It occurred 

when individual personality variables were used as predictors and also when 

combinations of personality variables were used; in the latter case it occurred regardless 

of whether the combinations were selected based on theoretical grounds or by an 

empirical predictor-selection procedure. It occurred for broad personality variables as 

well as for variables that were represented at the narrower facet level. Furthermore, the 

results generalised across multiple datasets. Consequently, the present findings were 

inconsistent with the results of several previous studies that have found neural networks 

perform better than traditional linear methods when predicting the behaviour of 

employees in organisations (e.g., Scarborough, 1996; Somers, 1999, 2001).  

There are at least two plausible explanations for the discrepancy in findings. 

First, the total number of cases in the six datasets used in this thesis ranged from 120 to 

486. Although this represents a relatively large range that encompasses the sample sizes 

typically available in organisational psychology research, the size of the datasets used 

here are smaller than those in some of the previous studies in which neural networks 

have outperformed linear methods (e.g., Scarborough, 1996, Somers, 1999). Larger 

samples are likely to be of more benefit for complex methods such as neural networks 

than simpler methods such as linear regression (see Reed & Marks, 1999); in fact, 

theoretically, when sample sizes are unlimited a neural network will necessarily perform 
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no worse than linear regression (see Geman et al., 1992). As a result, the findings of the 

present research are only generalisable to datasets that contain fewer than 500 

participants. However, it should be noted that neural networks have previously been 

successfully implemented within organisational settings with far fewer than this many 

cases (Somers, 2001), and conversely that neural networks have failed to outperform 

linear methods in datasets with more than 18,000 participants (Paik, 2000). Therefore, 

factors other than sample size need to be considered to explain the poor performance of 

neural networks in the datasets used here. 

A second explanation for the discrepancy in findings relates to differences in the 

predictors that were employed. In Chapter 2 I noted that previous successful 

implementations of neural networks employed predictors that were nonlinearly or 

configurally related to the criterion. For example, Somers’ (2001) application of neural 

networks was based on the rationale that work attitudes measures are nonlinearly related 

to job performance. On the other hand, Griffin (1998) found that neural networks 

performed no better than linear regression for predicting naval aviator flight training 

performance and this was attributed to the linear structure of the underlying relations 

between the predictors and the criterion. As outlined in the introductory chapters of this 

thesis, a major motivation for the application of the neural network method in the 

present research was the expectation of nonlinear and configural relationships between 

personality variables and work performance criteria. Given the lack of evidence for 

complex relationships in the present datasets (see the discussion in the next section), it 

is not surprising that the neural networks generally failed to outperform the linear 

regression equations. In the absence of such relationships the hidden layer of a neural 

network can only serve to capture the noise in the data, and therefore has an adverse 

effect on predictive performance. 
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In support of this explanation, note that the neural networks outpredicted the 

linear regression equations in the small number of instances where statistically 

significant nonlinear or configural effects were present, such as for the measure of 

Intellectance in Dataset 5, the combination of Emotional Orientation, Cognitive 

Orientation, and Task Orientation in Dataset 6, and the combination of Neuroticism, 

Extraversion, Openness, and Conscientiousness in Dataset 2. Importantly, the neural 

networks were able to outperform linear regression in these cases without the researcher 

having to make assumptions about the nature of the underlying nonlinearity or 

configurality, thus highlighting the value of this methodology in situations where 

complex relationships occur but existing theories are not precise enough to specify the 

exact functional relationships. Therefore, although the usefulness of neural networks for 

improving the predictive performance of personality variables in the present datasets 

was disappointing, in a broader sense the present findings provide some grounds for 

optimism about the use of neural network methodology in organisational psychology 

research: The results demonstrate that neural networks can cope with the level of noise 

that is present in organisational data such that when the selected predictors are 

nonlinearly or configurally related to the criterion the networks are able to detect such 

relationships and exploit them for predictive purposes. 

Further Methodological Contributions 

There were three methodological strengths of the present research that together 

provided a better understanding of the generality of the findings, and facilitated the 

provision of a number of guidelines for the implementation of neural networks in future 

studies. These relate to the use of two alternate procedures for developing networks, the 
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use of multiple measures of predictive performance, and the use of a resampling 

procedure.

As part of the development of neural networks, I experimented with two 

procedures for controlling the complexity of networks, namely weight regularisation 

with varying numbers of hidden units and early stopping committees. In their 

comparison of various training procedures on artificial datasets, Finnoff et al. (1993) 

found that both weight regularisation and early stopping resulted in higher predictive 

performance than when no precautions were taken to avoid overfitting other than 

varying the number of hidden units. In the present research, it was demonstrated that the 

superiority (or equivalency) of linear regression held across both of these training 

procedures. Moreover, important differences were observed between the two training 

procedures that are relevant for future applications of neural networks. For the vast 

majority of predictors and predictor combinations, the use of early stopping and 

committee formation improved the predictive performance of neural networks and 

resulted in predictions that were similar or only slightly inferior in their accuracy to the 

predictions made by linear regression equations. Furthermore, networks trained in this 

way were less prone to the adverse effects of capitalisation on chance that occurs as the 

number of predictors is increased. Thus, the use of early stopping committees is 

recommended when training neural networks, especially if one is considering the 

inclusion of large numbers of predictors. On the other hand, although the early stopping 

committees outpredicted linear regression in the presence of nonlinear or configural 

relationships, the extent of this gain was smaller than that associated with simply using 

weight regularisation with a large number of hidden units. By reducing the effective 

complexity of networks, early stopping fails to fully exploit the predictive power of 

neural networks in the presence of complexity. Therefore, in situations where there is a 
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strong expectation of nonlinear or configural relationships, and only a small number of 

predictors are involved, it may be more beneficial to simply use weight regularisation 

with a large number of hidden units.

A second methodological strength of this thesis relates to the use of both 

absolute and relational measures of predictive performance. Previous studies that have 

applied neural networks to organisational psychology have for the most part only relied 

on the latter (e.g., Collins & Clark, 1993; Griffin, 1998; Somers, 1999, 2001). However, 

there are good reasons why one should include both types of measures. For one, it is 

entirely possible that neural networks will perform better than linear methods using one 

measure of predictive performance but worse using another (see Paik, 2000). Moreover, 

depending on the type of decisions for which the predictions are used, one type of 

predictive performance may be more relevant than the other. If the actual criterion level 

is to be predicted, for example as might occur when a recruiter is interested in 

estimating the actual amount of sales volume that a prospective salesperson is likely to 

generate, then absolute measures of accuracy are more relevant. On the other hand if an 

employer is interested in the potential performance of a prospective employee relative to 

other prospects then a relational measure may be appropriate.  

In the present research linear regression outperformed neural networks on both 

the absolute measure (MAE) and the relational measure (cross-validity coefficient). 

However, for the neural networks developed without early stopping, predictive 

performance tended to be especially poor for the absolute measure. Indeed, an 

inspection of Tables 4.7, 5.2, and 6.3 (in chapters 4, 5, and 6) reveals that such networks 

rarely obtained a lower MAE than linear regression, even when cross-validity 

coefficients were higher. A possible reason for this finding is that absolute measures of 

predictive performance, unlike relational measures, are sensitive to differences in the 
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scale of actual and predicted criterion scores (see Kirlik & Strauss, 2003); consequently 

overfitting is likely to be reflected to a greater extent in such measures. Consistent with 

this interpretation, note that the early stopping committees, which were less susceptible 

to overfitting than networks developed without early stopping, did not display the same 

discrepancy between the relative and absolute measures – they obtained lower MAE 

than linear regression about as often as they obtained higher cross-validity coefficients 

(see Tables 4.7, 5.2, and 6.3). The implication of these results is that neural networks 

developed without early stopping are less likely to be of use in situations where absolute 

accuracy is required. 

A third methodological strength of the current research relates to the use of a 

resampling procedure. Previous applications of neural networks to organisational 

psychology have predominantly relied on the hold-out method of assessing predictive 

performance, in which the data is randomly partitioned into a training set and a test set 

once (e.g., Collins & Clark, 1993; Griffin, 1998; Scarborough, 1996; Somers, 1999, 

2001). A shortfall of this method is that it does not take into account the variability in 

the performance of neural networks relative to linear regression that occurs across 

different partitions of the data (see Dietterich, 1998; Neal, 1998). When this variability 

is large, one cannot be confident that the hold-out method will yield reliable estimates 

of the true differences between neural networks and linear regression. 

The present research employed a resampling procedure in which the partitioning 

of the data was repeated 20 times, and predictive performance was estimated by 

averaging over the twenty partitions. Consequently, estimates of the differences 

between neural networks and linear regression were more stable than if only one 

partition had been used. To provide a concrete example of the dangers of the hold-out 

method, consider the comparison between linear regression and the neural networks 
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developed without early stopping for the Interpersonal Orientation scale in Dataset 6. 

The cross-validity coefficients for the two methods were .03 and .02 when averaged 

across the twenty partitions (see Table 4.4), suggesting little difference between them on 

average. However, the differences in cross-validity coefficients ranged from .31 to -.32. 

Thus, if the hold-out method had been used, one could have arrived at one of two 

contradictory conclusions based on the random choice of the partition, namely that 

linear regression provides a large advantage over neural networks (given the first 

partition), or else that neural networks are far superior to linear regression (given the 

second partition). 

As previously noted, however, a limitation of the resampling procedure 

employed here is that the overlap between training sets from different partitions creates 

dependencies that violate assumptions required for formal statistical tests (see Neal, 

1998). In the present research a corrected t-test proposed by Nadeau and Bengio (2003) 

was used to partially address this problem, although this test too is based on 

assumptions that are not necessarily met. Martin and Hirschberg (1996) have argued 

that such approximate statistical tests can only ever be heuristic and should be presented 

as such. Consequently, the absence of a robust test for assessing the statistical 

significance of the findings is a threat to the statistical conclusion validity of the present 

results (see Cook & Campbell, 1979).1 Nevertheless, that the direction of the effects 

was for the most part in favour of linear regression, and the consistency with which this 

occurred across predictors and datasets, suggests confidence in the conclusion that 

neural networks typically do not improve the effectiveness of personality variables for 

predicting work performance within the range of sample sizes considered here.

1 A more robust procedure that would have mitigated this threat is the use of bootstrapping (see Dybowski 
& Roberts, 2001). This is a computationally intensive procedure that was beyond the resources available 
for the present research. 
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Personality and Work Performance 

Evidence for Complex Relationships 

Previous studies addressing complex relationships between personality variables 

and performance criteria have predominantly focused on the Conscientiousness factor, 

and have provided mixed findings. Some studies have found evidence for a nonlinear 

relationship between Conscientiousness and work performance (e.g., Cucina & 

Vasilopoulos, 2005; La Huis et al., 2005), whereas others have not (e.g., Robie & Ryan, 

1999). Similarly, although evidence from a number of studies suggests that the joint 

effects of Conscientiousness and other personality dimensions on work performance 

may be configural in nature (see Witt, 2003 for a review), the findings do not 

necessarily generalise across all work settings and occupations (e.g., Witt et al., 2002). 

The present research examined complex relationships for all five dimensions of the five-

factor model, not just Conscientiousness. Furthermore, such relationships were 

examined across a relatively large number of occupations. Little evidence was obtained 

in support of complexity in the relationship between personality variables and work 

performance criteria. Of the large number of tests for nonlinearity that were conducted 

in Study 1, only one statistically significant nonlinear effect was obtained and this 

occurred for a predictor that had not been hypothesised to be nonlinearly related to the 

criterion. In Study 3, configural relationships occurred infrequently and could not be 

easily interpreted in terms of the theoretical rationale for configurality. Furthermore, the 

neural network analyses provided little indication of other nonlinear or configural 

relationships that generalised to unseen cases.

There are several possible explanations for why some studies have obtained 

statistically significant findings whereas others have not. First, it may be that the present 

research and other studies that obtained nonsignificant results lacked the statistical 
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power to detect nonlinear and configural relationships. A number of authors have noted 

the difficulty of detecting such effects in applied settings (e.g., Aguinis, Beaty, Boik, & 

Pierce, 2005; Aiken & West, 1991; Lubinski & Humphreys, 1990; McClelland & Judd, 

1993). Small sample sizes, measurement error, and restriction of range in the predictors 

are some of the factors that have been identified as detrimental to statistical power 

(Aguinis, 1995). Aiken and West (1991) showed that for large, moderate, and small 

effect sizes, N = 26, 55, and 392 cases are required to detect a multiplicative effect 

between two predictors with 80% probability (setting  = .05). Based on these figures, 

all of the datasets used in this thesis had adequate power for detecting moderate and 

large effects, and one dataset had adequate power for detecting small effects.  

The above calculations are based on the assumption that constructs are assessed 

with no measurement error. In practice, predictors and criteria are typically measured 

with scales that have less than perfect reliability, and this is likely to adversely affect 

statistical power (Aguinis, 1995). Measurement error is further exacerbated when 

predictor variables are multiplied to produce product and power terms (McLelland & 

Judd, 1993), and consequently complex relationships are especially difficult to detect. 

Stone-Romero and Anderson (1994) conducted a Monte Carlo study in which they 

evaluated the power of detecting multiplicative effects when predictors contain 

measurement error. With a sample size of 120 and predictor reliabilities of .80, the 

power of detecting a multiplicative effect between two predictors was estimated to be 

over 90% for moderate and large effect sizes, and 28% for a small effect. Given that the 

majority of the five-factor scales employed in this thesis had reliability coefficients over 

.80 (see chapter 3), and that all datasets contained at least 120 cases, the above finding 

suggests that the present analyses had adequate power for at least detecting moderate 

and large effects in spite of the less than perfect predictor reliability.  
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Nevertheless, these latter findings are also possibly an optimistic estimate of the 

statistical power of the tests conducted in the present research as they do not reflect the 

adverse effects of restriction of range in the predictors. McLelland and Judd (1993) 

showed that range restriction has a greater negative impact on the detection of nonlinear 

and multiplicative effects than on the detection of linear effects. Moreover, if the 

relationship between the predictor and criterion is nonlinear over the entire range of 

scores but linear over a restricted range, then it will not be possible to detect the 

nonlinearity when only the restricted range is represented in the sample. In chapter 3, it 

was noted that the standard deviations of the personality variables in the present 

samples were sometimes smaller than those reported in the test manuals, although it is 

difficult to determine whether this is due to range restriction or to the greater 

homogeneity of the population of applicants within an occupation compared to the 

general population. There were no datasets in which personality variables were used to 

select individuals into the occupations, and therefore range restriction due to direct 

truncation is unlikely to be a problem here. In some of the datasets individuals were 

selected using variables that potentially correlate with personality variables, such as 

performance in interviews or on cognitive ability tests, thus raising the possibility of 

indirect range restriction. Nevertheless, the nonsignificant findings in the present 

research occurred across datasets, including datasets that are unlikely to suffer from low 

statistical power due to the large samples involved. Consequently, although it is 

possible that some of the negative results may be due to the combined effects of 

measurement error and restriction of range on statistical power, Type II errors at best 

only partially explain the present findings. 

Alternatively, it may be that the lack of complexity in personality-performance 

relationships obtained here represents the true state of affairs, and that the findings from 
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studies that have obtained significant nonlinear or multiplicative effects represent Type 

I errors. However, this too is unlikely to be an entirely satisfactory explanation given 

that some of the previous findings have been replicated in multiple datasets (e.g., La 

Huis et al., 2005; Witt, 2002). Possibly a more plausible explanation for discrepancy 

across studies is that complex relationships are not pervasive, but rather occur in certain 

situations and under certain circumstances. Characteristics of the occupation, the 

organisation, or the context in which testing occurs may influence the presence of such 

relationships. For example, La Huis et al. (2005) noted that their nonlinear findings may 

be due to several characteristics associated with the clerical positions they examined, 

such as the nature of the tasks to be performed and low autonomy. Witt (2003) 

suggested that personality-performance relationships, multiplicative or otherwise, are 

more likely to occur when supervisors are ineffective, as this creates a weak situation in 

which personality has greatest impact. Haaland and Christiansen (1998) proposed that 

departures from linearity tend to occur in situations where there is a motivation to fake 

personality test scores. This is because distorted responses are more likely to be found 

in the upper ranges of the score distribution, and therefore the relationship between test 

scores and the criterion is likely to be weaker in this range than in other regions of the 

distribution. The present research did not include a clerical sample, nor did it assess the 

effectiveness of supervisors. Furthermore, participants in all datasets completed 

personality inventories after they had been employed and therefore had less motivation 

to fake. An area for future research will be to measure or where possible manipulate 

situational and circumstantial factors such as these in order to gain a better 

understanding of the conditions under which complex relationships are likely to occur, 

if at all. Nevertheless, based on the present findings, one can only concur with the view 

that if there is any complexity in the relationship between personality and work 
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performance then this does not occur systematically across performance contexts (e.g., 

Robie & Ryan, 1999). 

The above conclusion has important theoretical and practical implications. From 

a theoretical perspective, it lends support to the assumptions of linearity and additivity 

that are implicit in most general theories of personality and work performance (e.g., 

Barrick, et al., 2003; Motowidlo et al., 1997). Thus, one can be confident that the 

importance of personality variables within such theories is unlikely to have been 

attenuated as a result of the use of linear and additive methods. With respect to linearity, 

the results suggest that when a personality variable is related to work performance the 

strength and direction of the relationship typically remains constant across the entire 

range of the personality variable. A given increase in a particular attribute will have the 

same effect on work performance regardless of whether the person is low or high on 

that characteristic. This runs counter to the “deficiency-sufficiency” view, whereby an 

increase in an attribute results in improved performance up to a given point after which 

the relationship ceases to exist; it also contradicts the idea that optimal performance 

occurs at moderate levels of an attribute (e.g., Murphy, 1996). Furthermore, the results 

do not provide support for the view, derived from theories of traitedness, that 

personality is less strongly related to performance in the mid-range than at the extremes 

(e.g., Sinclair et al., 1999). 

With respect to configurality, the results suggest that the strength and direction 

of the relationship between a given personality variable and work performance does not 

in general depend on the individual’s standing on other personality variables. Thus, a 

given increase in a particular attribute will have the same effect on work performance 

regardless of whether the person is low or high on other personality characteristics. This 

implies that deficiencies on a particular attribute that is relevant for performance cannot 



190

be fully compensated for by high levels of another relevant attribute. Furthermore, it 

implies that the joint effect of two attributes is limited to their additive effects, and 

consequently that high levels of one attribute do not enhance the effects of high scores 

on other relevant attributes. 

From a practical perspective, the results provide guidance in relation to the 

selection strategy to adopt when using personality scores as the basis of selection 

decisions. Specifically, the present results provide some justification for the use of a 

top-down strategy where candidates are rank-ordered and selected sequentially, starting 

with the highest scorers. This is because when the relationship between scores on the 

selection test and the performance criterion is monotonically increasing the expected 

performance of individuals selected via a top-down strategy will be higher than the 

expected performance of those selected by any other strategy. Of course the actual 

choice of a selection strategy will also depend on other considerations including 

administrative and legal arguments (see Campion et al., 2001). Nevertheless, the present 

results do not provide the statistical justification for forsaking the top-down approach, 

as might have been justified if inverted-U relationships had been found. 

Differences Between Personality Variables 

Consistent with the results of previous meta-analyses (e.g., Hurtz & Donovan, 

2000; Barrick et al., 2001), the findings reported in this thesis highlight the importance 

of measures of Conscientiousness relative to other personality variables for the purposes 

of predicting work performance. The predictive performance of this dimension was 

higher than that of the other dimensions of the five-factor model in four of the six 

datasets considered here. Furthermore, whereas previous research has predominantly 

established the superiority of Conscientiousness using linear methodology, the present 
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research showed that this is also true when using a method that is capable of detecting 

nonlinear and configural relationships. Thus, in Study 1, where personality variables 

were considered individually, Conscientiousness was typically the most valid predictor 

of work performance under both linear regression and neural networks; and in Study 4, 

where predictor combinations were selected using backward elimination, 

Conscientiousness typically emerged as the final variable after all others had been 

eliminated. Finally, it was found that the superiority of broad Conscientiousness also 

extended to instances in which narrower personality variables were considered as 

predictors. In two of the three datasets employed in Study 5, the validity of the broad 

Conscientiousness measure was higher than that of all 30 of the facet scales of the NEO 

PI-R, and in the third dataset only one of the 30 facets obtained a slightly higher validity 

than this broad measure.  

Theoretically, the importance of broad Conscientiousness is not surprising given 

that the essence of this factor has been suggested to be self-control (Costa & McCrae, 

1992), an attribute that is likely to be desirable across performance contexts. From a 

practical perspective, the results suggest that when selecting among personality 

variables to predict work performance, Conscientiousness will usually be the predictor 

of choice. However, one should also be careful not to overstate the results. In all six 

datasets the observed validity and cross-validity coefficients associated with the 

measure of Conscientiousness were less than .30, a value that is itself substantially less 

than that associated with the most valid selection methods, such as cognitive ability 

tests (Schmidt & Hunter, 1998). Nevertheless, even in the presence of cognitive ability 

tests, the use of Conscientiousness as a selection method may be justified given that it 

has been shown to have practically useful levels of incremental validity (Schmidt & 

Hunter, 1998). 
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The predictive performance of the other four dimensions within the five-factor 

model was typically substantially lower than of Conscientiousness, and was to a large 

extent dependent on the dataset in question. Neuroticism was the best predictor of 

performance in the managerial sample after Conscientiousness, and also predicted 

performance in the police and flight attendant samples. These results are consistent with 

the previous meta-analytic finding that Emotional Stability is associated with superior 

performance in some occupations but not others (Barrick et al., 2001). Additionally, the 

Self-Consciousness scale (a facet of Neuroticism) was one of the strongest predictors of 

performance in the sample of university students, and this was attributed to the ability of 

this predictor to provide information relating to the social activity of first-year 

university students. Future research can test this explanation by, for example, assessing 

whether the relationship between this scale and first-year university performance is 

mediated by the extent of participation in social activities. 

Extraversion predicted work performance in a number of the samples, although 

work performance tended to be more strongly related to specific facets of this factor 

than to the composite measure. In particular, Study 5 found that a measure of the 

potency component of Extraversion, derived by aggregating scores on the Activity and 

Assertiveness facet scales, was among the strongest predictors of work performance in 

two of the three datasets examined in that study, and had a validity coefficient that was 

significantly higher than that of broad Extraversion in both those studies. This finding 

has some precedence in previous work (e.g., Hough, 1992), and supports the claim that 

the Extraversion dimension is too broad for the purposes of predicting work 

performance (e.g., Hogan & Holland, 2003). Furthermore, the finding can be explained 

in terms of job performance theory. Specifically, Extraversion has been suggested to 

affect job performance through status striving, a motivational construct which reflects 
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actions directed toward obtaining power and dominance (e.g., Barrick et al., 2003; 

Barrick, Stewart, & Piotrowski, 2002; see also Hogan & Holland, 2003). Conceptually, 

status striving is more similar to the potency component than the affiliation component 

of Extraversion, and therefore the present findings are consistent with this theory. 

Openness has traditionally been found to predict performance on training 

programs, but not performance on the job (e.g., Barrick & Mount, 1991; Salgado, 

1997). Consequently this personality dimension has sometimes been omitted from 

theories of job performance (e.g., Barrick et al., 2003). The present results suggest that 

the usefulness of Openness as a predictor of performance may be greater than has been 

previously acknowledged, although specificity within the Openness domain needs to be 

taken into account in order to exploit the predictive power of this factor. In particular, 

the results of Study 5 consistently indicated that work performance was specifically 

related to the facet of Openness that assessed intellectual curiosity, and that combining 

this facet with the other facets of Openness resulted in statistically significant reductions 

in validity. It should be noted that the present finding is not without precedence, as 

Griffin and Hesketh (2004) also obtained a significant relationship between a measure 

of intellectual curiosity and job performance. 

An issue that remains unclear though is the reason for the relationship between 

intellectual curiosity and job performance. This has implications for both the role of 

intellectual curiosity in theories of job performance and its usefulness for selecting 

personnel. One possible explanation is that this personality trait is providing 

information about cognitive ability, which as noted above has been shown to be one of 

the most valid predictors of job performance (e.g., Schmidt & Hunter, 1998). This 

explanation is supported by the relatively large correlation between measures of 

intellectual curiosity and crystallised intelligence (e.g., Ackerman & Goff, 1994; Ashton 
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et al., 2000). If the relationship between intellectual curiosity and job performance is in 

fact due the confounding effect of cognitive ability, then this would place in doubt the 

role of this personality construct in job performance theory and limit its usefulness for 

selecting personnel in contexts where cognitive ability test scores are available. 

Alternatively, it may be that the significant effect of intellectual curiosity occurs 

independently of its relationship with scores on cognitive ability tests. Although these 

two constructs are related, they are also distinct in that intellectual curiosity assesses 

interest in intellectual pursuits (Costa & McCrae, 1992), and may therefore tap into 

motivational constructs that are important for job performance, such as the motivation 

to solve problems and acquire job-related knowledge. Furthermore, intellectual curiosity 

corresponds closely to the construct of typical intellectual engagement (Ackerman & 

Goff, 1994), which has been argued to be a better predictor of long-term performance 

than the maximal intellectual engagement assessed by cognitive ability tests (Goff & 

Ackerman, 1992). To the extent that it is these unique aspects of intellectual curiosity 

that relate to job performance, this personality variable will play a legitimate role in 

explaining job performance, and will potentially be of use for selecting personnel even 

when cognitive ability test scores are available. Future research can distinguish between 

these two explanations by testing whether the relationship between intellectual curiosity 

and work performance remains statistically significant when the effect of cognitive 

ability is held constant. 

Finally, the predictive performance of Agreeableness tended to be trivially small 

in most of the datasets employed in this study. This is possibly because customer 

service was only an explicit measure of the work performance criterion in two of the six 

samples, the flight attendants and the bus drivers. In the former sample, however, 

Agreeableness was the best predictor of work performance.  
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Optimal Number of Personality Variables

The results of the present research also provide insight into the optimal number 

of personality variables to include in prediction equations when predicting work 

performance. This is an area that has received little research attention, yet is an 

important issue as it has recently been claimed that the failure to consider personality 

variables jointly has resulted in an underestimate of the validity of personality for 

predicting work performance (e.g., Barrick & Mount, 2005). The present findings do 

not support this view. With respect to both MAE and cross-validity coefficients, optimal 

prediction occurred with a single personality variable for the majority of the datasets. 

This occured regardless of whether neural networks or linear regression was used to 

derive the prediction equations.

In considering the generality of this finding it should be kept in mind that the 

optimal number of predictors is influenced by sample size (Goldberg, 1972), and 

therefore larger samples than used here may support the inclusion of a greater number 

of personality variables as predictors. Furthermore, the present analysis was conducted 

using the broad (higher-level) scales within each inventory. Given that there are a 

greater number of lower-level scales to select from, some of which may be more 

strongly related to the criterion than their higher-level counterparts, it may be that the 

optimal number of predictors is larger when personality is operationalised in terms of 

the lower-level facet scales. Therefore, one needs to be careful not to overgeneralise the 

present findings, which suggest that a single personality variable tends to be optimal for 

predicting work performance when personality is represented in terms of the five broad 

personality dimensions and fewer than 500 cases are available. The generality of these 

findings to instances where personality variables are represented at the facet level is an 

area for future research. Moreover, future studies may wish to consider prediction 
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equations that combine both broad and narrow personality variables. This could yield 

cross-validity coefficients that are higher than those based on only one level of 

representation, and therefore contribute to the utility of personality inventories in 

applied settings.

Conclusions and Recommendations 

The topic of the research reported in this thesis was in line with recent calls for a 

move towards more complex methodology for understanding and predicting work-

related phenomena (e.g., Hanges et al., 2002; Mount et al., 2003; Somers, 1999). The 

findings provide some grounds for optimism about the application of artificial neural 

networks in organisational psychology research, but mainly highlight limitations of this 

method. The strength of the neural network method lies in its ability to detect complex 

nonlinear and configural relationships among variables without the need for prior 

specification of functional relationships. Nevertheless, this capability does not 

necessarily translate into predictive or explanatory gains compared to traditional linear 

techniques, as the usefulness of the neural network methodology is contingent on the 

availability of adequate sample sizes, data that is not overly noisy, and the presence of 

complex relationships between variables. On a positive note, then, the current research 

demonstrated that for sample sizes that are typical of those available in organisational 

psychology research, and when the variables are related in moderately complex ways, 

neural networks can cope with the level of noise present in the data such that they are 

able to detect and exploit the complex relationships for predictive purposes. 

Importantly, however, the results also illustrate that the increased 

representational capability of complex methods comes with a cost, namely the 

propensity to capture features of the data that are idiosyncratic to the training sample. 
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This is most noticeable when the relationships are either linear and additive, or only 

weakly nonlinear and configural, as in these instances the risk of overfitting the training 

data is likely to outweigh any benefit of being able to capture complex relationships. In 

the case of personality and work performance these instances are the rule rather than the 

exception, and therefore it would seem that within this domain simpler methods are 

better than more complex ones.  

For researchers interested in applying neural networks to organisational 

psychology research, a number of recommendations can be provided. First, overfitting 

is less likely to occur when sample sizes are large (Babyak, 2004). The actual number of 

cases required to successfully implement a given application is domain dependent, and 

cannot easily be determined a priori. Nevertheless, the benefit of an increase in sample 

size is likely to be greater for neural networks than for linear methods, and therefore 

researchers employing neural networks should make every effort to maximise sample 

size. Furthermore, in choosing between two potential applications, the number of cases 

that are likely to be available should be a relevant consideration.

Second, overfitting is less likely to occur when there are fewer parameters to be 

estimated. The number of parameters can be reduced through procedures designed to 

control the complexity of neural networks, for example by reducing the number of 

hidden units. Other procedures such as weight regularisation, early stopping, and 

committee formation are also of help. Additionally, however, one can preserve degrees 

of freedom by including only a limited number of predictors in the analysis, for example 

based on theoretical considerations (Tabachnick & Fidell, 2001). Furthermore, the 

number of parameters to be estimated as a function of increasing predictors grows at a 

faster rate for neural networks than for linear regression, and consequently one needs to 
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be especially careful about including a large number of speculative variables when 

using neural networks. 

Third, noise in the data increases the risk of overfitting, and limits the level of 

generalisation that can be achieved (Sarle, 2001c). One source of noise that is likely to 

be relevant to organisational psychology researchers is that associated with 

measurement error in predictors and criteria. It is therefore particularly important to 

ensure that the measures that are included in neural network analyses have adequate 

levels of reliability. This can be achieved, for example, by using longer tests, 

administering inventories under standardised conditions, and training raters. 

Finally, neural networks are more likely to provide benefits over traditional 

methods when there is some expectation of nonlinearity or configurality between the 

predictors and the criterion. With this in mind, two suggestions are provided in relation 

to future applications of artificial neural networks in organisational psychology. First, 

the applications to date have primarily used individual difference variables as the inputs, 

yet it is known that to best predict behaviour from trait measures the systematic effects 

of situations and their interaction with the person must also be taken into account (e.g., 

Kenrick & Funder, 1988). Recent theoretical efforts have outlined some of the main 

situational influences on trait-behaviour relations within organisations (e.g., Barrick et 

al., 2003), and it has been shown empirically that the joint effect of these situational 

demands and individual difference variables on performance is configural in nature 

(e.g., Barrick & Mount, 1993; Stewart, 1996). Therefore, neural network methodology 

may well be of more benefit to research that incorporates both situational and personal 

variables into the design than research that only includes individual difference variables 

as the inputs. Second, neural networks could make a meaningful contribution to 

research aimed at modeling judgments about work-related criteria, such as those made 
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by managers and HR personnel. It has been shown that configurality is often a 

characteristic of judgments about a criterion, but not necessarily of the criterion itself 

(Ganzach, 1997). For example, substantial configurality has been found in the way in 

which managers combine cues to arrive at judgments about job applicant favourability 

(Hitt & Barr, 1989). Moreover, the inherent difficulty of explicitly specifying the 

nonlinear processes underlying judgments can result in low levels of nonlinear variance 

accounted for when in fact judgments are highly nonlinear and configural in nature 

(Ganzach, 2001). The ability of neural networks to capture complex relationships 

without the need for prior model specification could be of value within this domain. 

To conclude, then, artificial neural networks have the potential to become an 

important part of the research methods used by organisational psychologists. However, 

it should be kept in mind that in some situations simpler is better, and therefore that 

neural networks should be seen as a complement to the traditional methodologies used 

within organisational psychology rather than a replacement to them. 
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Appendix A: Correlations Matrices

Table A1.

Dataset 1: Correlation matrix. 
N E O A C Perf. 

Neuroticism 1.00

Extraversion -.45** 1.00

Openness -.15* .43** 1.00

Agreeableness -.16* .08 .14* 1.00

Conscientiousness -.35** .11 .04 .20** 1.00

Performance .05 -.13 .12 .03 .20** 1.00

* p < .05,   ** p < .01

Table A2.

Dataset 2: Correlation matrix. 
N E O A C Perf. 

Neuroticism 1.00

Extraversion -.25** 1.00

Openness -.16** .38** 1.00

Agreeableness -.31** .13* .06 1.00

Conscientiousness -.52** .28** .10 .33** 1.00

Performance -.16** .16** .10 .11 .27** 1.00

* p < .05,   ** p < .01

Table A3.

Dataset 3. Correlation matrix. 
N E O A C Perf. 

Neuroticism 1.00

Extraversion -.39** 1.00

Openness -.13* .47** 1.00

Agreeableness -.53** .51** .46** 1.00

Conscientiousness -.49** .36** .19** .48** 1.00

Performance -.12* .15** .15** .17** .11* 1.00

* p < .05,   ** p < .01
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Table A4.

Dataset 4: Correlation matrix. 
N E O A C Perf. 

Neuroticism 1.00

Extraversion -.24** 1.00

Openness -.05 .39** 1.00

Agreeableness -.18* .08 .22** 1.00

Conscientiousness -.41** .18* -.12 .09 1.00

Performance -.20** .11 .02 -.08 .28** 1.00

* p < .05,   ** p < .01

Table A5.

Dataset 5: Correlation matrix.
Adj. Amb. Soc. Int. Lik. Pru. Perf.

Adjustment 1.00

Ambition .46** 1.00

Sociability -.08 .32** 1.00

Intellectance .09 .28** .43** 1.00

Likeability .45** .38** .19** .19** 1.00

Prudence .54** .29** -.26** .02 .42** 1.00

Performance .08 .11* -.01 .00 .10* .14** 1.00

* p < .05,   ** p < .01

Table A6.

Dataset 6: Correlation matrix. 
EO SO CO IO TO Perf.

Emotional Orientation 1.00

Social Orientation -.47** 1.00

Cognitive Orientation -.20* .40** 1.00

Interpersonal Orientation -.19* .11 .26** 1.00

Task Orientation -.27** .26** .25** .20* 1.00

Performance -.09 .07 .13 .11 .00 1.00

* p < .05,   ** p < .01
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Appendix B: Corrected t-Test Template 
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Appendix C: Predictive Performance Statistics

Table C1 

Dataset 1: Predictive performance statistics for the prediction equations developed using Neuroticism (Studies 1 and 2). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 7.457 7.346 7.340 7.337 7.337 7.340 7.400 0.13 0.14 0.14 0.14 0.14 0.14 0.15 
2 6.755 6.709 6.747 6.721 6.715 6.723 6.649 -0.06 0.04 -0.04 0.02 0.03 0.01 0.01 
3 6.768 6.630 6.613 6.619 6.623 6.621 6.694 0.07 0.17 0.17 0.17 0.17 0.17 0.14 
4 7.055 7.075 7.089 7.083 7.081 7.082 7.016 -0.24 -0.02 -0.02 -0.02 -0.02 -0.02 -0.19 
5 7.096 7.048 7.070 7.147 7.146 7.103 7.025 0.10 0.12 0.11 0.09 0.10 0.11 0.14 
6 7.563 7.551 7.555 7.555 7.569 7.557 7.583 -0.04 0.01 0.01 0.01 -0.01 0.01 -0.01 
7 7.287 7.252 7.169 7.166 7.160 7.187 7.313 0.02 0.04 0.11 0.11 0.12 0.10 0.05 
8 7.135 7.319 7.332 7.322 7.340 7.328 7.215 0.08 0.02 0.02 0.02 0.03 0.02 0.03 
9 7.518 7.544 7.548 7.843 7.872 7.702 7.528 0.00 0.04 0.04 -0.02 -0.03 0.01 0.03 

10 7.859 7.915 8.006 7.985 8.005 7.978 7.904 0.01 -0.03 -0.05 -0.05 -0.05 -0.04 -0.02 
11 7.948 7.906 7.906 7.904 7.904 7.905 7.914 0.05 0.11 0.11 0.10 0.11 0.11 0.10 
12 7.638 7.531 7.533 7.517 7.543 7.531 7.576 0.00 0.08 0.08 0.08 0.06 0.08 0.06 
13 7.040 6.939 6.938 6.952 6.966 6.949 7.007 0.06 0.20 0.20 0.20 0.19 0.19 0.12 
14 6.874 6.858 6.824 6.837 6.826 6.836 6.927 0.10 0.11 0.17 0.17 0.17 0.15 0.17 
15 7.223 7.152 7.136 7.132 7.136 7.139 7.106 0.03 0.08 0.06 0.06 0.06 0.06 0.06 
16 7.701 7.664 7.677 7.676 7.668 7.671 7.669 0.13 0.12 0.12 0.11 0.12 0.12 0.17 
17 7.664 7.580 7.571 7.570 7.622 7.586 7.595 -0.03 0.06 0.06 0.06 0.06 0.06 0.04 
18 7.458 7.495 7.509 7.557 7.485 7.511 7.409 0.10 0.00 -0.01 -0.04 -0.01 -0.01 0.06 
19 8.152 8.176 8.175 8.177 8.177 8.176 8.250 -0.10 -0.05 -0.05 -0.05 -0.05 -0.05 -0.07 
20 7.699 7.944 7.945 7.953 7.946 7.947 7.792 0.00 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 

Mean 7.395 7.382 7.384 7.403 7.406 7.394 7.379 0.02 0.06 0.06 0.06 0.06 0.06 0.05 
SD 0.396 0.428 0.437 0.445 0.448 0.438 0.425 0.09 0.07 0.08 0.08 0.08 0.08 0.09 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C2 

Dataset 1: Predictive performance statistics for the prediction equations developed using Extraversion (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 7.292 7.276 7.226 7.218 7.222 7.236 7.230 0.16 0.18 0.21 0.22 0.21 0.20 0.19 
2 6.447 6.419 6.347 6.334 6.327 6.357 6.386 0.20 0.21 0.17 0.19 0.19 0.19 0.22 
3 6.687 6.578 6.559 6.569 6.593 6.575 6.637 0.19 0.21 0.21 0.21 0.20 0.21 0.20 
4 7.136 7.321 7.494 7.381 7.447 7.411 7.248 -0.02 -0.06 -0.07 -0.07 -0.07 -0.07 -0.05 
5 6.989 6.994 6.990 6.996 6.991 6.993 6.977 0.11 0.11 0.10 0.10 0.10 0.10 0.12 
6 7.456 7.362 7.366 7.365 7.359 7.363 7.438 0.11 0.15 0.15 0.15 0.15 0.15 0.14 
7 7.108 7.106 7.095 7.082 7.114 7.099 6.984 0.16 0.17 0.20 0.21 0.19 0.19 0.18 
8 7.235 7.429 7.484 7.412 7.448 7.443 7.383 0.08 0.06 0.07 0.06 0.06 0.06 0.07 
9 7.445 7.440 7.433 7.435 7.435 7.436 7.428 0.06 0.05 0.06 0.06 0.06 0.05 0.07 

10 7.746 7.798 7.802 7.797 7.803 7.800 7.709 0.21 0.00 0.00 0.01 0.00 0.00 0.10 
11 7.901 7.867 7.859 7.878 7.880 7.871 7.879 0.28 0.29 0.29 0.28 0.24 0.28 0.29 
12 7.447 7.443 7.465 7.490 7.511 7.477 7.459 0.24 0.25 0.22 0.17 0.15 0.20 0.22 
13 6.951 6.980 6.981 6.992 6.974 6.982 6.970 0.21 0.17 0.17 0.16 0.20 0.17 0.25 
14 6.787 6.750 6.760 6.743 6.747 6.750 6.844 0.28 0.33 0.32 0.33 0.33 0.33 0.29 
15 7.111 7.041 7.056 7.051 7.052 7.050 7.081 0.16 0.19 0.17 0.18 0.18 0.18 0.18 
16 7.608 7.540 7.530 7.516 7.532 7.529 7.483 0.28 0.29 0.28 0.27 0.27 0.28 0.29 
17 7.511 7.487 7.409 7.395 7.389 7.420 7.492 0.20 0.22 0.24 0.24 0.23 0.23 0.21 
18 7.285 7.247 7.253 7.249 7.252 7.250 7.265 0.20 0.18 0.17 0.17 0.17 0.17 0.20 
19 8.000 8.005 7.990 8.000 7.989 7.996 7.989 0.06 0.07 0.09 0.09 0.09 0.08 0.08 
20 7.632 7.734 7.851 7.721 7.933 7.810 7.616 0.06 0.05 0.02 0.05 0.03 0.04 0.06 

Mean 7.289 7.291 7.297 7.281 7.300 7.292 7.275 0.16 0.15 0.15 0.15 0.15 0.15 0.17 
SD 0.401 0.417 0.434 0.427 0.441 0.429 0.401 0.08 0.10 0.10 0.10 0.10 0.10 0.09 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C3 

Dataset 1: Predictive performance statistics for the prediction equations developed using Openness (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 7.394 7.443 7.452 7.462 7.475 7.458 7.437 0.10 0.05 0.04 0.03 0.02 0.03 0.09 
2 6.781 6.783 6.810 6.845 6.885 6.831 6.751 0.05 0.04 0.04 0.01 -0.01 0.02 0.04 
3 6.880 6.890 6.888 6.901 6.913 6.898 6.834 0.00 -0.01 0.00 -0.01 -0.04 -0.01 0.00 
4 6.833 6.834 6.833 6.830 6.833 6.832 6.826 0.15 0.15 0.15 0.14 0.15 0.15 0.15 
5 7.494 7.485 7.457 7.473 7.570 7.496 7.466 0.01 0.01 0.01 0.01 -0.02 0.00 0.01 
6 7.503 7.519 7.575 7.614 7.579 7.572 7.528 0.17 0.17 0.11 0.07 0.05 0.10 0.17 
7 7.360 7.358 7.285 7.339 7.314 7.324 7.318 -0.01 -0.01 -0.03 -0.01 -0.03 -0.02 -0.01 
8 7.120 7.142 7.153 7.160 7.162 7.154 7.186 0.12 0.08 0.07 0.06 0.06 0.07 0.09 
9 7.388 7.389 7.397 7.397 7.398 7.395 7.440 0.15 0.15 0.12 0.11 0.11 0.12 0.14 

10 7.818 7.831 7.879 7.886 7.895 7.873 7.732 0.29 0.27 -0.10 -0.11 -0.12 -0.02 0.24 
11 7.866 7.866 7.876 7.894 7.895 7.883 7.842 0.13 0.13 0.13 0.12 0.12 0.12 0.13 
12 7.452 7.450 7.462 7.490 7.545 7.487 7.484 0.24 0.24 0.21 0.16 0.06 0.17 0.23 
13 6.942 6.943 6.941 6.942 6.942 6.942 6.972 0.20 0.20 0.19 0.19 0.19 0.19 0.20 
14 6.776 6.804 6.815 6.799 6.800 6.805 6.726 0.16 0.15 0.14 0.15 0.15 0.15 0.15 
15 7.075 7.096 7.099 7.092 7.095 7.095 7.139 0.21 0.19 0.18 0.19 0.19 0.19 0.19 
16 7.568 7.571 7.566 7.561 7.574 7.568 7.648 0.09 0.09 0.10 0.10 0.10 0.10 0.10 
17 7.496 7.533 7.611 7.648 7.642 7.608 7.523 0.23 0.17 0.02 -0.04 -0.06 0.03 0.18 
18 7.513 7.576 7.601 7.607 7.582 7.591 7.529 0.11 0.07 0.05 0.04 0.06 0.06 0.11 
19 7.774 7.804 7.876 7.892 7.877 7.862 7.814 0.14 0.11 0.01 0.00 0.01 0.03 0.09 
20 7.554 7.556 7.578 7.572 7.586 7.573 7.565 0.11 0.10 0.08 0.09 0.08 0.09 0.10 

Mean 7.329 7.344 7.358 7.370 7.378 7.362 7.338 0.13 0.12 0.08 0.07 0.05 0.08 0.12 
SD 0.347 0.349 0.361 0.365 0.363 0.359 0.354 0.08 0.08 0.08 0.08 0.08 0.07 0.07 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C4 

Dataset 1: Predictive performance statistics for the prediction equations developed using Agreeableness (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 7.466 7.458 7.458 7.453 7.459 7.457 7.477 -0.09 0.00 0.01 0.01 0.00 0.01 0.03 
2 6.671 6.672 6.680 6.679 6.678 6.677 6.641 0.02 0.04 0.05 0.05 0.05 0.05 0.03 
3 6.752 6.750 6.800 6.777 6.928 6.814 6.755 0.01 0.01 -0.03 -0.02 -0.05 -0.02 0.01 
4 6.982 6.981 6.979 6.979 6.982 6.980 6.971 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.13 
5 7.115 7.127 7.155 7.150 7.152 7.146 7.135 0.01 0.00 -0.01 -0.01 -0.01 -0.01 0.01 
6 7.625 7.615 7.609 7.612 7.607 7.610 7.564 -0.14 -0.13 -0.12 -0.12 -0.11 -0.12 -0.07 
7 7.185 7.193 7.211 7.262 7.279 7.236 7.172 -0.02 -0.03 -0.05 -0.10 -0.12 -0.07 -0.09 
8 7.153 7.154 7.153 7.163 7.163 7.158 7.130 -0.03 -0.03 -0.03 -0.06 -0.08 -0.05 -0.04 
9 7.522 7.520 7.523 7.522 7.522 7.522 7.541 -0.03 -0.03 -0.04 -0.02 -0.03 -0.03 -0.03 

10 8.074 8.042 8.034 8.041 8.043 8.040 7.971 -0.08 -0.12 -0.13 -0.12 -0.13 -0.12 -0.08 
11 8.078 8.229 8.220 8.226 8.235 8.227 8.104 -0.22 -0.19 -0.18 -0.18 -0.18 -0.18 -0.24 
12 7.574 7.574 7.569 7.572 7.587 7.576 7.560 -0.21 -0.21 -0.20 -0.20 -0.21 -0.20 -0.22 
13 7.068 7.065 7.053 7.051 7.116 7.071 7.096 -0.03 -0.03 -0.02 -0.01 -0.06 -0.03 -0.05 
14 6.871 6.873 6.934 7.070 7.190 7.017 6.868 0.08 0.08 -0.08 -0.10 -0.11 -0.05 0.05 
15 7.315 7.314 7.543 7.480 7.667 7.501 7.333 -0.24 -0.24 -0.15 -0.17 -0.13 -0.17 -0.24 
16 7.780 7.822 7.885 7.952 7.859 7.879 7.818 -0.03 -0.04 -0.07 -0.11 -0.09 -0.08 -0.04 
17 7.656 7.691 7.758 7.737 7.738 7.731 7.675 -0.16 -0.20 -0.23 -0.25 -0.23 -0.23 -0.10 
18 7.599 7.599 7.633 7.623 7.636 7.623 7.627 -0.21 -0.21 -0.23 -0.23 -0.24 -0.23 -0.22 
19 7.948 7.935 8.126 8.004 8.036 8.025 7.951 -0.09 -0.10 -0.11 -0.13 -0.11 -0.11 -0.10 
20 7.592 7.583 7.587 7.583 7.588 7.585 7.608 -0.12 -0.08 -0.05 -0.08 -0.11 -0.08 -0.12 

Mean 7.401 7.410 7.446 7.447 7.473 7.444 7.400 -0.08 -0.08 -0.09 -0.10 -0.10 -0.09 -0.08 
SD 0.418 0.430 0.440 0.427 0.408 0.424 0.417 0.09 0.09 0.08 0.08 0.08 0.08 0.09 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C5 

Dataset 1: Predictive performance statistics for the prediction equations developed using Conscientiousness (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 7.319 7.541 7.517 7.497 7.479 7.508 7.321 0.22 0.14 0.14 0.16 0.16 0.15 0.21 
2 6.481 6.502 6.476 6.500 6.498 6.494 6.497 0.25 0.20 0.22 0.20 0.21 0.21 0.24 
3 6.613 6.816 6.773 6.787 6.800 6.794 6.718 0.21 0.13 0.14 0.14 0.14 0.14 0.18 
4 7.567 7.625 7.635 7.656 7.635 7.638 7.609 0.02 0.05 0.01 0.01 0.04 0.03 0.03 
5 7.139 7.146 7.139 7.116 7.053 7.114 7.102 0.22 0.23 0.19 0.20 0.23 0.21 0.23 
6 7.381 7.627 7.636 7.643 7.606 7.628 7.445 0.25 0.14 0.14 0.13 0.14 0.14 0.21 
7 6.843 7.062 7.091 7.085 7.052 7.072 6.980 0.30 0.17 0.16 0.16 0.16 0.16 0.26 
8 6.857 6.855 6.806 6.808 6.782 6.813 6.918 0.26 0.26 0.27 0.27 0.27 0.27 0.26 
9 7.225 7.225 7.213 7.210 7.209 7.214 7.201 0.29 0.29 0.30 0.31 0.31 0.30 0.29 

10 7.779 7.779 7.809 7.772 7.787 7.786 7.883 0.16 0.17 0.17 0.19 0.19 0.18 0.17 
11 7.753 7.806 7.814 7.791 7.790 7.800 7.654 0.32 0.19 0.19 0.22 0.20 0.20 0.29 
12 7.151 7.142 7.132 7.131 7.109 7.128 7.179 0.28 0.28 0.28 0.28 0.29 0.28 0.28 
13 7.103 7.082 7.090 7.084 7.082 7.084 7.096 0.12 0.13 0.12 0.12 0.13 0.12 0.12 
14 6.739 6.704 6.698 6.680 6.646 6.682 6.601 0.20 0.22 0.22 0.24 0.25 0.23 0.20 
15 7.059 7.052 7.034 7.037 7.036 7.040 7.004 0.22 0.23 0.25 0.24 0.25 0.24 0.23 
16 7.481 7.474 7.421 7.404 7.410 7.427 7.458 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
17 7.428 7.424 7.390 7.388 7.400 7.400 7.431 0.22 0.23 0.25 0.26 0.25 0.25 0.23 
18 7.440 7.470 7.433 7.368 7.413 7.421 7.412 0.16 0.16 0.17 0.18 0.17 0.17 0.16 
19 7.608 7.600 7.572 7.581 7.558 7.577 7.571 0.26 0.27 0.28 0.19 0.21 0.24 0.27 
20 7.562 7.527 7.529 7.527 7.526 7.528 7.541 0.23 0.21 0.21 0.22 0.22 0.21 0.23 

Mean 7.226 7.273 7.260 7.253 7.243 7.257 7.231 0.22 0.19 0.20 0.20 0.20 0.20 0.21 
SD 0.373 0.370 0.378 0.371 0.375 0.373 0.369 0.07 0.06 0.07 0.07 0.06 0.06 0.06 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C6 

Dataset 2: Predictive performance statistics for the prediction equations developed using Neuroticism (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 26.991 26.995 26.984 27.163 27.029 27.043 26.978 0.15 0.15 0.15 0.12 0.15 0.14 0.16 
2 34.226 34.311 34.551 34.368 34.467 34.424 34.327 0.24 0.23 0.17 0.21 0.18 0.20 0.24 
3 32.758 32.804 32.687 32.744 32.740 32.744 32.352 0.07 0.07 0.07 0.07 0.06 0.07 0.07 
4 30.883 31.521 31.808 31.445 32.030 31.701 30.787 0.17 0.14 0.09 0.14 0.07 0.11 0.18 
5 33.146 32.960 32.919 32.918 32.993 32.948 33.047 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
6 30.927 30.758 30.759 30.813 30.857 30.797 30.893 0.07 0.07 0.07 0.07 0.08 0.07 0.07 
7 34.123 34.447 34.234 34.122 34.019 34.205 33.850 0.04 0.04 0.04 0.05 0.05 0.04 0.05 
8 33.150 33.128 33.116 33.112 33.118 33.119 33.108 0.24 0.20 0.20 0.20 0.20 0.20 0.22 
9 34.687 34.485 34.312 34.272 34.453 34.380 34.520 -0.02 -0.02 -0.03 -0.03 -0.04 -0.03 -0.02 

10 33.753 34.219 34.740 34.238 34.343 34.385 33.880 0.14 0.08 0.03 0.07 0.06 0.06 0.12 
11 28.534 28.542 28.490 28.503 28.469 28.501 28.484 0.10 0.10 0.11 0.10 0.10 0.10 0.11 
12 35.198 35.123 35.159 35.107 35.072 35.115 35.299 0.06 0.06 0.06 0.06 0.06 0.06 0.06 
13 32.994 33.366 33.298 33.295 33.251 33.302 33.273 0.11 0.06 0.07 0.07 0.07 0.06 0.09 
14 33.167 33.115 33.370 33.222 33.281 33.247 33.764 0.11 0.12 0.10 0.09 0.10 0.10 0.11 
15 34.064 34.675 34.587 35.280 34.668 34.802 34.259 0.20 0.09 0.10 0.02 0.09 0.07 0.16 
16 29.345 29.322 29.339 29.357 29.362 29.345 29.220 0.08 0.08 0.08 0.08 0.07 0.08 0.08 
17 34.587 34.588 34.597 34.563 34.611 34.590 34.590 0.24 0.24 0.24 0.24 0.23 0.24 0.24 
18 31.861 33.288 33.200 33.703 33.440 33.408 32.421 0.32 0.02 0.03 0.00 0.01 0.01 0.19 
19 30.313 30.318 30.309 30.315 30.320 30.315 30.251 0.17 0.16 0.16 0.16 0.16 0.16 0.17 
20 33.172 33.495 33.882 33.720 34.041 33.784 33.192 0.08 0.06 0.03 0.04 0.03 0.04 0.07 

Mean 32.394 32.573 32.617 32.613 32.628 32.608 32.425 0.13 0.10 0.09 0.09 0.09 0.09 0.12 
SD 2.226 2.272 2.297 2.278 2.267 2.275 2.267 0.09 0.07 0.07 0.07 0.07 0.07 0.07 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C7 

Dataset 2: Predictive performance statistics for the prediction equations developed using Extraversion (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 27.491 27.800 27.773 27.832 27.786 27.798 27.818 0.13 0.10 0.10 0.10 0.11 0.10 0.11 
2 33.974 33.767 33.614 33.156 33.242 33.445 33.621 0.26 0.30 0.33 0.34 0.33 0.32 0.30 
3 31.371 31.771 31.775 31.806 31.800 31.788 32.229 0.33 0.06 0.06 0.05 0.06 0.06 0.16 
4 32.259 32.036 32.227 31.928 31.754 31.986 32.132 0.05 0.08 0.06 0.08 0.09 0.08 0.05 
5 34.357 34.438 34.681 34.717 34.588 34.606 34.357 0.05 0.06 0.07 0.07 0.07 0.07 0.04 
6 31.654 32.372 32.344 32.407 32.526 32.412 31.708 -0.01 -0.01 -0.01 -0.01 -0.05 -0.02 -0.02 
7 34.683 36.128 36.094 35.938 36.079 36.060 35.071 0.08 -0.01 -0.01 0.00 -0.01 -0.01 0.02 
8 33.474 33.469 33.480 33.662 33.562 33.543 33.719 0.17 0.16 0.16 0.18 0.17 0.17 0.17 
9 34.328 33.764 33.396 32.841 32.760 33.190 33.989 -0.03 0.00 0.01 0.06 0.06 0.03 -0.02 

10 34.766 34.486 34.438 34.239 33.938 34.275 34.749 0.04 0.09 0.10 0.12 0.15 0.11 0.05 
11 27.755 27.534 27.575 27.765 27.731 27.651 27.542 0.38 0.17 0.17 0.14 0.17 0.16 0.28 
12 34.382 34.049 33.908 33.892 33.932 33.945 34.780 0.16 0.12 0.13 0.13 0.13 0.13 0.13 
13 34.006 33.859 33.831 33.625 33.642 33.739 33.736 0.04 0.08 0.11 0.11 0.10 0.10 0.05 
14 32.880 32.878 32.835 32.836 32.690 32.810 32.529 0.27 0.10 0.09 0.08 0.12 0.10 0.26 
15 34.617 34.010 34.168 33.754 33.838 33.942 34.777 0.22 0.29 0.26 0.29 0.28 0.28 0.23 
16 28.489 29.799 29.836 29.919 30.072 29.907 28.749 0.16 -0.05 -0.05 -0.06 -0.05 -0.05 0.06 
17 34.609 34.355 34.517 34.414 34.302 34.397 34.759 0.35 0.33 0.30 0.32 0.32 0.32 0.33 
18 32.079 32.066 32.438 31.795 31.957 32.064 32.167 0.31 0.19 0.18 0.23 0.22 0.21 0.28 
19 30.435 30.419 30.397 30.618 30.720 30.539 30.314 0.15 0.18 0.19 0.18 0.17 0.18 0.16 
20 33.050 33.356 33.343 33.362 33.226 33.322 33.299 0.20 0.08 0.08 0.08 0.09 0.08 0.13 

Mean 32.533 32.618 32.633 32.525 32.507 32.571 32.602 0.16 0.11 0.12 0.12 0.13 0.12 0.14 
SD 2.353 2.235 2.227 2.136 2.119 2.175 2.338 0.12 0.10 0.10 0.11 0.11 0.10 0.11 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C8 

Dataset 2: Predictive performance statistics for the prediction equations developed using Openness (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 27.159 27.788 27.827 27.876 27.863 27.839 27.412 0.13 0.06 0.05 0.05 0.05 0.05 0.11 
2 34.712 34.727 34.732 34.777 34.751 34.747 34.699 0.14 0.15 0.15 0.17 0.17 0.16 0.15 
3 32.144 32.191 32.192 32.154 32.177 32.178 31.952 0.18 0.08 0.10 0.10 0.09 0.09 0.16 
4 31.411 31.557 31.764 31.726 31.592 31.660 31.354 -0.03 -0.05 -0.01 0.00 -0.02 -0.02 -0.03 
5 33.019 33.179 33.088 33.480 33.217 33.241 33.193 0.13 0.07 0.10 0.09 0.03 0.07 0.10 
6 32.500 34.228 33.798 33.743 33.834 33.901 32.710 -0.04 -0.10 -0.08 -0.08 -0.09 -0.09 -0.06 
7 34.846 34.824 34.865 35.384 35.359 35.108 34.855 -0.02 -0.01 -0.01 0.01 0.01 0.00 -0.01 
8 33.464 33.452 33.425 33.698 33.483 33.515 33.350 0.14 0.14 0.17 0.12 0.18 0.15 0.13 
9 34.709 34.719 34.693 34.566 34.752 34.682 34.681 -0.03 -0.03 -0.03 -0.02 -0.02 -0.03 -0.03 

10 35.104 35.096 35.021 35.035 35.020 35.043 34.647 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 -0.01 
11 30.088 31.083 31.023 31.076 30.770 30.988 29.958 -0.08 -0.09 -0.09 -0.10 -0.09 -0.09 -0.08 
12 35.651 35.916 35.836 35.978 36.118 35.962 35.859 0.02 0.02 0.04 0.03 0.02 0.03 0.02 
13 33.144 34.561 35.753 34.641 34.468 34.856 33.190 0.11 0.03 -0.05 -0.03 -0.02 -0.02 0.10 
14 33.870 33.776 33.705 33.714 33.678 33.718 33.683 0.06 0.05 0.06 0.06 0.07 0.06 0.05 
15 34.779 34.770 34.968 34.760 34.761 34.815 35.207 0.08 0.08 0.09 0.09 0.09 0.09 0.08 
16 29.344 29.575 30.771 30.848 30.965 30.540 29.280 0.02 0.02 -0.01 -0.01 -0.01 0.00 0.02 
17 34.949 34.982 35.026 34.963 34.932 34.976 34.866 0.20 0.19 0.17 0.18 0.19 0.18 0.20 
18 33.836 33.930 33.718 33.912 34.040 33.900 33.595 0.02 0.02 0.03 0.02 0.05 0.03 0.02 
19 31.180 31.190 31.220 31.590 31.393 31.348 30.935 0.05 0.05 0.06 0.07 0.07 0.06 0.05 
20 33.424 33.982 33.843 33.853 33.893 33.893 33.820 0.01 -0.04 -0.01 0.01 -0.02 -0.02 0.00 

Mean 32.967 33.276 33.363 33.389 33.353 33.345 32.962 0.05 0.03 0.04 0.04 0.04 0.04 0.05 
SD 2.204 2.089 2.025 1.962 2.001 2.009 2.207 0.08 0.08 0.08 0.07 0.08 0.08 0.08 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C9 

Dataset 2: Predictive performance statistics for the prediction equations developed using Agreeableness (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 27.690 27.706 27.693 27.732 27.621 27.688 27.774 0.10 0.09 0.09 0.07 0.08 0.09 0.10 
2 34.460 34.463 34.493 34.370 34.466 34.448 34.529 0.14 0.14 0.12 0.15 0.12 0.13 0.14 
3 31.807 32.129 32.175 32.113 32.171 32.147 31.875 0.06 0.05 0.05 0.05 0.05 0.05 0.06 
4 31.195 32.079 32.253 32.186 32.250 32.192 31.732 0.20 -0.07 -0.08 -0.07 -0.11 -0.08 -0.03 
5 32.874 32.768 32.943 33.367 33.750 33.207 32.862 0.08 0.07 0.09 0.01 -0.02 0.04 0.09 
6 30.679 31.351 31.671 31.354 31.349 31.431 30.972 0.04 -0.02 -0.02 0.00 -0.01 -0.01 0.03 
7 33.551 34.010 34.074 34.043 34.058 34.046 33.851 0.09 0.07 0.07 0.07 0.07 0.07 0.09 
8 33.373 33.420 33.412 33.376 33.346 33.388 33.279 0.13 0.13 0.13 0.11 0.09 0.11 0.13 
9 32.731 33.459 33.365 33.267 33.353 33.361 33.021 0.16 0.02 0.03 0.04 0.03 0.03 0.09 

10 34.131 34.256 34.397 34.295 34.286 34.308 34.150 0.09 0.05 0.02 0.04 0.04 0.04 0.09 
11 28.356 28.436 28.579 28.541 28.582 28.535 28.487 0.05 0.04 0.02 0.02 0.01 0.02 0.05 
12 35.325 35.271 35.278 35.281 35.170 35.250 35.358 0.07 0.07 0.06 0.05 0.04 0.05 0.07 
13 32.927 33.770 33.764 33.806 33.786 33.781 32.880 0.15 0.04 0.04 0.03 0.03 0.04 0.08 
14 33.479 33.516 33.532 33.504 33.501 33.513 33.338 0.02 0.03 0.03 0.03 0.03 0.03 0.02 
15 36.541 37.946 37.794 37.625 38.016 37.845 37.376 -0.03 -0.09 -0.11 -0.11 -0.11 -0.11 -0.07 
16 29.146 29.202 29.302 29.428 29.590 29.381 29.116 -0.04 -0.04 -0.04 -0.04 -0.03 -0.03 -0.03 
17 36.537 37.058 37.149 36.928 36.873 37.002 36.725 -0.03 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 
18 32.712 32.802 32.879 32.856 32.866 32.851 32.791 0.10 0.10 0.09 0.08 0.07 0.09 0.10 
19 30.289 30.281 30.311 30.405 30.218 30.304 30.430 0.17 0.17 0.17 0.11 0.15 0.15 0.17 
20 32.882 32.893 32.972 33.097 33.257 33.055 32.754 0.21 0.21 0.21 0.19 0.17 0.20 0.21 

Mean 32.534 32.841 32.902 32.879 32.925 32.887 32.665 0.09 0.05 0.05 0.04 0.03 0.04 0.07 
SD 2.433 2.582 2.548 2.502 2.547 2.542 2.486 0.07 0.08 0.08 0.07 0.07 0.07 0.07 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C10 

Dataset 2: Predictive performance statistics for the prediction equations developed using Conscientiousness (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 27.029 27.041 27.000 27.038 27.042 27.030 27.074 0.23 0.24 0.24 0.24 0.24 0.24 0.24 
2 32.913 32.912 32.888 32.982 33.002 32.946 32.942 0.35 0.35 0.34 0.33 0.33 0.34 0.35 
3 30.499 30.511 30.518 30.523 30.555 30.527 30.458 0.29 0.29 0.28 0.28 0.28 0.28 0.29 
4 29.976 29.990 29.970 30.493 30.635 30.272 29.914 0.29 0.29 0.29 0.25 0.25 0.27 0.29 
5 32.283 33.332 33.268 33.264 33.361 33.306 32.603 0.24 0.16 0.16 0.16 0.16 0.16 0.21 
6 30.495 30.541 30.553 30.542 30.495 30.533 30.427 0.16 0.16 0.16 0.16 0.16 0.16 0.16 
7 32.864 33.231 33.346 33.619 33.498 33.423 33.261 0.19 0.17 0.17 0.15 0.17 0.16 0.18 
8 32.040 32.111 32.051 32.054 32.058 32.068 31.909 0.29 0.28 0.28 0.28 0.28 0.28 0.28 
9 33.470 33.731 33.668 33.646 33.573 33.655 33.513 0.18 0.18 0.18 0.18 0.18 0.18 0.18 

10 34.831 34.881 34.851 34.840 34.838 34.852 34.710 0.18 0.18 0.18 0.18 0.18 0.18 0.18 
11 27.512 27.470 27.416 27.448 27.420 27.439 27.669 0.32 0.32 0.32 0.32 0.32 0.32 0.32 
12 34.750 34.775 34.886 34.869 34.974 34.876 34.774 0.17 0.17 0.16 0.17 0.16 0.16 0.17 
13 31.847 32.099 32.141 32.119 32.040 32.100 31.877 0.30 0.27 0.27 0.27 0.27 0.27 0.29 
14 31.465 31.373 31.408 31.469 31.426 31.419 31.479 0.29 0.29 0.29 0.29 0.29 0.29 0.29 
15 33.490 33.493 33.542 33.449 33.437 33.480 34.022 0.29 0.28 0.28 0.28 0.27 0.28 0.28 
16 28.349 28.409 28.361 28.450 28.441 28.415 28.298 0.21 0.21 0.21 0.21 0.21 0.21 0.21 
17 34.572 34.543 34.533 34.535 34.530 34.535 34.560 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
18 31.906 31.919 31.988 31.978 31.938 31.956 32.042 0.30 0.29 0.29 0.30 0.29 0.29 0.30 
19 29.757 29.859 29.804 29.845 29.926 29.859 29.621 0.24 0.23 0.23 0.23 0.23 0.23 0.23 
20 30.974 30.980 30.852 31.005 30.988 30.956 30.926 0.37 0.36 0.37 0.36 0.36 0.36 0.36 

Mean 31.551 31.660 31.652 31.709 31.709 31.682 31.604 0.26 0.25 0.25 0.24 0.24 0.25 0.25 
SD 2.264 2.316 2.340 2.311 2.310 2.318 2.302 0.06 0.06 0.06 0.06 0.06 0.06 0.06 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C11 

Dataset 3: Predictive performance statistics for the prediction equations developed using Neuroticism (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 1.060 1.060 1.060 1.060 1.060 1.060 1.056 0.06 0.06 0.06 0.06 0.06 0.06 0.06 
2 1.091 1.111 1.112 1.114 1.112 1.112 1.105 0.17 0.05 0.05 0.04 0.05 0.05 0.10 
3 1.102 1.102 1.103 1.104 1.103 1.103 1.099 0.19 0.19 0.18 0.18 0.17 0.18 0.19 
4 1.031 1.033 1.034 1.037 1.035 1.035 1.031 0.21 0.19 0.18 0.15 0.17 0.17 0.20 
5 1.054 1.056 1.056 1.057 1.056 1.056 1.057 0.10 0.09 0.08 0.08 0.08 0.09 0.10 
6 0.956 0.956 0.957 0.957 0.957 0.957 0.958 0.07 0.07 0.07 0.06 0.07 0.07 0.07 
7 1.111 1.119 1.119 1.119 1.119 1.119 1.114 0.23 0.13 0.13 0.12 0.12 0.12 0.20 
8 1.050 1.059 1.062 1.064 1.075 1.065 1.054 0.18 0.11 0.09 0.08 0.05 0.08 0.14 
9 1.063 1.066 1.066 1.065 1.066 1.066 1.068 0.06 0.03 0.03 0.03 0.03 0.03 0.06 

10 1.065 1.065 1.065 1.067 1.068 1.066 1.066 0.07 0.07 0.07 0.06 0.06 0.06 0.07 
11 1.032 1.031 1.032 1.033 1.033 1.032 1.036 0.14 0.14 0.14 0.13 0.13 0.14 0.13 
12 1.044 1.046 1.049 1.049 1.049 1.048 1.050 0.22 0.17 0.13 0.12 0.14 0.14 0.18 
13 1.122 1.123 1.123 1.123 1.123 1.123 1.119 0.04 0.04 0.05 0.05 0.04 0.05 0.05 
14 1.100 1.118 1.116 1.117 1.122 1.118 1.110 0.19 0.08 0.09 0.07 0.05 0.07 0.15 
15 1.162 1.162 1.162 1.162 1.162 1.162 1.157 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 
16 1.038 1.038 1.039 1.040 1.040 1.039 1.039 0.06 0.05 0.05 0.04 0.05 0.05 0.05 
17 0.964 0.967 0.968 0.968 0.969 0.968 0.967 0.17 0.13 0.13 0.13 0.12 0.13 0.15 
18 1.065 1.089 1.088 1.088 1.087 1.088 1.076 0.11 0.02 0.02 0.02 0.02 0.02 0.04 
19 1.070 1.071 1.071 1.080 1.072 1.073 1.073 0.11 0.11 0.10 0.06 0.09 0.09 0.11 
20 1.080 1.081 1.083 1.086 1.078 1.082 1.076 -0.03 -0.04 -0.04 -0.05 -0.05 -0.04 -0.04 

Mean 1.063 1.068 1.068 1.069 1.069 1.069 1.066 0.12 0.08 0.08 0.07 0.07 0.08 0.10 
SD 0.048 0.050 0.050 0.050 0.050 0.050 0.048 0.08 0.06 0.06 0.06 0.06 0.06 0.07 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C12 

Dataset 3: Predictive performance statistics for the prediction equations developed using Extraversion (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 1.039 1.040 1.040 1.039 1.039 1.039 1.042 0.21 0.22 0.22 0.22 0.22 0.22 0.21 
2 1.089 1.089 1.087 1.085 1.084 1.086 1.090 0.16 0.16 0.17 0.17 0.17 0.17 0.16 
3 1.117 1.114 1.149 1.152 1.143 1.139 1.114 0.06 0.05 -0.06 -0.06 -0.04 -0.03 0.06 
4 1.022 1.020 1.020 1.019 1.019 1.019 1.032 0.19 0.20 0.20 0.20 0.20 0.20 0.19 
5 1.053 1.066 1.068 1.068 1.063 1.066 1.057 0.14 0.09 0.08 0.08 0.08 0.08 0.14 
6 0.947 0.945 0.945 0.944 0.942 0.944 0.948 0.25 0.26 0.26 0.26 0.26 0.26 0.24 
7 1.100 1.099 1.099 1.100 1.099 1.099 1.101 0.30 0.30 0.30 0.30 0.30 0.30 0.30 
8 1.086 1.085 1.085 1.088 1.095 1.088 1.083 0.06 0.06 0.06 0.05 0.05 0.06 0.05 
9 1.078 1.083 1.083 1.085 1.085 1.084 1.090 0.12 0.07 0.07 0.06 0.06 0.07 0.10 

10 1.048 1.045 1.042 1.042 1.043 1.043 1.042 0.20 0.19 0.19 0.19 0.19 0.19 0.19 
11 1.015 1.016 1.017 1.021 1.025 1.019 1.019 0.25 0.24 0.24 0.20 0.16 0.21 0.25 
12 1.065 1.067 1.067 1.067 1.068 1.067 1.066 0.11 0.11 0.11 0.11 0.11 0.11 0.11 
13 1.099 1.098 1.096 1.096 1.094 1.096 1.102 0.16 0.16 0.16 0.16 0.16 0.16 0.16 
14 1.120 1.119 1.116 1.116 1.117 1.117 1.098 0.13 0.13 0.14 0.14 0.14 0.14 0.13 
15 1.129 1.127 1.127 1.128 1.128 1.128 1.126 0.10 0.10 0.09 0.09 0.10 0.10 0.10 
16 1.046 1.064 1.066 1.052 1.057 1.060 1.057 0.08 0.02 0.02 0.05 0.04 0.03 0.07 
17 0.969 1.022 1.009 0.997 0.999 1.006 0.983 0.17 0.06 0.07 0.09 0.09 0.08 0.12 
18 1.062 1.068 1.068 1.066 1.067 1.067 1.061 0.18 0.14 0.13 0.14 0.14 0.14 0.16 
19 1.069 1.078 1.072 1.073 1.073 1.074 1.062 0.08 0.03 0.06 0.06 0.06 0.05 0.07 
20 1.103 1.102 1.097 1.111 1.130 1.110 1.097 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

Mean 1.063 1.067 1.068 1.067 1.068 1.068 1.063 0.15 0.13 0.13 0.13 0.13 0.13 0.14 
SD 0.048 0.043 0.046 0.048 0.049 0.046 0.044 0.07 0.09 0.09 0.09 0.08 0.09 0.07 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C13 

Dataset 3: Predictive performance statistics for the prediction equations developed using Openness (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 1.049 1.052 1.046 1.046 1.052 1.049 1.050 0.19 0.18 0.20 0.20 0.18 0.19 0.19 
2 1.102 1.119 1.119 1.122 1.119 1.120 1.103 0.07 0.04 0.03 0.03 0.03 0.03 0.05 
3 1.105 1.111 1.112 1.111 1.109 1.111 1.110 0.16 0.10 0.10 0.11 0.11 0.10 0.14 
4 1.030 1.047 1.047 1.045 1.045 1.046 1.038 0.15 0.09 0.09 0.10 0.10 0.10 0.13 
5 1.070 1.073 1.075 1.074 1.075 1.074 1.070 0.11 0.09 0.08 0.08 0.08 0.08 0.10 
6 0.964 0.964 0.965 0.964 0.965 0.965 0.969 0.16 0.17 0.16 0.17 0.16 0.16 0.17 
7 1.113 1.110 1.111 1.111 1.112 1.111 1.112 0.20 0.21 0.21 0.21 0.21 0.21 0.20 
8 1.048 1.057 1.057 1.057 1.057 1.057 1.054 0.23 0.09 0.09 0.09 0.09 0.09 0.15 
9 1.092 1.092 1.093 1.099 1.105 1.097 1.086 -0.01 0.00 0.00 -0.02 -0.03 -0.01 -0.01 

10 1.051 1.050 1.050 1.044 1.046 1.048 1.048 0.33 0.33 0.33 0.32 0.33 0.33 0.33 
11 1.081 1.087 1.089 1.090 1.090 1.089 1.083 -0.05 -0.06 -0.06 -0.07 -0.06 -0.06 -0.06 
12 1.064 1.066 1.066 1.066 1.065 1.066 1.065 0.14 0.11 0.11 0.11 0.12 0.11 0.14 
13 1.103 1.100 1.102 1.097 1.096 1.099 1.122 0.18 0.19 0.18 0.19 0.18 0.18 0.18 
14 1.127 1.129 1.128 1.125 1.125 1.127 1.119 0.05 0.04 0.05 0.05 0.05 0.05 0.05 
15 1.123 1.121 1.121 1.122 1.122 1.121 1.123 0.10 0.10 0.11 0.10 0.11 0.10 0.11 
16 1.075 1.078 1.079 1.081 1.080 1.080 1.069 0.02 0.03 0.03 0.03 0.03 0.03 0.02 
17 0.995 0.998 0.998 1.000 0.994 0.997 0.996 0.06 0.05 0.05 0.04 0.06 0.05 0.05 
18 1.087 1.087 1.087 1.094 1.087 1.089 1.087 0.09 0.10 0.10 0.08 0.10 0.09 0.09 
19 1.072 1.081 1.083 1.086 1.086 1.084 1.082 0.08 0.05 0.05 0.04 0.04 0.04 0.06 
20 1.043 1.078 1.075 1.075 1.081 1.077 1.056 0.14 0.00 0.01 0.01 0.00 0.00 0.06 

Mean 1.070 1.075 1.075 1.075 1.076 1.075 1.072 0.12 0.10 0.10 0.09 0.09 0.09 0.11 
SD 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.09 0.09 0.09 0.09 0.09 0.09 0.09 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C14 

Dataset 3: Predictive performance statistics for the prediction equations developed using Agreeableness (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 1.037 1.038 1.038 1.038 1.038 1.038 1.048 0.22 0.21 0.21 0.21 0.21 0.21 0.22 
2 1.090 1.130 1.124 1.123 1.130 1.127 1.102 0.26 0.15 0.14 0.17 0.14 0.15 0.21 
3 1.088 1.088 1.094 1.090 1.105 1.094 1.088 0.19 0.19 0.18 0.19 0.15 0.18 0.19 
4 1.020 1.020 1.022 1.021 1.021 1.021 1.029 0.31 0.30 0.27 0.32 0.30 0.30 0.31 
5 1.070 1.069 1.069 1.069 1.070 1.069 1.069 0.06 0.06 0.06 0.06 0.06 0.06 0.06 
6 0.967 0.967 0.993 0.992 0.980 0.983 0.968 0.13 0.13 0.07 0.08 0.11 0.10 0.13 
7 1.109 1.114 1.112 1.120 1.116 1.115 1.110 0.26 0.24 0.23 0.23 0.23 0.23 0.25 
8 1.062 1.071 1.074 1.075 1.075 1.074 1.068 0.17 0.14 0.13 0.12 0.12 0.13 0.15 
9 1.045 1.047 1.047 1.052 1.053 1.050 1.052 0.15 0.15 0.15 0.14 0.14 0.14 0.15 

10 1.057 1.064 1.065 1.063 1.066 1.064 1.062 0.19 0.16 0.15 0.16 0.15 0.16 0.17 
11 1.035 1.036 1.036 1.060 1.054 1.047 1.036 0.17 0.17 0.17 0.09 0.11 0.13 0.17 
12 1.056 1.057 1.056 1.055 1.056 1.056 1.057 0.11 0.11 0.11 0.12 0.11 0.11 0.11 
13 1.130 1.135 1.135 1.135 1.136 1.135 1.137 0.15 0.10 0.08 0.08 0.07 0.09 0.12 
14 1.122 1.157 1.144 1.153 1.157 1.153 1.134 0.13 0.06 0.09 0.08 0.05 0.07 0.11 
15 1.114 1.119 1.128 1.132 1.136 1.129 1.118 0.25 0.24 0.20 0.18 0.16 0.20 0.25 
16 1.025 1.042 1.041 1.042 1.041 1.042 1.026 0.17 0.03 0.04 0.03 0.04 0.03 0.11 
17 0.964 1.007 1.028 1.022 1.017 1.019 0.969 0.20 0.11 0.09 0.10 0.11 0.10 0.16 
18 1.071 1.096 1.106 1.102 1.109 1.103 1.084 0.17 0.11 0.10 0.11 0.09 0.10 0.14 
19 1.088 1.088 1.083 1.085 1.080 1.084 1.100 0.11 0.11 0.11 0.11 0.12 0.11 0.11 
20 1.078 1.099 1.095 1.093 1.104 1.098 1.083 0.07 0.07 0.07 0.07 0.07 0.07 0.07 

Mean 1.061 1.072 1.075 1.076 1.077 1.075 1.067 0.17 0.14 0.13 0.13 0.13 0.13 0.16 
SD 0.045 0.047 0.042 0.043 0.046 0.045 0.047 0.06 0.07 0.06 0.07 0.07 0.07 0.06 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C15 

Dataset 3: Predictive performance statistics for the prediction equations developed using Conscientiousness (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 1.044 1.045 1.057 1.055 1.055 1.053 1.047 0.07 0.07 0.05 0.05 0.05 0.05 0.07 
2 1.094 1.096 1.096 1.097 1.097 1.097 1.100 0.14 0.13 0.13 0.12 0.12 0.13 0.14 
3 1.100 1.100 1.101 1.097 1.099 1.099 1.104 0.22 0.14 0.14 0.14 0.14 0.14 0.22 
4 1.028 1.027 1.026 1.026 1.027 1.027 1.037 0.19 0.19 0.20 0.20 0.19 0.20 0.18 
5 1.053 1.058 1.057 1.056 1.057 1.057 1.058 0.17 0.10 0.09 0.10 0.10 0.10 0.14 
6 0.950 0.949 0.950 0.950 0.950 0.950 0.953 0.09 0.09 0.09 0.09 0.09 0.09 0.08 
7 1.110 1.110 1.108 1.108 1.108 1.108 1.113 0.14 0.14 0.13 0.13 0.13 0.13 0.14 
8 1.052 1.049 1.051 1.048 1.056 1.051 1.054 0.19 0.20 0.20 0.21 0.07 0.17 0.19 
9 1.066 1.074 1.074 1.074 1.074 1.074 1.071 0.01 -0.04 -0.04 -0.04 -0.04 -0.04 -0.01 

10 1.065 1.063 1.060 1.059 1.059 1.060 1.064 0.08 0.09 0.09 0.09 0.09 0.09 0.09 
11 1.029 1.028 1.028 1.029 1.028 1.028 1.029 0.03 0.02 0.02 0.02 0.02 0.02 0.03 
12 1.050 1.049 1.048 1.047 1.048 1.048 1.054 0.12 0.13 0.13 0.13 0.13 0.13 0.12 
13 1.110 1.108 1.106 1.112 1.113 1.110 1.105 0.15 0.15 0.14 0.07 0.04 0.10 0.15 
14 1.127 1.125 1.124 1.124 1.125 1.124 1.123 -0.03 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 
15 1.141 1.140 1.138 1.139 1.140 1.139 1.141 0.03 0.04 0.04 0.04 0.04 0.04 0.04 
16 1.032 1.031 1.031 1.031 1.031 1.031 1.028 0.10 0.11 0.11 0.11 0.11 0.11 0.10 
17 0.960 0.957 0.956 0.956 0.956 0.956 0.970 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
18 1.060 1.060 1.060 1.060 1.060 1.060 1.066 0.12 0.12 0.12 0.12 0.12 0.12 0.11 
19 1.069 1.066 1.065 1.064 1.064 1.065 1.091 0.13 0.14 0.14 0.14 0.14 0.14 0.13 
20 1.123 1.140 1.168 1.140 1.160 1.152 1.133 -0.06 -0.06 -0.05 -0.05 -0.05 -0.05 -0.06 

Mean 1.063 1.064 1.065 1.064 1.065 1.064 1.067 0.10 0.09 0.09 0.09 0.08 0.08 0.09 
SD 0.050 0.052 0.054 0.052 0.054 0.053 0.050 0.08 0.07 0.07 0.07 0.06 0.07 0.07 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C16 

Dataset 4: Predictive performance statistics for the prediction equations developed using Neuroticism (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.487 0.488 0.488 0.488 0.487 0.487 0.482 0.07 0.07 0.07 0.07 0.07 0.07 0.08 
2 0.431 0.435 0.435 0.436 0.436 0.436 0.440 0.30 0.26 0.26 0.25 0.25 0.26 0.28 
3 0.513 0.513 0.513 0.513 0.513 0.513 0.514 0.13 0.13 0.13 0.13 0.13 0.13 0.13 
4 0.494 0.493 0.493 0.498 0.507 0.498 0.493 0.29 0.29 0.29 0.26 0.18 0.26 0.29 
5 0.482 0.485 0.485 0.489 0.487 0.486 0.482 0.17 0.12 0.13 0.08 0.11 0.11 0.16 
6 0.487 0.486 0.486 0.486 0.486 0.486 0.485 0.18 0.18 0.18 0.18 0.18 0.18 0.18 
7 0.546 0.549 0.548 0.548 0.548 0.548 0.546 -0.05 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 
8 0.538 0.541 0.540 0.543 0.548 0.543 0.542 0.26 0.25 0.25 0.15 0.12 0.19 0.26 
9 0.599 0.598 0.597 0.598 0.621 0.604 0.598 0.19 0.19 0.18 0.16 0.09 0.16 0.18 

10 0.454 0.455 0.455 0.456 0.455 0.455 0.455 0.23 0.23 0.23 0.23 0.23 0.23 0.23 
11 0.569 0.569 0.568 0.567 0.568 0.568 0.572 0.13 0.13 0.13 0.11 0.12 0.12 0.13 
12 0.454 0.457 0.500 0.491 0.509 0.489 0.460 0.25 0.21 -0.10 -0.10 -0.16 -0.04 0.22 
13 0.464 0.465 0.467 0.466 0.466 0.466 0.466 0.26 0.22 0.20 0.20 0.21 0.21 0.24 
14 0.489 0.494 0.510 0.535 0.513 0.513 0.485 0.29 0.26 0.16 -0.04 0.13 0.13 0.29 
15 0.514 0.514 0.514 0.514 0.513 0.514 0.518 0.22 0.22 0.22 0.22 0.22 0.22 0.22 
16 0.450 0.450 0.450 0.450 0.450 0.450 0.452 0.15 0.14 0.14 0.14 0.14 0.14 0.14 
17 0.443 0.443 0.443 0.448 0.446 0.445 0.450 0.16 0.16 0.16 0.12 0.13 0.15 0.16 
18 0.429 0.429 0.429 0.428 0.427 0.428 0.436 0.13 0.14 0.14 0.14 0.14 0.14 0.14 
19 0.426 0.434 0.447 0.476 0.477 0.459 0.433 0.23 0.13 -0.06 -0.20 -0.20 -0.08 0.14 
20 0.497 0.499 0.500 0.501 0.500 0.500 0.497 0.15 0.15 0.14 0.14 0.15 0.14 0.15 

Mean 0.488 0.490 0.493 0.497 0.498 0.494 0.490 0.19 0.17 0.14 0.11 0.11 0.13 0.18 
SD 0.048 0.047 0.045 0.045 0.048 0.046 0.046 0.09 0.08 0.11 0.12 0.12 0.10 0.08 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C17 

Dataset 4: Predictive performance statistics for the prediction equations developed using Extraversion (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.485 0.485 0.490 0.494 0.494 0.491 0.478 0.16 0.17 0.19 0.18 0.18 0.18 0.21 
2 0.466 0.478 0.473 0.477 0.479 0.477 0.463 0.04 0.07 0.06 0.06 0.05 0.06 0.06 
3 0.520 0.518 0.525 0.533 0.531 0.527 0.520 0.11 0.07 0.05 0.02 0.03 0.04 0.07 
4 0.523 0.523 0.507 0.506 0.510 0.511 0.519 0.11 0.11 0.16 0.17 0.18 0.15 0.20 
5 0.513 0.505 0.506 0.504 0.505 0.505 0.511 0.08 0.20 0.19 0.20 0.20 0.20 0.13 
6 0.515 0.512 0.513 0.513 0.517 0.514 0.509 -0.02 0.07 0.08 0.05 0.05 0.06 0.04 
7 0.543 0.540 0.557 0.539 0.541 0.544 0.537 -0.08 0.04 -0.03 0.04 0.02 0.02 -0.03 
8 0.555 0.569 0.570 0.566 0.567 0.568 0.560 0.17 0.08 0.09 0.10 0.09 0.09 0.17 
9 0.610 0.610 0.598 0.597 0.601 0.601 0.605 0.13 0.13 0.18 0.21 0.18 0.18 0.17 

10 0.462 0.464 0.468 0.466 0.470 0.467 0.461 0.14 0.12 0.11 0.11 0.10 0.11 0.13 
11 0.575 0.573 0.573 0.570 0.574 0.573 0.578 0.19 0.16 0.17 0.19 0.19 0.18 0.22 
12 0.475 0.479 0.479 0.479 0.479 0.479 0.476 0.14 0.17 0.16 0.17 0.17 0.17 0.17 
13 0.488 0.475 0.477 0.476 0.474 0.476 0.482 0.04 0.18 0.17 0.18 0.19 0.18 0.13 
14 0.521 0.523 0.524 0.523 0.526 0.524 0.526 0.10 0.10 0.09 0.08 0.05 0.08 0.13 
15 0.530 0.530 0.522 0.523 0.525 0.525 0.527 0.14 0.15 0.24 0.23 0.21 0.21 0.18 
16 0.462 0.462 0.462 0.462 0.462 0.462 0.463 0.15 0.16 0.24 0.23 0.23 0.22 0.22 
17 0.453 0.449 0.449 0.448 0.448 0.449 0.449 0.22 0.24 0.24 0.25 0.25 0.25 0.24 
18 0.448 0.467 0.467 0.470 0.471 0.469 0.453 0.04 0.04 0.05 0.09 0.11 0.07 0.10 
19 0.439 0.453 0.451 0.459 0.460 0.456 0.442 0.10 0.17 0.18 0.15 0.15 0.17 0.14 
20 0.516 0.507 0.510 0.513 0.513 0.511 0.512 0.10 0.21 0.20 0.18 0.17 0.19 0.14 

Mean 0.505 0.506 0.506 0.506 0.507 0.506 0.504 0.10 0.13 0.14 0.14 0.14 0.14 0.14 
SD 0.045 0.043 0.043 0.041 0.041 0.042 0.045 0.07 0.06 0.08 0.07 0.07 0.07 0.07 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.



245
 

Table C18 

Dataset 4: Predictive performance statistics for the prediction equations developed using Openness (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.504 0.504 0.515 0.505 0.513 0.509 0.496 -0.26 -0.24 -0.09 -0.11 -0.16 -0.15 -0.24 
2 0.464 0.464 0.464 0.463 0.462 0.463 0.462 -0.19 -0.18 -0.18 -0.17 -0.07 -0.15 -0.20 
3 0.522 0.524 0.521 0.523 0.521 0.522 0.520 -0.09 -0.08 -0.04 -0.06 -0.03 -0.05 -0.06 
4 0.527 0.527 0.521 0.521 0.521 0.522 0.527 0.04 0.04 0.04 0.07 0.07 0.06 0.07 
5 0.517 0.517 0.517 0.547 0.523 0.526 0.519 -0.07 -0.07 -0.07 -0.03 -0.03 -0.05 -0.08 
6 0.497 0.502 0.500 0.521 0.517 0.510 0.499 0.00 -0.19 -0.16 -0.02 -0.05 -0.10 -0.15 
7 0.514 0.514 0.512 0.518 0.517 0.515 0.514 -0.04 -0.04 0.06 0.13 0.10 0.06 -0.04 
8 0.562 0.562 0.562 0.557 0.558 0.560 0.565 -0.06 -0.05 -0.03 0.10 0.07 0.02 -0.07 
9 0.616 0.617 0.627 0.628 0.631 0.626 0.617 -0.08 -0.08 0.09 0.09 0.08 0.05 -0.08 

10 0.475 0.482 0.482 0.480 0.484 0.482 0.470 -0.08 0.00 -0.03 0.02 -0.06 -0.02 -0.08 
11 0.582 0.600 0.601 0.600 0.600 0.600 0.584 -0.10 -0.06 -0.05 -0.03 -0.04 -0.04 -0.08 
12 0.479 0.475 0.479 0.477 0.481 0.478 0.477 -0.06 0.00 -0.05 0.07 0.04 0.01 -0.05 
13 0.479 0.480 0.475 0.475 0.475 0.476 0.479 -0.07 -0.06 0.00 0.00 -0.01 -0.01 0.10 
14 0.525 0.525 0.525 0.523 0.523 0.524 0.526 0.06 0.06 0.06 0.17 0.17 0.11 0.02 
15 0.542 0.545 0.542 0.541 0.542 0.543 0.548 -0.17 -0.15 -0.07 -0.06 -0.07 -0.09 -0.14 
16 0.484 0.481 0.482 0.483 0.483 0.482 0.481 -0.20 -0.08 -0.10 -0.09 -0.10 -0.09 -0.16 
17 0.459 0.459 0.489 0.475 0.490 0.478 0.458 0.04 0.03 -0.07 -0.01 -0.03 -0.02 0.02 
18 0.449 0.489 0.500 0.487 0.494 0.492 0.473 -0.08 -0.03 -0.08 -0.05 -0.08 -0.06 -0.09 
19 0.433 0.433 0.431 0.479 0.478 0.455 0.433 0.00 0.01 0.07 -0.01 0.00 0.02 0.00 
20 0.516 0.516 0.514 0.519 0.515 0.516 0.516 0.04 0.04 0.15 0.09 0.10 0.09 0.07 

Mean 0.507 0.511 0.513 0.516 0.516 0.514 0.508 -0.07 -0.06 -0.03 0.01 0.00 -0.02 -0.06 
SD 0.045 0.045 0.045 0.043 0.042 0.043 0.045 0.09 0.08 0.09 0.09 0.08 0.08 0.09 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C19 

Dataset 4: Predictive performance statistics for the prediction equations developed using Agreeableness (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.487 0.489 0.488 0.489 0.489 0.489 0.491 0.08 -0.07 -0.05 -0.07 -0.06 -0.06 0.06 
2 0.457 0.453 0.462 0.464 0.461 0.460 0.457 0.17 0.15 -0.03 -0.07 -0.02 0.01 0.16 
3 0.528 0.528 0.543 0.566 0.557 0.548 0.532 -0.33 -0.33 -0.17 -0.17 -0.21 -0.22 -0.25 
4 0.525 0.530 0.536 0.537 0.538 0.535 0.531 0.16 -0.09 -0.20 -0.20 -0.20 -0.17 -0.16 
5 0.517 0.517 0.527 0.532 0.533 0.527 0.521 0.14 0.12 -0.25 -0.25 -0.24 -0.16 -0.16 
6 0.516 0.523 0.566 0.564 0.563 0.554 0.529 -0.10 -0.16 -0.32 -0.33 -0.33 -0.29 -0.24 
7 0.516 0.516 0.522 0.521 0.521 0.520 0.516 -0.27 -0.28 -0.23 -0.18 -0.20 -0.22 -0.25 
8 0.559 0.560 0.560 0.561 0.561 0.561 0.557 0.15 -0.05 -0.04 -0.06 -0.12 -0.07 0.13 
9 0.616 0.616 0.615 0.615 0.615 0.615 0.616 0.10 0.10 0.13 0.14 0.13 0.12 0.11 

10 0.489 0.488 0.487 0.487 0.487 0.487 0.489 -0.05 -0.05 -0.05 -0.06 -0.06 -0.05 -0.05 
11 0.582 0.582 0.584 0.583 0.584 0.583 0.580 -0.28 -0.28 -0.28 -0.28 -0.27 -0.28 -0.28 
12 0.476 0.477 0.504 0.501 0.503 0.496 0.485 0.22 -0.22 -0.31 -0.33 -0.32 -0.30 -0.34 
13 0.480 0.480 0.481 0.480 0.480 0.480 0.481 0.01 0.02 0.02 0.02 0.02 0.02 0.02 
14 0.530 0.529 0.531 0.532 0.531 0.531 0.528 0.08 -0.10 -0.09 -0.09 -0.09 -0.09 0.01 
15 0.534 0.533 0.532 0.533 0.532 0.532 0.531 0.10 0.11 0.13 0.08 0.12 0.11 0.10 
16 0.471 0.471 0.471 0.471 0.471 0.471 0.471 0.11 0.10 0.06 0.04 0.04 0.06 0.09 
17 0.456 0.465 0.461 0.466 0.466 0.465 0.456 0.12 0.01 0.00 0.02 0.02 0.01 0.10 
18 0.449 0.446 0.446 0.446 0.446 0.446 0.443 0.11 -0.06 -0.06 -0.07 -0.07 -0.07 0.09 
19 0.463 0.460 0.461 0.461 0.460 0.461 0.456 -0.18 -0.16 -0.17 -0.16 -0.16 -0.16 -0.17 
20 0.523 0.521 0.521 0.521 0.521 0.521 0.521 -0.06 -0.05 -0.05 -0.05 -0.05 -0.05 -0.06 

Mean 0.509 0.509 0.515 0.516 0.516 0.514 0.510 0.01 -0.06 -0.10 -0.10 -0.11 -0.09 -0.05 
SD 0.044 0.044 0.046 0.046 0.046 0.045 0.044 0.17 0.14 0.14 0.13 0.14 0.13 0.16 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C20 

Dataset 4: Predictive performance statistics for the prediction equations developed using Conscientiousness (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.474 0.475 0.475 0.476 0.476 0.476 0.472 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
2 0.424 0.424 0.423 0.423 0.422 0.423 0.429 0.24 0.24 0.24 0.24 0.24 0.24 0.24 
3 0.547 0.550 0.549 0.550 0.550 0.550 0.540 0.08 0.08 0.08 0.08 0.08 0.08 0.09 
4 0.494 0.494 0.494 0.494 0.494 0.494 0.495 0.31 0.30 0.30 0.30 0.30 0.30 0.31 
5 0.479 0.485 0.493 0.495 0.493 0.491 0.484 0.29 0.28 0.25 0.24 0.25 0.25 0.28 
6 0.460 0.461 0.466 0.463 0.466 0.464 0.458 0.25 0.25 0.22 0.23 0.22 0.23 0.25 
7 0.502 0.503 0.502 0.503 0.502 0.502 0.504 0.22 0.22 0.22 0.22 0.22 0.22 0.22 
8 0.534 0.534 0.534 0.534 0.534 0.534 0.534 0.30 0.30 0.30 0.30 0.29 0.30 0.30 
9 0.580 0.582 0.582 0.582 0.583 0.583 0.581 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

10 0.450 0.451 0.454 0.453 0.454 0.453 0.451 0.19 0.19 0.18 0.18 0.17 0.18 0.19 
11 0.537 0.535 0.537 0.538 0.539 0.537 0.541 0.32 0.31 0.29 0.29 0.29 0.29 0.31 
12 0.441 0.442 0.443 0.444 0.443 0.443 0.443 0.34 0.33 0.33 0.31 0.32 0.32 0.34 
13 0.463 0.466 0.467 0.467 0.467 0.467 0.465 0.23 0.22 0.21 0.21 0.21 0.21 0.23 
14 0.501 0.502 0.502 0.502 0.503 0.502 0.511 0.25 0.24 0.24 0.24 0.23 0.24 0.24 
15 0.500 0.500 0.500 0.500 0.499 0.500 0.498 0.35 0.35 0.35 0.35 0.35 0.35 0.35 
16 0.435 0.434 0.437 0.438 0.438 0.437 0.435 0.31 0.31 0.31 0.30 0.30 0.31 0.31 
17 0.452 0.453 0.453 0.454 0.455 0.454 0.452 0.19 0.18 0.18 0.18 0.16 0.18 0.18 
18 0.442 0.456 0.456 0.454 0.457 0.456 0.442 0.23 0.19 0.19 0.20 0.20 0.20 0.22 
19 0.406 0.409 0.411 0.413 0.414 0.412 0.407 0.38 0.37 0.35 0.35 0.34 0.35 0.37 
20 0.484 0.487 0.486 0.487 0.488 0.487 0.488 0.34 0.34 0.34 0.34 0.33 0.34 0.34 

Mean 0.480 0.482 0.483 0.483 0.484 0.483 0.482 0.26 0.25 0.25 0.25 0.24 0.25 0.26 
SD 0.045 0.044 0.044 0.044 0.044 0.044 0.045 0.07 0.07 0.07 0.07 0.07 0.07 0.07 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C21 

Dataset 5: Predictive performance statistics for the prediction equations developed using Adjustment (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 6.849 6.841 6.834 6.849 6.844 6.842 6.892 0.01 0.02 0.02 0.01 0.02 0.02 0.01 
2 6.268 6.249 6.254 6.252 6.253 6.252 6.268 0.06 0.07 0.07 0.07 0.07 0.07 0.06 
3 6.200 6.228 6.232 6.231 6.228 6.230 6.195 0.08 0.04 0.06 0.04 0.05 0.05 0.08 
4 6.231 6.245 6.247 6.246 6.246 6.246 6.335 0.09 0.08 0.08 0.08 0.08 0.08 0.09 
5 5.892 5.923 5.932 5.930 5.943 5.932 5.889 0.13 0.08 0.07 0.06 0.04 0.06 0.11 
6 6.417 6.444 6.438 6.444 6.500 6.456 6.455 0.08 0.04 0.04 0.03 -0.01 0.02 0.07 
7 5.753 5.755 5.754 5.754 5.759 5.756 5.752 0.07 0.06 0.06 0.06 0.06 0.06 0.07 
8 6.375 6.374 6.367 6.376 6.394 6.378 6.371 -0.01 -0.04 -0.04 -0.04 -0.04 -0.04 -0.03 
9 6.324 6.325 6.325 6.325 6.324 6.325 6.344 0.08 0.08 0.08 0.08 0.08 0.08 0.06 

10 5.783 5.782 5.783 5.782 5.784 5.783 5.757 0.15 0.15 0.15 0.15 0.15 0.15 0.15 
11 5.771 5.766 5.764 5.787 5.772 5.772 5.813 0.21 0.20 0.17 0.06 0.14 0.15 0.22 
12 5.855 5.872 5.867 5.867 5.869 5.869 5.881 0.01 -0.02 -0.02 -0.01 -0.02 -0.02 0.00 
13 5.613 5.643 5.645 5.646 5.645 5.645 5.635 0.14 0.08 0.08 0.08 0.08 0.08 0.11 
14 5.808 5.802 5.798 5.795 5.805 5.800 5.757 0.13 0.12 0.12 0.13 0.11 0.12 0.14 
15 6.192 6.187 6.184 6.192 6.195 6.190 6.188 0.11 0.12 0.12 0.12 0.11 0.12 0.12 
16 6.095 6.094 6.092 6.093 6.092 6.093 6.120 0.02 0.02 0.03 0.03 0.02 0.02 0.03 
17 6.505 6.497 6.494 6.499 6.507 6.499 6.488 0.16 0.16 0.16 0.16 0.13 0.15 0.17 
18 6.493 6.491 6.486 6.487 6.492 6.489 6.432 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 
19 6.139 6.136 6.138 6.140 6.138 6.138 6.147 0.09 0.09 0.09 0.09 0.09 0.09 0.08 
20 6.545 6.584 6.595 6.588 6.591 6.590 6.549 0.01 0.00 0.00 0.00 0.00 0.00 0.01 

Mean 6.155 6.162 6.162 6.164 6.169 6.164 6.163 0.08 0.06 0.06 0.06 0.05 0.06 0.07 
SD 0.329 0.328 0.327 0.328 0.331 0.328 0.334 0.07 0.07 0.07 0.06 0.06 0.06 0.07 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C22 

Dataset 5: Predictive performance statistics for the prediction equations developed using Ambition (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 6.795 6.805 6.801 6.803 6.802 6.803 6.794 0.10 0.10 0.10 0.10 0.10 0.10 0.10 
2 6.196 6.227 6.219 6.227 6.220 6.223 6.209 0.10 0.06 0.07 0.05 0.05 0.06 0.08 
3 6.174 6.172 6.173 6.174 6.173 6.173 6.197 0.11 0.11 0.11 0.11 0.11 0.11 0.11 
4 6.301 6.295 6.288 6.284 6.291 6.290 6.271 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
5 5.868 5.865 5.868 5.862 5.870 5.866 5.871 0.07 0.08 0.07 0.08 0.07 0.08 0.07 
6 6.362 6.358 6.359 6.359 6.359 6.359 6.353 0.13 0.13 0.13 0.12 0.10 0.12 0.13 
7 5.833 5.841 5.828 5.840 5.827 5.834 5.789 0.03 0.04 0.04 0.04 0.03 0.03 0.03 
8 6.391 6.393 6.395 6.432 6.430 6.412 6.370 -0.01 -0.01 -0.01 -0.03 -0.02 -0.02 0.00 
9 6.288 6.280 6.284 6.287 6.280 6.283 6.286 0.24 0.25 0.24 0.24 0.25 0.24 0.25 

10 5.757 5.745 5.747 5.744 5.764 5.750 5.752 0.07 0.07 0.07 0.07 0.07 0.07 0.07 
11 5.750 5.812 5.813 5.814 5.809 5.812 5.783 0.15 0.08 0.08 0.08 0.08 0.08 0.13 
12 5.990 6.038 6.031 6.023 6.032 6.031 5.948 -0.03 -0.04 -0.04 -0.05 -0.04 -0.04 -0.03 
13 5.674 5.677 5.674 5.674 5.672 5.674 5.692 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
14 5.812 5.823 5.823 5.823 5.821 5.822 5.964 0.08 0.08 0.08 0.08 0.08 0.08 0.09 
15 6.161 6.162 6.159 6.162 6.160 6.161 6.177 0.15 0.15 0.15 0.15 0.15 0.15 0.14 
16 6.058 6.094 6.098 6.101 6.115 6.102 6.078 0.06 0.04 0.04 0.04 0.04 0.04 0.05 
17 6.502 6.503 6.503 6.513 6.514 6.508 6.554 0.11 0.11 0.11 0.10 0.09 0.10 0.11 
18 6.271 6.270 6.272 6.268 6.274 6.271 6.227 0.07 0.07 0.06 0.06 0.06 0.06 0.07 
19 6.145 6.165 6.162 6.164 6.172 6.166 6.169 0.05 0.03 0.04 0.04 0.03 0.03 0.04 
20 6.470 6.494 6.500 6.496 6.496 6.496 6.482 0.10 0.07 0.06 0.06 0.06 0.06 0.07 

Mean 6.140 6.151 6.150 6.152 6.154 6.152 6.148 0.08 0.08 0.07 0.07 0.07 0.07 0.08 
SD 0.297 0.293 0.294 0.296 0.295 0.295 0.292 0.06 0.06 0.06 0.06 0.06 0.06 0.06 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C23 

Dataset 5: Predictive performance statistics for the prediction equations developed using Sociability (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 6.870 6.868 6.869 6.868 6.868 6.868 6.870 -0.03 -0.03 -0.04 -0.03 -0.03 -0.03 -0.04 
2 6.246 6.228 6.227 6.226 6.227 6.227 6.237 -0.01 -0.03 -0.03 -0.04 -0.03 -0.03 -0.03 
3 6.202 6.261 6.262 6.259 6.260 6.260 6.236 -0.01 -0.14 -0.14 -0.14 -0.14 -0.14 -0.12 
4 6.231 6.282 6.282 6.278 6.294 6.284 6.226 -0.03 -0.12 -0.12 -0.13 -0.10 -0.11 -0.10 
5 5.967 5.965 5.967 5.965 5.964 5.965 5.986 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 
6 6.492 6.504 6.539 6.506 6.529 6.520 6.517 -0.14 -0.16 -0.15 -0.16 -0.14 -0.16 -0.15 
7 5.737 6.013 6.036 6.028 6.010 6.022 5.861 -0.08 -0.28 -0.28 -0.28 -0.28 -0.28 -0.28 
8 6.352 6.352 6.343 6.347 6.366 6.352 6.414 -0.13 -0.13 -0.12 -0.12 -0.10 -0.12 -0.14 
9 6.433 6.446 6.447 6.459 6.442 6.448 6.413 -0.12 -0.13 -0.13 -0.14 -0.12 -0.13 -0.13 

10 5.828 5.832 5.829 5.832 5.830 5.831 5.860 -0.03 -0.07 -0.07 -0.06 -0.05 -0.06 -0.04 
11 5.797 5.794 5.796 5.794 5.794 5.794 5.803 -0.04 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 
12 5.807 5.803 5.806 5.808 5.805 5.805 5.811 -0.09 -0.08 -0.09 -0.07 -0.06 -0.08 -0.09 
13 5.658 5.667 5.666 5.681 5.668 5.670 5.680 -0.03 -0.05 -0.05 -0.06 -0.05 -0.05 -0.03 
14 5.828 5.845 5.821 5.862 5.815 5.836 5.891 -0.09 -0.10 -0.09 -0.12 -0.08 -0.10 -0.10 
15 6.244 6.294 6.301 6.294 6.338 6.307 6.263 -0.04 -0.10 -0.11 -0.14 -0.15 -0.13 -0.06 
16 6.058 6.056 6.056 6.056 6.060 6.057 6.103 -0.04 -0.01 -0.01 -0.01 -0.01 -0.01 -0.04 
17 6.533 6.587 6.592 6.597 6.596 6.593 6.554 -0.04 -0.13 -0.13 -0.13 -0.14 -0.13 -0.12 
18 6.292 6.280 6.287 6.293 6.301 6.290 6.267 -0.08 -0.05 -0.07 -0.03 -0.07 -0.06 -0.09 
19 6.132 6.130 6.132 6.133 6.130 6.132 6.123 -0.03 0.00 -0.03 -0.05 -0.04 -0.03 -0.01 
20 6.588 6.628 6.631 6.660 6.634 6.638 6.618 -0.06 -0.07 -0.07 -0.09 -0.09 -0.08 -0.07 

Mean 6.165 6.192 6.195 6.197 6.197 6.195 6.187 -0.06 -0.09 -0.09 -0.10 -0.09 -0.09 -0.09 
SD 0.328 0.322 0.325 0.322 0.327 0.324 0.317 0.04 0.06 0.06 0.06 0.06 0.06 0.06 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C24 

Dataset 5: Predictive performance statistics for the prediction equations developed using Intellectance (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 6.857 6.827 6.666 6.790 6.803 6.771 6.799 -0.01 0.15 0.16 0.12 0.12 0.13 0.07 
2 6.283 6.202 6.168 6.116 6.140 6.156 6.254 -0.09 0.10 0.11 0.14 0.14 0.12 0.01 
3 6.196 6.116 6.124 6.063 6.125 6.107 6.192 -0.01 0.16 0.19 0.20 0.17 0.18 0.09 
4 6.229 6.087 6.103 6.097 6.113 6.100 6.173 -0.02 0.16 0.14 0.14 0.13 0.14 0.09 
5 5.969 6.109 6.112 6.115 6.113 6.112 6.108 -0.12 -0.07 -0.06 -0.08 -0.04 -0.06 -0.13 
6 6.442 6.401 6.427 6.406 6.409 6.411 6.422 -0.08 0.05 0.04 0.02 0.05 0.04 0.02 
7 5.744 5.712 5.691 5.714 5.689 5.702 5.732 -0.07 0.07 0.11 0.06 0.10 0.09 0.03 
8 6.348 6.338 6.359 6.309 6.311 6.329 6.371 -0.10 0.01 0.00 0.03 0.03 0.02 -0.06 
9 6.356 6.300 6.276 6.325 6.297 6.300 6.302 -0.04 0.08 0.08 0.08 0.07 0.07 0.04 

10 5.824 5.787 5.773 5.778 5.773 5.778 5.804 -0.01 0.08 0.08 0.08 0.08 0.08 0.05 
11 5.790 5.729 5.744 5.745 5.717 5.734 5.773 -0.02 0.11 0.10 0.10 0.14 0.11 0.04 
12 5.798 5.764 5.777 5.787 5.748 5.769 5.805 -0.04 0.05 0.04 0.04 0.09 0.05 -0.06 
13 5.638 5.591 5.605 5.573 5.582 5.588 5.606 -0.02 0.12 0.11 0.14 0.14 0.13 0.06 
14 5.911 5.982 6.000 5.984 5.991 5.989 5.809 -0.16 -0.01 0.00 0.01 -0.01 0.00 -0.07 
15 6.236 6.073 6.065 6.131 6.073 6.086 6.214 -0.07 0.18 0.19 0.16 0.18 0.18 0.19 
16 6.061 5.990 5.964 6.001 5.960 5.979 6.020 -0.01 0.13 0.15 0.15 0.16 0.15 0.08 
17 6.538 6.449 6.469 6.445 6.442 6.451 6.485 -0.06 0.10 0.06 0.07 0.11 0.09 0.03 
18 6.291 6.215 6.216 6.218 6.142 6.198 6.194 -0.02 0.14 0.17 0.15 0.19 0.16 0.13 
19 6.139 6.057 6.015 6.008 6.006 6.021 6.084 -0.04 0.11 0.14 0.14 0.14 0.13 0.14 
20 6.558 6.525 6.524 6.525 6.507 6.520 6.516 -0.04 0.11 0.11 0.12 0.11 0.11 0.07 

Mean 6.160 6.113 6.104 6.106 6.097 6.105 6.133 -0.05 0.09 0.10 0.09 0.10 0.10 0.04 
SD 0.318 0.310 0.294 0.305 0.309 0.304 0.309 0.04 0.06 0.07 0.07 0.06 0.06 0.08 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C21 

Dataset 5: Predictive performance statistics for the prediction equations developed using Likeability (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 6.865 6.862 6.858 6.853 6.857 6.858 6.846 0.04 0.05 0.06 0.06 0.06 0.06 0.05 
2 6.368 6.370 6.361 6.420 6.387 6.385 6.359 0.02 0.00 0.00 0.01 0.01 0.00 0.02 
3 6.157 6.137 6.136 6.136 6.137 6.136 6.192 0.09 0.11 0.11 0.11 0.11 0.11 0.11 
4 6.178 6.200 6.201 6.173 6.202 6.194 6.186 0.12 0.10 0.10 0.12 0.11 0.11 0.11 
5 5.851 5.877 5.984 5.976 5.903 5.935 5.873 0.14 0.12 0.09 0.08 0.12 0.10 0.13 
6 6.352 6.347 6.334 6.339 6.340 6.340 6.348 0.17 0.13 0.15 0.14 0.14 0.14 0.16 
7 5.739 5.741 5.744 5.742 5.747 5.744 5.787 0.12 0.12 0.11 0.11 0.11 0.11 -0.21 
8 6.272 6.314 6.312 6.301 6.312 6.310 6.292 0.08 0.05 0.05 0.06 0.05 0.06 0.07 
9 6.341 6.326 6.329 6.326 6.331 6.328 6.333 0.04 0.02 0.02 0.02 0.02 0.02 0.03 

10 5.721 5.715 5.708 5.716 5.747 5.721 5.733 0.14 0.15 0.17 0.16 0.12 0.15 0.16 
11 5.766 5.756 5.752 5.753 5.747 5.752 5.752 0.21 0.21 0.22 0.22 0.22 0.22 -0.17 
12 5.860 5.840 5.835 5.839 5.836 5.837 5.830 0.03 0.05 0.05 0.05 0.05 0.05 0.09 
13 5.645 5.646 5.647 5.646 5.649 5.647 5.612 0.10 0.10 0.10 0.10 0.10 0.10 0.10 
14 5.872 5.908 5.887 5.921 5.904 5.905 5.878 0.07 0.02 0.02 0.01 0.04 0.03 0.03 
15 6.165 6.268 6.207 6.272 6.228 6.244 6.213 0.19 -0.03 0.00 -0.03 0.02 -0.01 0.00 
16 6.141 6.143 6.139 6.139 6.143 6.141 6.148 0.03 0.03 0.04 0.03 0.03 0.03 0.03 
17 6.501 6.496 6.496 6.493 6.495 6.495 6.508 0.08 0.10 0.10 0.10 0.10 0.10 0.09 
18 6.523 6.633 6.609 6.611 6.627 6.620 6.532 -0.04 -0.07 -0.07 -0.07 -0.08 -0.07 -0.07 
19 6.124 6.122 6.121 6.124 6.126 6.123 6.126 0.09 0.10 0.10 0.10 0.10 0.10 0.08 
20 6.472 6.524 6.522 6.549 6.509 6.526 6.471 0.17 -0.02 -0.01 -0.02 0.00 -0.01 0.04 

Mean 6.146 6.161 6.159 6.166 6.161 6.162 6.151 0.09 0.07 0.07 0.07 0.07 0.07 0.04 
SD 0.326 0.337 0.331 0.333 0.332 0.333 0.325 0.06 0.07 0.07 0.07 0.06 0.07 0.10 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C26 

Dataset 5: Predictive performance statistics for the prediction equations developed using Prudence (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 6.683 6.757 6.768 6.778 6.783 6.771 6.719 0.17 0.09 0.08 0.09 0.08 0.08 0.13 
2 6.185 6.148 6.151 6.151 6.143 6.148 6.174 0.09 0.13 0.13 0.13 0.13 0.13 0.11 
3 6.146 6.146 6.146 6.147 6.146 6.146 6.146 0.13 0.15 0.14 0.15 0.15 0.15 0.14 
4 6.120 6.197 6.122 6.177 6.151 6.162 6.090 0.16 0.18 0.19 0.18 0.18 0.18 0.18 
5 5.944 5.900 5.904 5.906 5.903 5.903 5.914 0.10 0.15 0.15 0.15 0.15 0.15 0.13 
6 6.264 6.279 6.279 6.278 6.280 6.279 6.281 0.15 0.16 0.16 0.16 0.16 0.16 0.16 
7 5.803 5.857 5.857 5.873 5.889 5.869 5.820 0.10 0.05 0.06 0.05 0.04 0.05 0.07 
8 6.159 6.137 6.144 6.136 6.138 6.139 6.327 0.18 0.21 0.21 0.21 0.21 0.21 0.19 
9 6.354 6.344 6.346 6.347 6.349 6.346 6.398 0.10 0.12 0.12 0.13 0.10 0.12 0.11 

10 5.676 5.698 5.699 5.696 5.697 5.698 5.672 0.23 0.18 0.18 0.18 0.18 0.18 0.21 
11 5.738 5.707 5.709 5.711 5.708 5.709 5.739 0.14 0.18 0.18 0.18 0.18 0.18 0.16 
12 5.695 5.708 5.699 5.696 5.697 5.700 5.678 0.19 0.19 0.19 0.20 0.20 0.19 0.21 
13 5.591 5.660 5.654 5.654 5.659 5.657 5.602 0.09 0.11 0.11 0.11 0.11 0.11 0.10 
14 5.743 5.732 5.726 5.735 5.736 5.732 5.698 0.18 0.19 0.19 0.19 0.19 0.19 0.19 
15 6.187 6.199 6.198 6.198 6.198 6.199 6.190 0.07 0.10 0.10 0.11 0.10 0.10 0.09 
16 5.911 5.912 5.916 5.918 5.914 5.915 5.902 0.21 0.20 0.20 0.20 0.20 0.20 0.21 
17 6.424 6.448 6.449 6.481 6.444 6.455 6.451 0.22 0.23 0.23 0.09 0.22 0.19 0.24 
18 6.413 6.477 6.482 6.474 6.480 6.478 6.468 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
19 6.032 6.042 6.041 6.039 6.041 6.041 6.031 0.17 0.16 0.16 0.16 0.16 0.16 0.17 
20 6.549 6.523 6.512 6.530 6.526 6.523 6.559 0.08 0.11 0.12 0.10 0.10 0.11 0.09 

Mean 6.081 6.094 6.090 6.096 6.094 6.094 6.093 0.14 0.15 0.15 0.14 0.14 0.14 0.15 
SD 0.313 0.318 0.319 0.323 0.320 0.320 0.332 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C27 

Dataset 6: Predictive performance statistics for the prediction equations developed using Emotional Orientation (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.610 0.609 0.615 0.612 0.616 0.613 0.611 -0.13 -0.13 -0.07 -0.06 -0.07 -0.08 -0.11 
2 0.638 0.637 0.637 0.636 0.639 0.637 0.636 -0.21 -0.20 -0.20 -0.18 -0.21 -0.20 -0.21 
3 0.586 0.586 0.611 0.612 0.612 0.605 0.595 0.13 0.13 0.03 0.02 0.01 0.05 0.13 
4 0.611 0.613 0.613 0.613 0.613 0.613 0.611 -0.26 -0.25 -0.25 -0.24 -0.24 -0.24 -0.26 
5 0.583 0.582 0.582 0.581 0.580 0.581 0.597 0.02 0.06 0.04 0.12 0.14 0.09 0.00 
6 0.628 0.740 0.713 0.719 0.713 0.721 0.613 -0.34 -0.25 -0.21 -0.23 -0.23 -0.23 -0.20 
7 0.594 0.593 0.596 0.598 0.597 0.596 0.601 0.18 0.18 0.08 0.06 0.07 0.10 0.06 
8 0.586 0.576 0.578 0.584 0.583 0.580 0.569 -0.36 -0.36 -0.36 -0.05 -0.07 -0.21 0.28 
9 0.581 0.644 0.650 0.653 0.649 0.649 0.597 0.10 0.02 -0.03 -0.07 -0.04 -0.03 0.06 

10 0.596 0.597 0.589 0.633 0.596 0.604 0.594 0.15 0.15 0.15 0.06 0.07 0.11 0.17 
11 0.602 0.602 0.602 0.598 0.599 0.600 0.603 -0.03 -0.02 -0.03 0.05 0.04 0.01 -0.03 
12 0.594 0.608 0.587 0.587 0.586 0.592 0.591 -0.03 0.07 0.06 0.06 0.06 0.06 0.02 
13 0.609 0.609 0.609 0.605 0.602 0.606 0.619 0.10 0.10 0.10 0.16 0.17 0.13 0.04 
14 0.657 0.655 0.648 0.647 0.646 0.649 0.652 -0.08 -0.07 -0.03 -0.02 -0.02 -0.04 -0.08 
15 0.563 0.557 0.556 0.559 0.559 0.558 0.570 -0.03 0.02 0.06 0.06 0.06 0.05 -0.01 
16 0.607 0.614 0.613 0.619 0.616 0.616 0.611 0.14 0.14 -0.05 -0.05 -0.05 -0.01 0.01 
17 0.624 0.624 0.616 0.616 0.616 0.618 0.618 0.22 0.22 0.18 0.16 0.16 0.18 0.25 
18 0.628 0.629 0.628 0.628 0.647 0.633 0.634 -0.25 -0.21 -0.25 0.01 -0.10 -0.14 -0.33 
19 0.566 0.566 0.560 0.560 0.560 0.561 0.576 0.13 0.13 0.14 0.14 0.14 0.14 0.14 
20 0.609 0.610 0.610 0.599 0.597 0.604 0.604 -0.27 -0.26 0.27 0.23 0.08 0.08 -0.10 

Mean 0.604 0.613 0.611 0.613 0.611 0.612 0.605 -0.04 -0.03 -0.02 0.01 0.00 -0.01 -0.01 
SD 0.024 0.039 0.035 0.036 0.035 0.036 0.021 0.19 0.18 0.16 0.13 0.12 0.13 0.16 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C28 

Dataset 6: Predictive performance statistics for the prediction equations developed using Social Orientation (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.609 0.609 0.608 0.613 0.613 0.611 0.610 -0.13 -0.13 -0.10 -0.15 -0.15 -0.13 -0.13 
2 0.626 0.644 0.649 0.652 0.653 0.649 0.629 -0.04 -0.12 -0.17 -0.15 -0.19 -0.16 -0.07 
3 0.599 0.599 0.599 0.607 0.607 0.603 0.596 0.21 0.21 0.19 -0.17 -0.17 0.01 0.22 
4 0.601 0.601 0.601 0.602 0.603 0.602 0.609 -0.06 -0.05 -0.06 -0.05 -0.05 -0.05 -0.06 
5 0.603 0.603 0.603 0.603 0.603 0.603 0.594 -0.11 -0.10 -0.11 -0.10 -0.10 -0.10 -0.11 
6 0.599 0.601 0.600 0.603 0.607 0.603 0.602 0.17 -0.17 0.16 -0.02 -0.10 -0.03 -0.12 
7 0.601 0.602 0.602 0.618 0.617 0.610 0.606 0.06 0.05 0.05 -0.14 -0.12 -0.04 -0.02 
8 0.578 0.576 0.578 0.580 0.580 0.579 0.583 -0.30 -0.30 -0.29 -0.26 -0.19 -0.26 -0.31 
9 0.585 0.587 0.586 0.590 0.591 0.589 0.577 0.13 0.13 0.11 -0.02 -0.11 0.03 0.04 

10 0.618 0.618 0.618 0.618 0.618 0.618 0.606 -0.03 -0.04 -0.05 -0.04 -0.03 -0.04 -0.06 
11 0.620 0.623 0.634 0.633 0.632 0.631 0.628 -0.20 -0.21 -0.23 -0.22 -0.22 -0.22 -0.20 
12 0.619 0.626 0.623 0.626 0.640 0.629 0.621 -0.14 -0.11 -0.12 -0.11 -0.09 -0.11 -0.15 
13 0.624 0.626 0.628 0.630 0.630 0.629 0.623 0.17 0.17 0.05 0.02 0.01 0.06 0.17 
14 0.661 0.661 0.661 0.661 0.661 0.661 0.646 -0.15 -0.16 -0.12 -0.13 -0.03 -0.11 -0.17 
15 0.563 0.567 0.564 0.573 0.574 0.569 0.566 -0.05 -0.07 -0.06 -0.09 -0.09 -0.08 -0.06 
16 0.621 0.621 0.618 0.619 0.620 0.620 0.638 -0.26 -0.29 -0.27 -0.19 -0.30 -0.26 -0.29 
17 0.625 0.626 0.625 0.624 0.628 0.626 0.623 0.20 0.20 0.20 0.21 0.00 0.15 0.01 
18 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.15 0.15 0.16 0.15 0.15 0.15 0.12 
19 0.597 0.596 0.596 0.597 0.597 0.597 0.579 -0.30 -0.29 -0.29 -0.30 -0.13 -0.25 -0.29 
20 0.607 0.608 0.607 0.607 0.609 0.608 0.607 0.16 0.16 0.16 0.15 0.11 0.14 0.15 

Mean 0.609 0.611 0.611 0.614 0.615 0.613 0.608 -0.03 -0.05 -0.04 -0.08 -0.09 -0.07 -0.07 
SD 0.021 0.022 0.023 0.022 0.022 0.022 0.021 0.17 0.17 0.17 0.14 0.11 0.13 0.15 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C29 

Dataset 6: Predictive performance statistics for the prediction equations developed using Cognitive Orientation (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.591 0.592 0.591 0.589 0.589 0.590 0.587 0.16 0.15 0.16 0.17 0.13 0.15 0.16 
2 0.607 0.607 0.607 0.607 0.606 0.607 0.608 0.15 0.15 0.15 0.15 0.25 0.17 0.15 
3 0.587 0.586 0.597 0.599 0.597 0.595 0.590 0.25 0.12 0.02 -0.06 -0.02 0.02 0.11 
4 0.589 0.589 0.590 0.579 0.582 0.585 0.589 0.07 0.08 0.07 0.18 0.17 0.12 0.07 
5 0.578 0.620 0.624 0.607 0.605 0.614 0.575 0.04 -0.02 -0.03 0.00 -0.01 -0.01 0.00 
6 0.598 0.598 0.598 0.583 0.583 0.591 0.600 0.05 0.05 0.05 0.13 0.12 0.09 0.05 
7 0.592 0.591 0.592 0.587 0.590 0.590 0.596 0.27 0.26 0.25 0.07 0.16 0.19 0.28 
8 0.566 0.589 0.614 0.614 0.616 0.608 0.586 0.20 -0.11 -0.26 -0.28 -0.29 -0.23 -0.13 
9 0.565 0.575 0.567 0.593 0.600 0.584 0.575 0.07 0.04 0.07 0.03 0.04 0.05 0.08 

10 0.606 0.607 0.608 0.623 0.610 0.612 0.603 -0.01 -0.01 -0.01 0.03 0.02 0.01 -0.01 
11 0.585 0.585 0.586 0.624 0.626 0.605 0.585 0.15 0.15 0.14 -0.19 -0.18 -0.02 0.14 
12 0.609 0.610 0.610 0.600 0.599 0.605 0.606 -0.08 -0.08 -0.08 -0.07 -0.07 -0.08 -0.08 
13 0.618 0.623 0.620 0.615 0.618 0.619 0.621 0.10 0.12 0.10 0.10 0.10 0.11 0.10 
14 0.657 0.656 0.670 0.669 0.669 0.666 0.665 0.27 0.26 -0.25 -0.24 -0.21 -0.11 0.20 
15 0.548 0.567 0.572 0.556 0.556 0.563 0.558 0.14 -0.04 -0.04 0.07 0.05 0.01 0.11 
16 0.600 0.600 0.603 0.607 0.673 0.621 0.595 0.18 0.18 0.20 0.19 0.21 0.19 0.15 
17 0.617 0.616 0.643 0.644 0.645 0.637 0.622 0.26 0.26 -0.26 -0.24 -0.27 -0.13 0.04 
18 0.623 0.622 0.622 0.624 0.614 0.621 0.625 0.05 0.06 0.06 0.10 0.12 0.09 0.06 
19 0.560 0.588 0.591 0.591 0.593 0.591 0.563 0.06 -0.20 -0.20 -0.10 -0.10 -0.15 0.01 
20 0.616 0.618 0.613 0.625 0.609 0.616 0.620 -0.42 -0.41 -0.41 -0.35 -0.02 -0.30 -0.37 

Mean 0.596 0.602 0.606 0.607 0.609 0.606 0.598 0.10 0.05 -0.01 -0.01 0.01 0.01 0.06 
SD 0.025 0.020 0.024 0.025 0.028 0.022 0.024 0.16 0.17 0.18 0.17 0.16 0.14 0.14 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
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Table C30 

Dataset 6: Predictive performance statistics for the prediction equations developed using Interpersonal Orientation (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.582 0.582 0.586 0.639 0.645 0.613 0.574 0.13 0.14 0.16 0.01 -0.02 0.07 0.15 
2 0.614 0.614 0.613 0.612 0.614 0.613 0.614 0.15 0.15 0.15 0.13 0.12 0.14 0.14 
3 0.590 0.590 0.590 0.590 0.587 0.589 0.593 0.21 0.21 0.21 0.21 0.22 0.21 0.23 
4 0.594 0.593 0.593 0.587 0.587 0.590 0.584 0.18 0.19 0.19 0.18 0.16 0.18 0.20 
5 0.588 0.587 0.591 0.595 0.593 0.591 0.596 -0.05 -0.05 -0.02 -0.01 0.01 -0.02 -0.03 
6 0.590 0.587 0.751 0.747 0.760 0.711 0.605 0.26 0.27 -0.06 -0.06 -0.06 0.02 0.02 
7 0.606 0.801 0.707 0.717 0.784 0.752 0.633 -0.36 -0.12 -0.07 -0.07 -0.09 -0.09 -0.13 
8 0.579 0.580 0.579 0.574 0.587 0.580 0.569 -0.46 -0.46 -0.46 0.13 -0.14 -0.23 0.35 
9 0.582 0.618 0.612 0.559 0.609 0.600 0.597 -0.03 -0.04 -0.07 -0.05 -0.09 -0.06 -0.05 

10 0.588 0.587 0.588 0.590 0.592 0.589 0.593 -0.02 0.00 -0.01 0.02 0.02 0.01 0.01 
11 0.580 0.581 0.581 0.627 0.640 0.607 0.589 0.09 0.09 0.09 0.02 0.00 0.05 0.11 
12 0.597 0.641 0.642 0.641 0.646 0.643 0.602 -0.12 -0.15 -0.15 -0.13 -0.12 -0.14 -0.11 
13 0.618 0.617 0.619 0.586 0.636 0.615 0.623 0.23 0.22 0.22 0.33 0.04 0.20 0.21 
14 0.660 0.928 0.848 0.854 0.779 0.852 0.673 0.17 -0.15 -0.14 -0.14 -0.14 -0.14 -0.09 
15 0.539 0.541 0.540 0.545 0.545 0.543 0.556 0.21 0.17 0.18 0.09 0.09 0.13 0.24 
16 0.596 0.596 0.597 0.743 0.667 0.651 0.595 0.19 0.19 0.19 -0.08 -0.04 0.06 0.20 
17 0.610 0.609 0.611 0.801 0.620 0.660 0.607 0.08 0.07 0.09 0.07 0.11 0.09 0.06 
18 0.615 0.615 0.621 0.631 0.641 0.627 0.617 0.17 0.17 0.05 0.00 -0.02 0.05 0.10 
19 0.570 0.568 0.564 0.564 0.565 0.565 0.575 -0.02 -0.01 0.01 0.01 0.01 0.01 0.00 
20 0.621 0.898 0.775 0.746 0.621 0.760 0.667 -0.40 -0.14 -0.11 -0.11 0.04 -0.08 -0.14 

Mean 0.596 0.637 0.631 0.647 0.636 0.638 0.603 0.03 0.04 0.02 0.03 0.01 0.02 0.07 
SD 0.024 0.107 0.079 0.089 0.067 0.077 0.030 0.22 0.18 0.17 0.12 0.10 0.12 0.14 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C31 

Dataset 6: Predictive performance statistics for the prediction equations developed using Task Orientation (Studies 1 and 2).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.610 0.611 0.613 0.657 0.651 0.633 0.604 -0.10 -0.10 -0.03 0.02 0.04 -0.02 0.00 
2 0.625 0.625 0.624 0.614 0.619 0.621 0.624 -0.01 -0.01 0.04 0.01 -0.09 -0.01 0.02 
3 0.604 0.605 0.610 0.615 0.613 0.611 0.608 -0.13 -0.14 -0.15 -0.17 -0.17 -0.16 -0.18 
4 0.616 0.642 0.620 0.619 0.621 0.625 0.619 -0.19 -0.10 -0.06 -0.04 -0.04 -0.06 -0.17 
5 0.590 0.590 0.594 0.593 0.594 0.593 0.589 -0.11 -0.12 -0.19 -0.17 -0.19 -0.17 -0.21 
6 0.612 0.615 0.628 0.628 0.629 0.625 0.620 -0.14 -0.15 -0.25 -0.13 -0.13 -0.16 -0.22 
7 0.599 0.599 0.565 0.577 0.582 0.581 0.604 -0.06 -0.08 -0.07 -0.02 -0.04 -0.05 -0.20 
8 0.583 0.584 0.583 0.567 0.596 0.583 0.582 -0.17 -0.18 -0.17 0.03 -0.14 -0.11 -0.20 
9 0.600 0.601 0.599 0.599 0.601 0.600 0.608 -0.18 -0.18 -0.18 -0.17 -0.19 -0.18 -0.18 

10 0.603 0.604 0.604 0.615 0.617 0.610 0.600 -0.12 -0.12 -0.13 -0.28 -0.29 -0.20 -0.26 
11 0.603 0.602 0.602 0.599 0.598 0.601 0.605 -0.02 -0.02 0.03 0.19 0.19 0.10 -0.10 
12 0.608 0.609 0.609 0.610 0.612 0.610 0.612 -0.19 -0.19 -0.19 -0.21 -0.23 -0.21 -0.21 
13 0.628 0.628 0.628 0.619 0.611 0.621 0.628 -0.06 -0.06 -0.05 0.03 0.07 0.00 -0.06 
14 0.664 0.664 0.662 0.667 0.655 0.662 0.683 0.00 0.00 0.00 0.02 0.10 0.03 0.00 
15 0.560 0.560 0.560 0.560 0.558 0.559 0.557 -0.12 -0.12 -0.12 -0.13 -0.08 -0.11 -0.15 
16 0.619 0.619 0.619 0.617 0.619 0.619 0.628 -0.06 -0.07 -0.07 0.00 0.02 -0.03 -0.08 
17 0.628 0.627 0.613 0.594 0.588 0.606 0.629 -0.13 -0.13 -0.09 0.00 -0.04 -0.06 -0.13 
18 0.653 0.652 0.652 0.646 0.646 0.649 0.653 -0.27 -0.24 -0.24 -0.20 -0.19 -0.22 -0.26 
19 0.581 0.581 0.581 0.579 0.579 0.580 0.579 -0.04 -0.05 -0.04 0.07 0.09 0.02 -0.06 
20 0.672 0.667 0.655 0.667 0.657 0.661 0.661 -0.43 -0.38 -0.35 -0.37 -0.36 -0.37 -0.43 

Mean 0.613 0.614 0.611 0.612 0.612 0.612 0.615 -0.13 -0.12 -0.12 -0.08 -0.08 -0.10 -0.15 
SD 0.027 0.027 0.027 0.030 0.027 0.027 0.029 0.10 0.09 0.10 0.14 0.14 0.11 0.11 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C32 

Dataset 1: Predictive performance statistics for the prediction equations developed using the (theoretical) combination of Neuroticism, 

Openness, and Conscientiousness (Study 3). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 7.117 7.332 7.438 7.593 7.696 7.515 7.330 0.29 0.21 0.17 0.16 0.15 0.18 0.25 
2 6.538 6.517 6.691 6.490 6.719 6.604 6.520 0.18 0.20 0.13 0.20 0.13 0.16 0.18 
3 6.657 6.545 6.854 6.972 6.933 6.826 6.613 0.22 0.25 0.21 0.17 0.18 0.21 0.23 
4 7.258 7.334 7.192 7.473 7.477 7.369 7.267 0.14 0.10 0.14 0.12 0.13 0.12 0.13 
5 7.340 7.586 7.421 7.912 8.315 7.808 7.306 0.20 0.16 0.17 0.09 0.06 0.12 0.21 
6 7.181 7.341 7.440 7.549 7.673 7.501 7.493 0.26 0.24 0.22 0.19 0.15 0.20 0.21 
7 6.959 6.868 7.160 6.876 7.256 7.040 6.812 0.20 0.23 0.13 0.22 0.16 0.19 0.19 
8 6.865 7.089 7.078 7.094 7.125 7.096 6.923 0.33 0.25 0.24 0.23 0.21 0.23 0.28 
9 7.121 7.416 7.357 7.411 7.349 7.383 7.085 0.31 0.23 0.25 0.24 0.27 0.25 0.31 

10 7.504 7.562 7.792 7.560 7.609 7.631 7.371 0.24 0.19 0.13 0.20 0.18 0.17 0.22 
11 7.506 7.399 7.591 7.511 7.475 7.494 7.500 0.38 0.35 0.34 0.29 0.34 0.33 0.36 
12 7.117 7.088 7.053 7.141 7.079 7.090 7.054 0.32 0.33 0.34 0.32 0.31 0.32 0.35 
13 6.906 6.982 6.929 7.453 6.867 7.058 6.929 0.21 0.22 0.23 0.13 0.22 0.20 0.21 
14 6.576 6.643 6.748 6.794 6.708 6.723 6.624 0.31 0.31 0.25 0.24 0.27 0.27 0.27 
15 6.834 6.920 6.913 6.917 6.805 6.889 6.869 0.32 0.25 0.26 0.26 0.30 0.27 0.32 
16 7.155 7.068 7.236 6.957 7.233 7.124 7.014 0.28 0.27 0.21 0.29 0.23 0.25 0.29 
17 7.342 7.325 7.367 7.330 7.305 7.332 7.287 0.27 0.29 0.19 0.22 0.22 0.23 0.29 
18 7.271 7.350 7.543 7.533 7.670 7.524 7.170 0.24 0.18 0.09 0.08 0.05 0.10 0.25 
19 7.618 7.612 7.692 7.638 7.713 7.664 7.608 0.24 0.25 0.19 0.23 0.19 0.22 0.23 
20 7.547 7.722 7.942 7.783 7.813 7.815 7.619 0.26 0.21 0.10 0.18 0.16 0.16 0.23 

Mean 7.121 7.185 7.272 7.299 7.341 7.274 7.120 0.26 0.24 0.20 0.20 0.20 0.21 0.25 
SD 0.319 0.354 0.348 0.372 0.421 0.355 0.331 0.06 0.06 0.07 0.06 0.08 0.06 0.06 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C33 

Dataset 2: Predictive performance statistics for the prediction equations developed using the (theoretical) combination of Neuroticism, 

Extraversion, Openness, and Conscientiousness (Study 3). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 27.195 27.556 29.407 28.265 28.516 28.436 27.122 0.25 0.23 0.23 0.27 0.28 0.25 0.25 
2 32.683 31.995 33.342 32.930 33.244 32.878 32.497 0.37 0.39 0.32 0.32 0.32 0.34 0.37 
3 30.935 33.403 34.845 33.148 33.857 33.813 31.481 0.23 0.14 0.11 0.16 0.15 0.14 0.19 
4 30.605 35.029 33.976 34.970 31.004 33.745 29.904 0.22 -0.01 0.21 0.16 0.25 0.15 0.26 
5 32.948 33.869 33.986 32.933 32.819 33.402 32.619 0.20 0.18 0.20 0.25 0.25 0.22 0.23 
6 32.320 32.801 31.498 31.080 31.020 31.600 31.748 0.10 0.14 0.24 0.25 0.28 0.23 0.16 
7 33.671 34.800 36.181 34.616 33.842 34.860 33.520 0.18 0.19 0.11 0.19 0.22 0.18 0.17 
8 32.619 33.325 34.112 33.628 34.095 33.790 32.893 0.30 0.27 0.24 0.25 0.24 0.25 0.28 
9 35.477 35.324 35.818 35.409 32.939 34.873 35.169 0.08 0.10 0.05 0.11 0.23 0.12 0.08 

10 35.178 36.024 34.383 35.456 34.491 35.088 34.658 0.15 0.08 0.23 0.11 0.18 0.15 0.16 
11 28.498 29.363 30.851 29.291 29.312 29.704 29.052 0.16 0.23 0.16 0.29 0.27 0.24 0.22 
12 35.725 35.893 35.818 35.557 35.208 35.619 35.554 0.15 0.15 0.21 0.19 0.20 0.19 0.15 
13 32.954 32.318 32.085 32.457 32.133 32.248 32.774 0.22 0.19 0.25 0.28 0.30 0.25 0.22 
14 31.924 33.195 32.215 32.737 31.700 32.462 31.197 0.25 0.20 0.23 0.22 0.29 0.23 0.28 
15 33.656 34.321 31.741 32.321 32.349 32.683 32.463 0.32 0.31 0.36 0.33 0.30 0.33 0.33 
16 29.178 29.468 30.285 30.047 29.694 29.873 29.055 0.19 0.17 0.17 0.17 0.20 0.18 0.18 
17 34.583 36.495 34.226 34.009 34.701 34.858 33.894 0.25 0.18 0.32 0.35 0.31 0.29 0.33 
18 32.865 32.618 31.240 31.457 32.299 31.903 33.054 0.23 0.24 0.31 0.30 0.25 0.28 0.23 
19 30.298 30.312 30.747 30.561 31.044 30.666 30.302 0.24 0.27 0.29 0.29 0.29 0.28 0.25 
20 31.563 31.485 30.990 31.263 30.896 31.158 31.722 0.26 0.29 0.32 0.30 0.33 0.31 0.23 

Mean 32.244 32.980 32.887 32.607 32.258 32.683 32.034 0.22 0.20 0.23 0.24 0.26 0.23 0.23 
SD 2.295 2.426 2.029 2.102 1.862 2.001 2.158 0.07 0.09 0.08 0.07 0.05 0.06 0.07 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.



261
 

Table C34 

Dataset 3: Predictive performance statistics for the prediction equations developed using the (theoretical) combination of Neuroticism, 

Openness, Agreeableness, and Conscientiousness (Study 3). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 1.040 1.057 1.055 1.120 1.091 1.081 1.046 0.18 0.15 0.12 -0.02 0.09 0.09 0.20 
2 1.085 1.127 1.219 1.200 1.237 1.196 1.132 0.14 0.08 -0.01 0.01 -0.03 0.02 0.06 
3 1.127 1.281 1.273 1.290 1.225 1.267 1.160 0.05 -0.04 -0.05 -0.11 -0.05 -0.06 -0.01 
4 1.016 1.078 1.084 1.071 1.067 1.075 1.016 0.20 0.02 0.01 0.04 0.05 0.03 0.22 
5 1.080 1.104 1.108 1.105 1.100 1.104 1.078 0.08 0.03 0.04 0.04 0.05 0.04 0.08 
6 0.955 0.965 0.964 1.011 0.994 0.984 0.952 0.14 0.13 0.17 0.08 0.14 0.13 0.18 
7 1.115 1.141 1.143 1.159 1.140 1.146 1.101 0.20 0.10 0.15 0.10 0.15 0.13 0.24 
8 1.104 1.165 1.149 1.179 1.150 1.161 1.098 0.03 0.01 -0.01 0.01 0.00 0.00 0.06 
9 1.080 1.099 1.111 1.096 1.111 1.104 1.071 0.03 -0.03 -0.05 -0.01 -0.05 -0.03 0.04 

10 1.052 1.048 1.119 1.099 1.089 1.089 1.060 0.16 0.17 0.00 0.02 -0.04 0.04 0.13 
11 1.080 1.109 1.127 1.126 1.121 1.121 1.084 -0.06 0.00 -0.02 -0.01 -0.04 -0.02 -0.02 
12 1.078 1.092 1.101 1.134 1.113 1.110 1.096 0.10 0.04 0.07 0.02 0.05 0.05 0.06 
13 1.116 1.123 1.123 1.202 1.163 1.153 1.122 0.14 0.17 0.08 -0.02 -0.02 0.05 0.11 
14 1.144 1.180 1.225 1.206 1.243 1.214 1.176 0.03 0.01 -0.09 -0.08 -0.13 -0.07 0.01 
15 1.154 1.174 1.205 1.176 1.192 1.187 1.163 -0.01 0.02 -0.05 -0.01 0.00 -0.01 0.00 
16 1.063 1.125 1.159 1.171 1.148 1.151 1.069 0.06 0.02 -0.10 -0.09 -0.09 -0.07 0.01 
17 0.986 1.136 1.058 1.118 1.135 1.112 1.079 0.09 -0.04 -0.04 -0.07 -0.06 -0.05 0.01 
18 1.078 1.112 1.157 1.148 1.166 1.146 1.089 0.15 0.07 0.01 0.01 -0.02 0.02 0.11 
19 1.074 1.106 1.132 1.165 1.162 1.141 1.090 0.12 0.05 -0.01 -0.04 -0.01 0.00 0.08 
20 1.152 1.242 1.219 1.283 1.197 1.236 1.209 0.00 0.01 -0.01 0.00 -0.03 -0.01 -0.01 

Mean 1.079 1.123 1.136 1.153 1.142 1.139 1.095 0.09 0.05 0.01 -0.01 0.00 0.01 0.08 
SD 0.052 0.068 0.071 0.066 0.061 0.063 0.057 0.07 0.07 0.07 0.05 0.07 0.06 0.08 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C35 

Dataset 4: Predictive performance statistics for the prediction equations developed using the (theoretical) combination of Neuroticism, 

Extraversion, and Conscientiousness (Study 3). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.471 0.478 0.478 0.487 0.481 0.481 0.471 0.14 0.23 0.24 0.22 0.23 0.23 0.17 
2 0.436 0.462 0.491 0.511 0.500 0.491 0.451 0.23 0.16 0.14 0.11 0.08 0.12 0.18 
3 0.543 0.576 0.574 0.582 0.579 0.578 0.560 0.12 0.07 0.08 0.07 0.05 0.07 0.09 
4 0.493 0.498 0.501 0.543 0.528 0.517 0.489 0.31 0.28 0.25 0.18 0.20 0.23 0.33 
5 0.475 0.464 0.466 0.481 0.492 0.476 0.474 0.28 0.34 0.33 0.27 0.25 0.29 0.29 
6 0.471 0.473 0.497 0.487 0.500 0.489 0.468 0.25 0.25 0.17 0.23 0.25 0.22 0.27 
7 0.541 0.542 0.521 0.520 0.518 0.525 0.537 0.05 0.08 0.16 0.18 0.19 0.15 0.06 
8 0.530 0.551 0.526 0.521 0.530 0.532 0.526 0.33 0.23 0.36 0.36 0.35 0.33 0.35 
9 0.580 0.576 0.560 0.556 0.572 0.566 0.572 0.28 0.22 0.34 0.35 0.29 0.30 0.32 

10 0.450 0.477 0.490 0.490 0.492 0.487 0.460 0.22 0.12 0.04 0.04 0.01 0.05 0.18 
11 0.545 0.572 0.577 0.659 0.569 0.594 0.545 0.25 0.20 0.16 -0.03 0.23 0.14 0.27 
12 0.439 0.445 0.453 0.447 0.501 0.461 0.434 0.37 0.35 0.27 0.28 0.06 0.24 0.37 
13 0.464 0.471 0.508 0.521 0.499 0.500 0.461 0.25 0.21 0.19 0.15 0.20 0.19 0.28 
14 0.502 0.496 0.534 0.533 0.543 0.527 0.514 0.25 0.27 0.01 0.05 -0.01 0.08 0.21 
15 0.496 0.497 0.486 0.494 0.483 0.490 0.495 0.35 0.36 0.38 0.39 0.41 0.38 0.37 
16 0.442 0.440 0.435 0.428 0.436 0.435 0.436 0.29 0.31 0.33 0.32 0.31 0.32 0.32 
17 0.449 0.445 0.455 0.454 0.467 0.455 0.451 0.20 0.25 0.28 0.26 0.23 0.25 0.23 
18 0.442 0.435 0.528 0.521 0.504 0.497 0.432 0.22 0.26 0.01 0.09 0.18 0.13 0.25 
19 0.420 0.435 0.477 0.462 0.459 0.458 0.435 0.36 0.36 0.13 0.23 0.22 0.24 0.32 
20 0.486 0.476 0.479 0.469 0.467 0.473 0.482 0.30 0.37 0.37 0.37 0.39 0.37 0.35 

Mean 0.484 0.490 0.502 0.508 0.506 0.502 0.485 0.25 0.25 0.21 0.21 0.21 0.22 0.26 
SD 0.044 0.048 0.039 0.052 0.038 0.042 0.044 0.08 0.09 0.12 0.12 0.12 0.10 0.09 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.



263
 

Table C36 

Dataset 5: Predictive performance statistics for the prediction equations developed using the (theoretical) combination of Adjustment, 

Likeability, and Prudence (Study 3). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 6.768 6.785 6.788 6.795 6.826 6.798 6.722 0.11 0.08 0.08 0.08 0.08 0.08 0.09 
2 6.273 6.175 6.204 6.233 6.313 6.231 6.215 0.07 0.10 0.09 0.08 0.10 0.09 0.07 
3 6.141 6.207 6.250 6.228 6.185 6.217 6.167 0.13 0.10 0.06 0.09 0.12 0.09 0.12 
4 6.109 6.083 6.065 6.092 6.124 6.091 6.134 0.17 0.17 0.19 0.20 0.20 0.19 0.18 
5 5.951 6.097 6.087 6.042 6.102 6.082 5.954 0.09 0.07 0.09 0.10 0.10 0.09 0.10 
6 6.268 6.295 6.371 6.378 6.405 6.362 6.337 0.15 0.16 0.15 0.14 0.13 0.14 0.13 
7 5.793 5.821 5.854 5.803 5.829 5.827 5.820 0.11 0.06 0.05 0.07 0.08 0.07 0.10 
8 6.274 6.280 6.357 6.365 6.271 6.318 6.296 0.08 0.08 0.03 0.02 0.07 0.05 0.07 
9 6.345 6.338 6.308 6.298 6.344 6.322 6.337 0.08 0.07 0.08 0.09 0.05 0.07 0.09 

10 5.646 5.626 5.634 5.730 5.685 5.669 5.591 0.23 0.20 0.20 0.15 0.16 0.18 0.22 
11 5.793 5.749 5.761 5.747 5.751 5.752 5.849 0.05 0.11 0.09 0.11 0.10 0.10 0.03 
12 5.812 5.950 6.039 5.954 5.879 5.955 5.856 0.10 0.04 0.03 0.06 0.05 0.05 0.11 
13 5.621 5.662 5.740 5.709 5.668 5.695 5.639 0.07 0.07 0.05 0.05 0.06 0.06 0.07 
14 5.780 5.949 6.044 6.130 5.983 6.026 5.809 0.14 0.11 0.08 0.04 0.07 0.07 0.11 
15 6.246 6.414 6.420 6.497 6.547 6.470 6.367 0.01 -0.01 -0.01 -0.03 -0.02 -0.02 -0.02 
16 6.055 6.100 6.098 6.089 6.133 6.105 6.021 0.09 0.08 0.08 0.08 0.04 0.07 0.11 
17 6.454 6.459 6.433 6.479 6.496 6.467 6.454 0.14 0.15 0.18 0.14 0.12 0.15 0.17 
18 6.557 6.695 6.692 6.702 6.657 6.686 6.560 -0.01 -0.04 -0.04 -0.04 -0.03 -0.04 -0.01 
19 6.038 6.082 6.057 6.135 6.086 6.090 6.030 0.17 0.13 0.15 0.11 0.12 0.13 0.17 
20 6.575 6.522 6.546 6.536 6.567 6.543 6.608 0.06 0.10 0.07 0.08 0.05 0.07 0.06 

Mean 6.125 6.164 6.187 6.197 6.192 6.185 6.138 0.10 0.09 0.09 0.08 0.08 0.08 0.10 
SD 0.324 0.321 0.311 0.316 0.332 0.318 0.323 0.06 0.06 0.06 0.06 0.06 0.06 0.06 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C37 

Dataset 6: Predictive performance statistics for the prediction equations developed using the (theoretical) combination of Emotional

Orientation, Cognitive Orientation, and Task Orientation (Study 3). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.598 0.612 0.643 0.675 0.682 0.653 0.584 -0.07 -0.06 0.00 0.04 -0.01 -0.01 -0.05 
2 0.621 0.616 0.569 0.575 0.621 0.595 0.616 -0.12 -0.07 0.06 0.16 0.11 0.07 -0.05 
3 0.577 0.585 0.645 0.586 0.574 0.598 0.586 0.11 0.10 0.13 0.11 0.11 0.11 0.03 
4 0.599 0.614 0.530 0.656 0.625 0.606 0.614 -0.19 -0.20 0.16 0.10 0.22 0.07 -0.18 
5 0.579 0.617 0.624 0.583 0.584 0.602 0.562 -0.01 -0.09 -0.13 0.10 0.10 -0.01 0.05 
6 0.645 0.641 0.617 0.578 0.578 0.603 0.611 -0.21 -0.20 0.01 0.17 0.08 0.01 -0.05 
7 0.578 0.772 0.657 0.466 0.543 0.609 0.578 0.17 -0.08 0.18 0.45 0.25 0.20 0.09 
8 0.581 0.580 0.595 0.539 0.629 0.586 0.578 -0.02 0.00 0.09 0.17 0.14 0.10 0.05 
9 0.569 0.811 0.803 0.667 0.586 0.717 0.585 0.03 0.10 0.17 -0.01 0.18 0.11 0.02 

10 0.601 0.610 0.560 0.680 0.636 0.621 0.574 0.03 -0.01 0.22 -0.02 0.04 0.06 0.08 
11 0.585 0.582 0.589 0.631 0.617 0.605 0.584 0.08 0.14 0.05 -0.09 -0.09 0.00 0.11 
12 0.604 0.621 0.643 0.544 0.546 0.589 0.591 -0.08 0.03 0.06 0.26 0.38 0.18 0.00 
13 0.607 0.603 0.586 0.595 0.592 0.594 0.600 0.11 0.17 0.17 0.23 0.25 0.20 0.17 
14 0.672 0.681 0.659 0.547 0.557 0.611 0.648 -0.13 -0.12 0.00 0.47 0.46 0.20 -0.02 
15 0.553 0.552 0.504 0.614 0.612 0.571 0.542 -0.01 0.03 0.20 -0.04 0.02 0.05 0.04 
16 0.602 0.611 0.680 0.706 0.718 0.679 0.618 0.16 0.08 0.05 0.03 0.07 0.06 0.00 
17 0.611 0.622 0.620 0.530 0.737 0.627 0.610 0.17 0.15 -0.09 0.29 0.21 0.14 0.02 
18 0.657 0.681 0.878 0.727 0.871 0.789 0.647 -0.18 -0.26 0.14 0.01 0.02 -0.02 -0.12 
19 0.556 0.553 0.550 0.528 0.547 0.545 0.554 0.08 0.10 0.08 0.30 0.14 0.16 0.13 
20 0.665 0.665 0.607 0.633 0.727 0.658 0.635 -0.40 -0.40 -0.03 0.11 -0.01 -0.08 -0.29 

Mean 0.603 0.631 0.628 0.603 0.629 0.623 0.596 -0.02 -0.03 0.08 0.14 0.13 0.08 0.00 
SD 0.034 0.065 0.087 0.068 0.082 0.055 0.029 0.15 0.15 0.10 0.15 0.14 0.08 0.11 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C38 

Dataset 1: Predictive performance statistics for the prediction equations developed using the combination of Extraversion and 

Conscientiousness (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 7.173 7.141 7.206 7.141 7.122 7.153 7.193 0.29 0.30 0.29 0.29 0.31 0.30 0.30 
2 6.170 6.121 6.214 6.342 6.287 6.241 6.211 0.35 0.34 0.25 0.19 0.21 0.25 0.34 
3 6.469 6.523 6.770 6.755 6.676 6.681 6.454 0.32 0.30 0.19 0.20 0.23 0.23 0.32 
4 7.836 7.993 8.074 7.997 8.082 8.037 7.865 0.00 -0.02 0.02 0.00 0.01 0.01 0.00 
5 6.871 7.003 7.342 7.115 7.175 7.159 6.873 0.30 0.22 0.18 0.22 0.19 0.20 0.30 
6 7.261 7.344 7.510 7.704 7.560 7.530 7.298 0.26 0.25 0.20 0.16 0.19 0.20 0.26 
7 6.732 7.088 6.819 6.977 6.778 6.916 6.647 0.34 0.23 0.27 0.24 0.30 0.26 0.34 
8 6.892 7.116 7.002 6.956 6.996 7.017 7.065 0.26 0.18 0.23 0.22 0.24 0.22 0.23 
9 7.175 7.200 7.140 7.137 7.160 7.159 7.135 0.27 0.27 0.32 0.32 0.29 0.30 0.29 

10 7.591 7.714 7.682 7.719 7.686 7.700 7.673 0.26 0.14 0.19 0.16 0.18 0.17 0.22 
11 7.630 7.594 7.710 7.587 7.590 7.620 7.537 0.42 0.40 0.27 0.33 0.33 0.33 0.41 
12 7.031 7.206 7.110 7.347 7.206 7.217 7.099 0.36 0.31 0.36 0.28 0.32 0.31 0.36 
13 6.988 6.993 6.981 6.995 7.058 7.006 6.903 0.20 0.20 0.20 0.20 0.19 0.20 0.22 
14 6.633 6.601 6.507 6.478 6.482 6.517 6.701 0.30 0.32 0.37 0.38 0.39 0.36 0.34 
15 6.864 6.829 6.812 6.798 6.857 6.824 6.879 0.30 0.32 0.36 0.37 0.32 0.34 0.31 
16 7.310 7.350 7.302 7.336 7.308 7.324 7.342 0.29 0.27 0.26 0.25 0.26 0.26 0.28 
17 7.243 7.224 7.123 7.117 7.145 7.152 7.247 0.31 0.32 0.38 0.38 0.37 0.36 0.33 
18 7.199 7.169 7.206 7.212 7.136 7.181 7.201 0.24 0.25 0.24 0.23 0.25 0.24 0.25 
19 7.583 7.545 7.547 7.635 7.548 7.569 7.536 0.26 0.26 0.26 0.20 0.24 0.24 0.27 
20 7.532 7.738 7.803 7.786 7.822 7.787 7.556 0.24 0.17 0.15 0.18 0.16 0.17 0.23 

Mean 7.109 7.175 7.193 7.207 7.184 7.189 7.121 0.28 0.25 0.25 0.24 0.25 0.25 0.28 
SD 0.411 0.431 0.442 0.428 0.436 0.429 0.409 0.08 0.09 0.08 0.09 0.08 0.08 0.08 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C39 

Dataset 1: Predictive performance statistics for the prediction equations developed using the combination of Extraversion, Openness and 

Conscientiousness (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 6.960 7.040 7.164 7.189 7.069 7.115 6.999 0.34 0.29 0.26 0.23 0.29 0.27 0.31 
2 6.059 6.185 6.288 6.477 6.370 6.330 6.084 0.38 0.33 0.25 0.18 0.20 0.24 0.36 
3 6.448 6.558 7.054 6.742 6.971 6.831 6.521 0.29 0.27 0.18 0.26 0.20 0.23 0.28 
4 7.422 7.767 7.710 7.756 7.927 7.790 7.464 0.08 0.03 0.03 0.02 0.02 0.03 0.07 
5 7.261 7.311 7.347 7.467 7.579 7.426 7.229 0.21 0.20 0.18 0.17 0.16 0.18 0.22 
6 7.053 7.400 7.512 7.766 7.424 7.525 7.223 0.36 0.24 0.20 0.17 0.25 0.21 0.31 
7 6.695 6.878 7.440 6.801 7.180 7.075 6.677 0.26 0.23 0.15 0.25 0.19 0.21 0.26 
8 7.051 7.070 7.228 7.185 7.208 7.173 7.237 0.33 0.29 0.25 0.26 0.25 0.26 0.30 
9 6.943 6.977 7.069 6.904 7.079 7.007 6.911 0.35 0.34 0.29 0.36 0.29 0.32 0.37 

10 7.206 7.396 7.337 7.476 7.263 7.368 7.356 0.37 0.24 0.27 0.26 0.29 0.26 0.32 
11 7.324 7.436 7.278 7.477 7.500 7.423 7.351 0.43 0.38 0.40 0.40 0.40 0.39 0.42 
12 6.788 6.918 6.870 6.921 7.047 6.939 6.803 0.48 0.43 0.45 0.42 0.37 0.42 0.50 
13 6.612 6.696 6.738 6.638 6.881 6.738 6.702 0.31 0.29 0.28 0.28 0.25 0.27 0.29 
14 6.351 6.826 6.724 6.573 6.694 6.705 6.885 0.41 0.25 0.29 0.34 0.31 0.30 0.32 
15 6.572 6.573 6.497 6.558 6.557 6.546 6.798 0.46 0.45 0.46 0.45 0.46 0.46 0.43 
16 6.904 6.902 6.819 6.816 6.888 6.856 6.792 0.37 0.34 0.33 0.34 0.31 0.33 0.34 
17 6.947 6.942 7.213 6.965 7.125 7.061 6.985 0.46 0.45 0.32 0.44 0.34 0.39 0.44 
18 7.047 7.698 7.698 7.648 7.544 7.647 7.188 0.32 0.08 0.10 0.11 0.12 0.10 0.29 
19 7.384 7.462 7.604 7.459 7.784 7.577 7.398 0.31 0.27 0.21 0.28 0.16 0.23 0.30 
20 7.534 7.882 8.271 8.470 8.225 8.212 7.616 0.26 0.20 0.14 0.10 0.13 0.14 0.23 

Mean 6.928 7.096 7.193 7.164 7.216 7.167 7.011 0.34 0.28 0.25 0.27 0.25 0.26 0.32 
SD 0.376 0.430 0.452 0.504 0.447 0.446 0.360 0.09 0.10 0.11 0.12 0.10 0.10 0.09 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C40 

Dataset 1: Predictive performance statistics for the prediction equations developed using the combination of Neuroticism, Extraversion,

Openness and Conscientiousness (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 6.941 7.376 7.549 7.546 7.584 7.514 7.169 0.34 0.26 0.22 0.22 0.20 0.22 0.30 
2 6.162 6.210 7.211 6.962 7.010 6.848 6.274 0.29 0.31 0.00 0.07 0.07 0.11 0.26 
3 6.447 6.925 6.737 7.042 6.894 6.899 6.574 0.29 0.21 0.28 0.21 0.25 0.24 0.29 
4 7.580 7.888 7.848 8.037 7.998 7.943 7.665 0.04 0.01 0.01 0.02 0.04 0.02 0.04 
5 7.296 7.540 7.507 8.011 7.864 7.731 7.486 0.21 0.17 0.17 0.09 0.12 0.14 0.18 
6 7.026 7.195 7.503 7.345 7.744 7.447 7.235 0.33 0.29 0.21 0.23 0.14 0.22 0.28 
7 6.727 6.670 6.954 7.637 7.385 7.161 6.811 0.27 0.30 0.23 0.19 0.18 0.22 0.27 
8 7.035 7.013 6.981 7.076 7.249 7.080 6.991 0.33 0.32 0.31 0.27 0.21 0.28 0.31 
9 6.938 7.009 7.142 7.128 7.166 7.111 6.966 0.34 0.34 0.31 0.30 0.29 0.31 0.37 

10 7.222 7.273 7.307 7.452 7.406 7.360 7.220 0.34 0.30 0.25 0.21 0.21 0.24 0.30 
11 7.310 7.224 7.712 7.568 7.307 7.453 7.210 0.44 0.42 0.28 0.32 0.36 0.35 0.44 
12 6.903 7.010 8.469 7.953 8.170 7.900 7.023 0.42 0.39 0.12 0.14 0.10 0.19 0.38 
13 6.714 7.191 7.153 8.089 7.369 7.451 6.744 0.30 0.24 0.26 0.15 0.22 0.22 0.28 
14 6.335 7.544 7.493 7.522 7.447 7.502 6.547 0.41 0.21 0.19 0.18 0.19 0.19 0.38 
15 6.537 6.658 6.771 6.774 6.811 6.753 6.590 0.43 0.36 0.32 0.32 0.32 0.33 0.43 
16 6.877 7.010 6.853 7.119 7.345 7.082 6.941 0.37 0.31 0.33 0.25 0.21 0.28 0.36 
17 7.103 7.004 7.129 7.348 7.282 7.191 7.097 0.38 0.39 0.33 0.18 0.22 0.28 0.38 
18 7.035 7.761 8.039 7.448 7.868 7.779 6.978 0.33 0.06 0.04 0.10 0.07 0.07 0.33 
19 7.405 7.361 7.484 7.566 7.647 7.515 7.412 0.31 0.30 0.26 0.20 0.18 0.23 0.30 
20 7.572 8.115 8.232 8.406 8.059 8.203 7.666 0.26 0.18 0.12 0.08 0.14 0.13 0.24 

Mean 6.958 7.199 7.404 7.501 7.480 7.396 7.030 0.32 0.27 0.21 0.19 0.19 0.21 0.31 
SD 0.380 0.432 0.467 0.418 0.372 0.377 0.364 0.09 0.10 0.10 0.08 0.08 0.08 0.09 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C41 

Dataset 1: Predictive performance statistics for the prediction equations developed using the combination of Neuroticism, Extraversion,

Openness, Agreeableness, and Conscientiousness (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 6.925 7.816 7.666 8.384 8.003 7.967 6.986 0.33 0.20 0.27 0.13 0.18 0.19 0.30 
2 6.162 6.766 7.070 7.624 7.728 7.297 6.314 0.29 0.22 0.09 0.16 0.03 0.13 0.29 
3 6.442 6.641 7.402 7.475 7.812 7.333 6.593 0.30 0.36 0.31 0.31 0.25 0.31 0.33 
4 7.601 7.824 8.563 9.627 9.186 8.800 7.828 0.03 0.12 0.03 0.05 0.01 0.05 0.01 
5 7.304 7.126 8.038 8.280 9.541 8.246 7.267 0.21 0.27 0.19 0.16 0.16 0.20 0.24 
6 7.168 7.562 8.036 7.604 8.276 7.870 7.245 0.30 0.25 0.18 0.20 0.15 0.20 0.32 
7 6.728 6.990 7.578 7.327 7.317 7.303 6.772 0.27 0.27 0.28 0.24 0.25 0.26 0.27 
8 7.085 7.501 7.702 7.897 7.260 7.590 7.287 0.32 0.22 0.15 0.20 0.30 0.22 0.28 
9 6.940 7.096 7.285 7.682 7.298 7.340 6.976 0.34 0.35 0.31 0.25 0.29 0.30 0.36 

10 7.395 7.387 7.489 7.335 7.382 7.398 7.508 0.29 0.31 0.30 0.29 0.24 0.28 0.27 
11 7.463 7.724 8.109 7.845 10.844 8.631 7.484 0.38 0.20 0.23 0.22 -0.08 0.14 0.36 
12 6.931 6.958 6.644 7.628 8.303 7.383 6.826 0.39 0.33 0.46 0.25 0.16 0.30 0.42 
13 6.758 6.788 7.640 7.603 7.304 7.334 6.880 0.29 0.33 0.26 0.21 0.26 0.27 0.32 
14 6.384 7.438 6.829 7.265 8.343 7.469 6.608 0.38 0.24 0.35 0.31 0.31 0.30 0.36 
15 6.746 6.978 8.037 7.686 7.377 7.520 7.170 0.29 0.29 0.21 0.20 0.20 0.22 0.25 
16 6.943 7.187 7.504 7.214 7.964 7.467 6.986 0.34 0.33 0.22 0.31 0.15 0.25 0.33 
17 7.114 6.869 7.075 8.395 7.941 7.570 7.169 0.35 0.43 0.33 0.15 0.14 0.26 0.35 
18 7.172 7.819 7.662 7.675 7.643 7.700 7.221 0.23 0.00 0.13 0.19 0.20 0.13 0.25 
19 7.488 7.310 7.659 7.627 7.675 7.568 7.475 0.26 0.33 0.18 0.23 0.20 0.23 0.26 
20 7.607 7.792 8.382 8.316 8.430 8.230 7.505 0.24 0.29 0.12 0.19 0.17 0.19 0.25 

Mean 7.018 7.279 7.619 7.824 8.081 7.701 7.105 0.29 0.27 0.23 0.21 0.18 0.22 0.29 
SD 0.394 0.383 0.480 0.544 0.875 0.439 0.364 0.08 0.09 0.10 0.06 0.10 0.07 0.08 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C42 

Dataset 2: Predictive performance statistics for the prediction equations developed using the combination of Extraversion and 

Conscientiousness (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 27.074 27.227 27.277 27.593 27.232 27.332 27.276 0.25 0.24 0.23 0.23 0.22 0.23 0.24 
2 32.719 32.812 32.536 32.359 32.174 32.470 32.581 0.37 0.32 0.37 0.34 0.35 0.34 0.38 
3 30.483 31.791 32.071 32.082 32.629 32.144 31.219 0.29 0.16 0.14 0.16 0.13 0.15 0.21 
4 30.916 30.725 31.110 31.064 31.734 31.158 31.085 0.23 0.23 0.21 0.23 0.17 0.21 0.22 
5 33.033 34.151 34.349 34.498 34.336 34.333 33.823 0.21 0.12 0.10 0.10 0.11 0.11 0.15 
6 31.515 32.786 31.153 32.988 33.544 32.618 31.637 0.12 0.12 0.16 0.11 0.11 0.13 0.11 
7 33.307 35.110 35.800 35.422 35.093 35.356 34.048 0.20 0.11 0.10 0.07 0.09 0.09 0.16 
8 32.345 32.323 32.605 32.587 32.543 32.514 32.299 0.30 0.29 0.28 0.29 0.28 0.28 0.30 
9 34.329 34.196 33.324 33.312 33.570 33.601 34.269 0.13 0.15 0.19 0.18 0.17 0.17 0.14 

10 34.825 34.693 34.717 34.330 34.527 34.567 34.485 0.17 0.19 0.20 0.23 0.22 0.21 0.18 
11 27.425 28.192 27.952 28.049 27.822 28.004 27.214 0.34 0.28 0.29 0.29 0.29 0.29 0.33 
12 34.846 34.934 34.883 34.853 34.876 34.887 34.723 0.18 0.18 0.19 0.18 0.19 0.18 0.18 
13 32.902 33.174 33.292 33.255 33.345 33.267 32.995 0.24 0.23 0.23 0.23 0.23 0.23 0.23 
14 31.433 31.463 31.653 31.981 31.959 31.764 31.208 0.31 0.31 0.27 0.20 0.19 0.24 0.30 
15 33.642 33.727 33.353 33.550 33.459 33.522 34.448 0.32 0.31 0.33 0.32 0.32 0.32 0.31 
16 28.442 30.273 30.483 30.096 30.496 30.337 29.014 0.22 0.09 0.09 0.11 0.08 0.09 0.18 
17 34.523 34.858 34.907 34.753 34.818 34.834 34.564 0.26 0.27 0.27 0.28 0.27 0.27 0.27 
18 31.783 32.059 32.002 31.858 31.609 31.882 32.043 0.32 0.28 0.28 0.29 0.30 0.29 0.31 
19 30.063 30.712 30.703 30.343 30.603 30.590 30.280 0.25 0.24 0.25 0.26 0.24 0.25 0.25 
20 31.022 31.390 31.585 32.018 31.452 31.611 31.813 0.38 0.27 0.26 0.24 0.30 0.27 0.30 

Mean 31.831 32.330 32.288 32.350 32.391 32.340 32.051 0.25 0.22 0.22 0.22 0.21 0.22 0.24 
SD 2.246 2.133 2.155 2.075 2.110 2.100 2.231 0.07 0.07 0.08 0.07 0.08 0.07 0.07 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C43 

Dataset 2: Predictive performance statistics for the prediction equations developed using the combination of Neuroticism, Extraversion, and 

Conscientiousness (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 27.236 27.936 27.330 27.540 27.670 27.619 26.845 0.24 0.23 0.25 0.25 0.24 0.24 0.25 
2 32.725 31.755 32.295 31.941 31.971 31.991 32.297 0.37 0.38 0.30 0.35 0.35 0.35 0.38 
3 30.905 33.215 32.469 32.921 32.862 32.867 31.489 0.23 0.15 0.16 0.10 0.13 0.13 0.18 
4 30.899 30.606 31.864 31.300 31.349 31.280 30.293 0.23 0.27 0.19 0.23 0.22 0.23 0.27 
5 32.984 33.863 33.546 33.597 34.025 33.758 32.780 0.19 0.13 0.18 0.16 0.11 0.14 0.18 
6 31.596 32.037 31.465 31.606 31.674 31.696 31.285 0.12 0.18 0.22 0.19 0.18 0.19 0.14 
7 33.260 34.421 33.946 34.131 33.661 34.040 33.705 0.20 0.19 0.20 0.19 0.21 0.20 0.15 
8 32.390 32.869 32.770 33.597 32.491 32.932 32.484 0.29 0.25 0.28 0.26 0.31 0.28 0.29 
9 35.213 34.030 34.044 32.911 34.225 33.802 35.015 0.08 0.15 0.14 0.18 0.11 0.14 0.10 

10 34.848 33.111 33.283 32.810 33.261 33.116 34.744 0.17 0.29 0.29 0.30 0.29 0.30 0.19 
11 27.450 27.151 27.596 27.658 27.575 27.495 27.646 0.31 0.39 0.37 0.35 0.35 0.36 0.34 
12 34.985 34.868 35.492 35.260 34.666 35.071 35.445 0.17 0.17 0.15 0.15 0.17 0.16 0.15 
13 32.958 32.313 31.712 31.598 32.078 31.925 32.914 0.22 0.27 0.31 0.28 0.28 0.28 0.22 
14 31.511 31.239 31.192 31.150 31.125 31.177 31.443 0.28 0.25 0.27 0.27 0.30 0.27 0.27 
15 33.648 34.283 33.922 33.179 33.580 33.741 33.067 0.32 0.16 0.24 0.29 0.25 0.24 0.33 
16 28.719 29.084 29.242 29.429 28.880 29.159 28.700 0.22 0.18 0.20 0.16 0.18 0.18 0.19 
17 34.700 33.436 33.815 33.871 34.231 33.838 34.280 0.25 0.35 0.32 0.33 0.29 0.32 0.27 
18 32.008 33.135 33.952 33.122 32.216 33.106 32.740 0.29 0.17 0.17 0.18 0.22 0.18 0.19 
19 30.149 29.525 28.927 29.214 29.175 29.210 29.996 0.24 0.27 0.30 0.29 0.30 0.29 0.25 
20 31.402 32.306 31.455 32.016 32.249 32.006 31.519 0.31 0.27 0.32 0.29 0.24 0.28 0.28 

Mean 31.979 32.059 32.016 31.943 31.948 31.991 31.934 0.24 0.24 0.24 0.24 0.24 0.24 0.23 
SD 2.261 2.134 2.185 2.041 2.078 2.086 2.287 0.07 0.08 0.07 0.07 0.07 0.07 0.07 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C44 

Dataset 2: Predictive performance statistics for the prediction equations developed using the combination of Neuroticism, Extraversion,

Openness, Agreeableness, and Conscientiousness (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 27.320 28.051 28.149 28.755 28.101 28.264 27.278 0.25 0.23 0.24 0.23 0.23 0.23 0.26 
2 32.701 32.774 34.515 34.815 34.660 34.191 32.293 0.37 0.34 0.30 0.29 0.30 0.31 0.40 
3 30.961 35.697 35.991 35.267 35.147 35.526 31.420 0.23 0.11 0.06 0.04 0.08 0.07 0.20 
4 30.635 32.766 35.257 41.610 33.161 35.698 30.735 0.22 0.08 0.01 -0.04 0.14 0.05 0.21 
5 32.874 34.760 39.113 41.995 38.229 38.524 33.261 0.19 0.14 0.07 0.09 0.14 0.11 0.15 
6 32.352 32.027 31.297 34.962 34.526 33.203 31.941 0.10 0.11 0.22 0.17 0.20 0.18 0.11 
7 33.661 42.022 40.120 39.274 35.602 39.254 33.492 0.18 0.04 0.08 0.08 0.19 0.10 0.16 
8 32.652 33.079 33.313 33.199 32.915 33.126 33.040 0.30 0.27 0.28 0.28 0.28 0.28 0.30 
9 35.866 39.059 35.370 35.642 35.909 36.495 35.694 0.06 0.05 0.17 0.16 0.15 0.13 0.09 

10 35.179 35.982 35.357 35.675 36.474 35.872 35.079 0.15 0.10 0.09 0.10 0.08 0.09 0.11 
11 28.791 29.987 31.155 29.435 29.460 30.009 28.386 0.14 0.24 0.20 0.27 0.28 0.25 0.20 
12 36.036 35.703 34.406 34.152 35.656 34.979 36.595 0.15 0.13 0.18 0.22 0.19 0.18 0.15 
13 33.006 33.292 38.065 32.960 32.381 34.175 33.148 0.22 0.16 0.10 0.22 0.28 0.19 0.25 
14 32.254 31.851 31.941 32.576 32.871 32.310 31.382 0.23 0.27 0.25 0.27 0.23 0.25 0.25 
15 34.840 37.685 35.448 36.005 36.947 36.521 35.425 0.22 0.12 0.16 0.19 0.13 0.15 0.20 
16 29.260 31.136 33.302 32.206 30.612 31.814 29.362 0.18 0.11 0.04 0.09 0.15 0.10 0.18 
17 35.120 36.440 35.782 37.721 36.028 36.493 35.062 0.20 0.12 0.17 0.08 0.15 0.13 0.20 
18 32.973 34.664 32.709 32.429 33.874 33.419 32.320 0.22 0.12 0.25 0.27 0.25 0.22 0.26 
19 30.356 31.659 31.553 33.629 32.883 32.431 31.216 0.23 0.23 0.28 0.18 0.22 0.23 0.24 
20 31.713 31.659 31.034 32.793 32.327 31.953 31.773 0.23 0.31 0.34 0.28 0.29 0.30 0.24 

Mean 32.428 34.015 34.194 34.755 33.888 34.213 32.445 0.20 0.16 0.18 0.17 0.20 0.18 0.21 
SD 2.318 3.192 2.878 3.348 2.493 2.651 2.378 0.06 0.08 0.09 0.09 0.07 0.08 0.07 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C45 

Dataset 3: Predictive performance statistics for the prediction equations developed using the combination of Agreeableness and 

Conscientiousness (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 1.035 1.045 1.052 1.039 1.043 1.044 1.033 0.18 0.16 0.12 0.20 0.17 0.16 0.18 
2 1.087 1.122 1.123 1.116 1.118 1.120 1.089 0.25 0.12 0.12 0.17 0.17 0.14 0.25 
3 1.097 1.114 1.127 1.116 1.120 1.119 1.101 0.15 0.14 0.11 0.14 0.11 0.12 0.17 
4 1.014 0.990 1.002 0.994 1.007 0.998 1.002 0.30 0.28 0.26 0.28 0.23 0.26 0.33 
5 1.077 1.080 1.081 1.080 1.078 1.080 1.073 0.03 0.05 0.06 0.06 0.07 0.06 0.06 
6 0.958 0.980 0.968 0.955 0.956 0.965 0.955 0.13 0.11 0.15 0.17 0.18 0.15 0.14 
7 1.103 1.101 1.094 1.100 1.096 1.098 1.101 0.26 0.25 0.26 0.25 0.26 0.25 0.26 
8 1.073 1.087 1.076 1.079 1.079 1.080 1.079 0.12 0.08 0.11 0.09 0.08 0.09 0.12 
9 1.049 1.063 1.062 1.063 1.063 1.063 1.054 0.10 0.07 0.07 0.03 0.03 0.05 0.08 

10 1.052 1.055 1.056 1.054 1.050 1.054 1.056 0.18 0.12 0.14 0.14 0.16 0.14 0.16 
11 1.029 1.025 1.023 1.022 1.017 1.022 1.026 0.15 0.15 0.14 0.16 0.15 0.15 0.16 
12 1.056 1.054 1.052 1.057 1.060 1.056 1.059 0.11 0.12 0.15 0.16 0.15 0.15 0.12 
13 1.130 1.142 1.142 1.137 1.142 1.141 1.129 0.15 0.11 0.09 0.06 0.08 0.09 0.14 
14 1.129 1.145 1.166 1.149 1.149 1.152 1.124 0.06 0.09 0.04 0.06 0.05 0.06 0.07 
15 1.130 1.132 1.149 1.134 1.156 1.143 1.135 0.12 0.11 0.07 0.09 0.06 0.08 0.12 
16 1.021 1.111 1.126 1.120 1.118 1.119 1.059 0.17 -0.03 -0.05 -0.05 -0.05 -0.04 0.05 
17 0.962 0.995 1.105 1.054 1.055 1.052 0.957 0.15 0.10 0.03 0.05 0.04 0.06 0.15 
18 1.068 1.095 1.084 1.097 1.084 1.090 1.075 0.17 0.11 0.16 0.12 0.13 0.13 0.14 
19 1.085 1.101 1.096 1.110 1.110 1.104 1.071 0.12 0.03 0.03 0.02 0.01 0.02 0.09 
20 1.131 1.140 1.176 1.159 1.166 1.160 1.161 0.00 -0.02 -0.05 -0.05 -0.05 -0.04 -0.01 

Mean 1.064 1.079 1.088 1.082 1.083 1.083 1.067 0.15 0.11 0.10 0.11 0.10 0.10 0.14 
SD 0.050 0.050 0.053 0.052 0.053 0.051 0.053 0.07 0.07 0.08 0.09 0.08 0.08 0.08 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C46 

Dataset 3: Predictive performance statistics for the prediction equations developed using the combination of Neuroticism, Agreeableness, and 

Conscientiousness (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 1.044 1.054 1.042 1.045 1.043 1.046 1.046 0.15 0.14 0.16 0.13 0.16 0.15 0.16 
2 1.084 1.133 1.140 1.126 1.124 1.131 1.094 0.25 0.08 0.07 0.12 0.12 0.10 0.20 
3 1.099 1.146 1.123 1.132 1.133 1.133 1.103 0.14 0.03 0.08 0.06 0.06 0.06 0.13 
4 1.012 1.017 1.013 1.059 1.064 1.038 1.022 0.31 0.23 0.13 0.06 0.10 0.13 0.29 
5 1.076 1.078 1.085 1.096 1.084 1.086 1.073 0.03 0.05 0.05 0.07 0.07 0.06 0.05 
6 0.958 0.971 0.955 0.975 0.987 0.972 0.961 0.13 0.11 0.16 0.14 0.12 0.13 0.13 
7 1.105 1.095 1.096 1.099 1.107 1.099 1.100 0.25 0.26 0.25 0.28 0.20 0.25 0.25 
8 1.073 1.073 1.062 1.069 1.061 1.066 1.076 0.12 0.12 0.14 0.12 0.15 0.13 0.11 
9 1.049 1.064 1.064 1.062 1.056 1.061 1.045 0.09 0.08 0.07 0.04 0.07 0.06 0.07 

10 1.052 1.051 1.037 1.046 1.043 1.044 1.050 0.17 0.16 0.20 0.17 0.17 0.18 0.18 
11 1.029 1.038 1.031 1.038 1.037 1.036 1.025 0.15 0.11 0.12 0.14 0.14 0.13 0.15 
12 1.068 1.066 1.061 1.069 1.061 1.064 1.069 0.06 0.09 0.13 0.13 0.17 0.13 0.09 
13 1.132 1.137 1.207 1.144 1.171 1.165 1.126 0.11 0.10 0.06 0.10 0.05 0.07 0.12 
14 1.142 1.178 1.167 1.173 1.157 1.169 1.149 0.01 0.01 0.03 0.02 0.04 0.03 0.02 
15 1.154 1.165 1.182 1.185 1.198 1.183 1.159 0.05 0.06 0.05 0.06 0.04 0.05 0.06 
16 1.023 1.114 1.119 1.126 1.128 1.122 1.038 0.15 0.06 -0.01 0.01 -0.02 0.01 0.06 
17 0.964 1.009 0.997 0.988 0.993 0.997 0.979 0.14 0.06 0.09 0.07 0.09 0.08 0.08 
18 1.068 1.090 1.090 1.080 1.105 1.091 1.074 0.17 0.12 0.10 0.14 0.06 0.11 0.13 
19 1.084 1.120 1.097 1.120 1.124 1.115 1.068 0.12 0.01 0.07 0.04 0.02 0.03 0.11 
20 1.137 1.186 1.161 1.172 1.176 1.174 1.166 -0.01 -0.01 -0.02 -0.04 -0.03 -0.02 -0.03 

Mean 1.068 1.089 1.086 1.090 1.093 1.090 1.071 0.13 0.09 0.10 0.09 0.09 0.09 0.12 
SD 0.053 0.057 0.064 0.057 0.058 0.058 0.053 0.08 0.07 0.06 0.07 0.06 0.06 0.07 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C47 

Dataset 3: Predictive performance statistics for the prediction equations developed using the combination of Neuroticism, Openness,

Agreeableness, and Conscientiousness (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 1.040 1.042 1.045 1.042 1.032 1.040 1.033 0.18 0.18 0.14 0.19 0.20 0.17 0.19 
2 1.087 1.163 1.180 1.199 1.199 1.185 1.146 0.13 0.02 0.02 0.03 0.01 0.02 0.05 
3 1.099 1.149 1.223 1.173 1.181 1.182 1.113 0.17 0.01 0.03 0.02 0.02 0.02 0.11 
4 1.015 1.053 1.091 1.061 1.063 1.067 1.021 0.20 0.08 0.04 0.05 0.03 0.05 0.13 
5 1.082 1.085 1.112 1.099 1.101 1.099 1.086 0.07 0.06 0.04 0.05 0.05 0.05 0.06 
6 0.950 0.963 0.990 0.953 1.001 0.977 0.952 0.16 0.19 0.14 0.18 0.16 0.17 0.17 
7 1.101 1.105 1.106 1.127 1.124 1.115 1.113 0.26 0.21 0.22 0.19 0.20 0.20 0.20 
8 1.069 1.071 1.099 1.087 1.110 1.092 1.057 0.15 0.15 0.08 0.06 0.06 0.09 0.16 
9 1.078 1.086 1.088 1.084 1.096 1.089 1.077 0.02 -0.02 -0.03 0.01 -0.05 -0.02 0.02 

10 1.054 1.051 1.039 1.046 1.061 1.049 1.063 0.16 0.16 0.22 0.17 0.13 0.17 0.12 
11 1.068 1.105 1.091 1.088 1.109 1.098 1.071 -0.01 0.01 0.04 0.05 0.03 0.03 0.00 
12 1.075 1.085 1.098 1.103 1.107 1.098 1.084 0.10 0.07 0.07 0.07 0.06 0.07 0.08 
13 1.122 1.143 1.126 1.156 1.142 1.142 1.124 0.14 0.11 0.16 0.04 0.14 0.11 0.12 
14 1.143 1.172 1.186 1.184 1.197 1.185 1.160 0.02 0.01 -0.01 -0.03 -0.03 -0.02 0.00 
15 1.155 1.174 1.179 1.196 1.242 1.198 1.155 0.00 -0.01 0.04 0.02 -0.01 0.01 0.00 
16 1.062 1.119 1.161 1.143 1.128 1.138 1.076 0.06 0.04 -0.01 -0.02 -0.03 0.00 0.02 
17 0.986 1.026 1.043 1.049 1.067 1.046 1.023 0.09 0.07 0.00 -0.02 0.00 0.01 0.04 
18 1.078 1.090 1.100 1.098 1.101 1.097 1.096 0.15 0.10 0.08 0.08 0.07 0.08 0.11 
19 1.075 1.079 1.167 1.157 1.175 1.145 1.084 0.13 0.06 -0.01 0.01 0.01 0.02 0.09 
20 1.135 1.207 1.218 1.205 1.270 1.225 1.156 0.02 -0.02 -0.02 -0.02 0.00 -0.01 0.01 

Mean 1.074 1.098 1.117 1.113 1.125 1.113 1.085 0.11 0.07 0.06 0.06 0.05 0.06 0.08 
SD 0.049 0.057 0.061 0.064 0.067 0.061 0.051 0.07 0.07 0.08 0.07 0.07 0.07 0.06 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C48 

Dataset 4: Predictive performance statistics for the prediction equations developed using the combination of Openness and Conscientiousness

(Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.477 0.486 0.491 0.493 0.483 0.488 0.477 0.11 0.09 0.09 0.07 0.11 0.09 0.10 
2 0.441 0.445 0.446 0.452 0.451 0.448 0.446 0.16 0.15 0.18 0.18 0.17 0.17 0.15 
3 0.546 0.551 0.546 0.549 0.548 0.548 0.541 0.09 0.05 0.06 0.05 0.05 0.05 0.08 
4 0.496 0.492 0.494 0.495 0.496 0.494 0.497 0.28 0.29 0.29 0.26 0.24 0.27 0.28 
5 0.482 0.489 0.491 0.516 0.497 0.499 0.485 0.26 0.25 0.25 0.20 0.22 0.23 0.24 
6 0.460 0.467 0.461 0.496 0.490 0.478 0.457 0.26 0.23 0.25 0.10 0.08 0.16 0.25 
7 0.509 0.521 0.533 0.528 0.531 0.528 0.509 0.19 0.19 0.21 0.17 0.20 0.19 0.19 
8 0.534 0.534 0.530 0.533 0.533 0.533 0.534 0.30 0.30 0.33 0.30 0.30 0.31 0.31 
9 0.580 0.583 0.584 0.581 0.582 0.582 0.576 0.25 0.24 0.25 0.27 0.29 0.26 0.27 

10 0.449 0.448 0.462 0.463 0.461 0.458 0.444 0.20 0.19 0.12 0.13 0.12 0.14 0.17 
11 0.537 0.552 0.564 0.557 0.553 0.557 0.536 0.31 0.23 0.12 0.17 0.19 0.18 0.29 
12 0.448 0.461 0.455 0.455 0.453 0.456 0.452 0.31 0.28 0.28 0.28 0.29 0.28 0.29 
13 0.465 0.453 0.457 0.455 0.455 0.455 0.459 0.24 0.22 0.18 0.20 0.21 0.20 0.25 
14 0.502 0.498 0.496 0.497 0.496 0.497 0.506 0.26 0.25 0.27 0.27 0.27 0.27 0.26 
15 0.502 0.504 0.490 0.488 0.493 0.494 0.493 0.33 0.31 0.27 0.27 0.26 0.28 0.33 
16 0.435 0.442 0.448 0.439 0.461 0.448 0.428 0.30 0.20 0.19 0.20 0.16 0.19 0.28 
17 0.450 0.454 0.519 0.508 0.470 0.488 0.449 0.20 0.13 0.00 0.05 0.10 0.07 0.18 
18 0.442 0.460 0.475 0.475 0.480 0.472 0.456 0.23 0.15 0.10 0.09 0.08 0.11 0.17 
19 0.409 0.413 0.407 0.458 0.469 0.437 0.415 0.38 0.37 0.41 0.19 0.17 0.28 0.37 
20 0.483 0.485 0.482 0.483 0.482 0.483 0.484 0.35 0.34 0.36 0.35 0.34 0.35 0.34 

Mean 0.482 0.487 0.492 0.496 0.494 0.492 0.482 0.25 0.22 0.21 0.19 0.19 0.20 0.24 
SD 0.042 0.042 0.043 0.038 0.036 0.039 0.041 0.07 0.08 0.10 0.09 0.08 0.08 0.08 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C49 

Dataset 4: Predictive performance statistics for the prediction equations developed using the combination of Openness, Agreeableness, and 

Conscientiousness (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.472 0.509 0.515 0.491 0.496 0.503 0.466 0.16 0.21 0.20 0.19 0.19 0.20 0.19 
2 0.444 0.446 0.454 0.461 0.467 0.457 0.437 0.19 0.22 0.19 0.20 0.18 0.20 0.21 
3 0.549 0.536 0.541 0.529 0.540 0.536 0.536 0.06 0.16 0.16 0.20 0.14 0.17 0.14 
4 0.494 0.481 0.493 0.492 0.490 0.489 0.490 0.33 0.37 0.29 0.29 0.29 0.31 0.37 
5 0.487 0.498 0.514 0.518 0.486 0.504 0.484 0.30 0.24 0.26 0.26 0.29 0.27 0.31 
6 0.490 0.516 0.547 0.553 0.565 0.545 0.503 0.16 0.10 0.04 0.12 0.07 0.08 0.12 
7 0.505 0.514 0.513 0.509 0.504 0.510 0.501 0.21 0.19 0.20 0.22 0.23 0.21 0.22 
8 0.533 0.524 0.518 0.512 0.514 0.517 0.531 0.33 0.40 0.40 0.41 0.42 0.41 0.35 
9 0.579 0.563 0.564 0.561 0.561 0.562 0.574 0.28 0.33 0.33 0.36 0.34 0.34 0.32 

10 0.472 0.474 0.492 0.488 0.488 0.485 0.468 0.19 0.14 0.11 0.11 0.12 0.12 0.16 
11 0.537 0.564 0.610 0.553 0.564 0.573 0.544 0.31 0.09 -0.08 0.19 0.15 0.09 0.31 
12 0.445 0.461 0.467 0.476 0.485 0.472 0.446 0.35 0.25 0.12 0.15 0.10 0.15 0.37 
13 0.476 0.462 0.481 0.475 0.471 0.472 0.466 0.22 0.27 0.16 0.19 0.20 0.20 0.26 
14 0.504 0.509 0.503 0.503 0.506 0.505 0.510 0.28 0.26 0.28 0.28 0.27 0.27 0.30 
15 0.500 0.487 0.488 0.485 0.497 0.489 0.489 0.39 0.36 0.42 0.42 0.37 0.39 0.42 
16 0.432 0.437 0.433 0.444 0.457 0.443 0.423 0.35 0.28 0.31 0.26 0.26 0.27 0.32 
17 0.446 0.446 0.498 0.523 0.504 0.493 0.441 0.25 0.16 0.09 0.01 0.04 0.07 0.20 
18 0.444 0.453 0.459 0.495 0.485 0.473 0.447 0.27 0.19 0.18 0.16 0.22 0.19 0.25 
19 0.459 0.459 0.482 0.515 0.465 0.480 0.451 0.17 0.21 0.17 0.11 0.20 0.17 0.18 
20 0.500 0.519 0.514 0.527 0.517 0.519 0.495 0.26 0.16 0.20 0.16 0.21 0.18 0.28 

Mean 0.488 0.493 0.504 0.506 0.503 0.501 0.485 0.25 0.23 0.20 0.21 0.21 0.21 0.26 
SD 0.038 0.037 0.039 0.030 0.032 0.033 0.039 0.08 0.08 0.12 0.10 0.10 0.09 0.08 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C50 

Dataset 4: Predictive performance statistics for the prediction equations developed using the combination of Extraversion, Openness,

Agreeableness, and Conscientiousness (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.474 0.509 0.535 0.540 0.522 0.527 0.468 0.16 0.14 0.12 0.10 0.10 0.11 0.17 
2 0.445 0.450 0.447 0.463 0.478 0.460 0.442 0.20 0.18 0.22 0.16 0.12 0.17 0.21 
3 0.551 0.567 0.620 0.568 0.581 0.584 0.535 0.06 0.08 0.02 0.14 0.09 0.08 0.19 
4 0.496 0.486 0.616 0.595 0.544 0.560 0.496 0.32 0.35 0.17 0.18 0.18 0.22 0.31 
5 0.487 0.507 0.538 0.523 0.507 0.519 0.481 0.30 0.32 0.29 0.29 0.31 0.30 0.31 
6 0.496 0.506 0.557 0.552 0.601 0.554 0.492 0.15 0.11 -0.09 -0.12 0.00 -0.03 0.16 
7 0.518 0.601 0.578 0.612 0.592 0.596 0.520 0.16 0.18 0.23 0.19 0.19 0.20 0.16 
8 0.533 0.522 0.558 0.517 0.525 0.531 0.526 0.33 0.43 0.25 0.44 0.37 0.37 0.39 
9 0.579 0.584 0.554 0.559 0.553 0.562 0.574 0.28 0.26 0.41 0.40 0.41 0.37 0.36 

10 0.473 0.494 0.530 0.511 0.534 0.517 0.466 0.19 0.12 0.11 0.06 0.05 0.08 0.17 
11 0.537 0.563 0.679 0.625 0.646 0.628 0.540 0.31 0.06 -0.13 -0.05 0.09 -0.01 0.28 
12 0.446 0.461 0.513 0.531 0.503 0.502 0.444 0.36 0.25 0.14 0.10 0.13 0.16 0.37 
13 0.480 0.549 0.625 0.561 0.677 0.603 0.463 0.21 0.17 0.02 0.09 -0.01 0.07 0.26 
14 0.504 0.505 0.521 0.514 0.509 0.512 0.501 0.28 0.25 0.24 0.27 0.29 0.26 0.29 
15 0.505 0.483 0.480 0.506 0.527 0.499 0.492 0.35 0.38 0.43 0.25 0.16 0.30 0.38 
16 0.440 0.466 0.518 0.472 0.458 0.479 0.432 0.33 0.26 0.14 0.30 0.34 0.26 0.30 
17 0.446 0.447 0.444 0.471 0.473 0.459 0.432 0.25 0.19 0.23 0.20 0.17 0.20 0.24 
18 0.451 0.471 0.505 0.535 0.539 0.512 0.454 0.23 0.16 0.15 0.11 0.10 0.13 0.24 
19 0.458 0.493 0.526 0.491 0.494 0.501 0.480 0.18 0.17 0.21 0.28 0.26 0.23 0.12 
20 0.502 0.523 0.513 0.503 0.516 0.514 0.498 0.26 0.16 0.17 0.27 0.21 0.20 0.23 

Mean 0.491 0.509 0.543 0.532 0.539 0.531 0.487 0.25 0.21 0.17 0.18 0.18 0.18 0.26 
SD 0.038 0.043 0.057 0.044 0.055 0.045 0.038 0.08 0.10 0.14 0.13 0.12 0.11 0.08 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C51 

Dataset 4: Predictive performance statistics for the prediction equations developed using the combination of Neuroticism, Extraversion,

Openness, Agreeableness, and Conscientiousness (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.473 0.521 0.499 0.585 0.607 0.553 0.471 0.14 0.05 0.18 0.16 0.06 0.11 0.16 
2 0.442 0.467 0.497 0.532 0.542 0.509 0.437 0.21 0.17 0.17 0.18 0.14 0.17 0.19 
3 0.546 0.582 0.584 0.579 0.569 0.578 0.552 0.09 0.01 0.15 0.16 0.16 0.12 0.14 
4 0.490 0.503 0.540 0.544 0.740 0.582 0.489 0.35 0.27 0.14 0.17 0.18 0.19 0.34 
5 0.479 0.484 0.555 0.686 0.522 0.562 0.471 0.31 0.35 0.15 0.08 0.26 0.21 0.34 
6 0.494 0.488 0.588 0.608 0.564 0.562 0.485 0.16 0.19 -0.01 0.11 0.10 0.10 0.19 
7 0.537 0.560 0.616 0.622 0.609 0.602 0.522 0.10 0.16 0.12 0.21 0.13 0.16 0.17 
8 0.528 0.542 0.529 0.707 0.537 0.579 0.524 0.36 0.25 0.36 0.18 0.26 0.26 0.39 
9 0.580 0.579 0.559 0.533 0.583 0.564 0.575 0.31 0.31 0.35 0.43 0.32 0.35 0.37 

10 0.474 0.492 0.536 0.522 0.544 0.523 0.467 0.22 0.14 -0.07 -0.01 -0.08 -0.01 0.18 
11 0.542 0.581 0.603 0.597 0.614 0.599 0.562 0.28 0.05 0.10 0.05 0.10 0.08 0.25 
12 0.440 0.463 0.548 0.501 0.456 0.492 0.433 0.39 0.24 -0.13 0.22 0.28 0.15 0.43 
13 0.473 0.505 0.548 0.612 0.544 0.552 0.462 0.24 0.11 0.16 0.10 0.22 0.15 0.29 
14 0.503 0.506 0.632 0.620 0.572 0.582 0.498 0.28 0.27 0.15 0.04 0.10 0.14 0.31 
15 0.502 0.492 0.484 0.519 0.490 0.496 0.497 0.33 0.32 0.41 0.35 0.38 0.36 0.34 
16 0.435 0.470 0.471 0.453 0.515 0.477 0.432 0.32 0.24 0.28 0.36 0.26 0.29 0.32 
17 0.443 0.443 0.557 0.442 0.450 0.473 0.440 0.25 0.22 0.07 0.27 0.25 0.20 0.27 
18 0.443 0.459 0.545 0.509 0.515 0.507 0.444 0.25 0.19 0.07 0.18 0.16 0.15 0.26 
19 0.461 0.520 0.533 0.587 0.543 0.546 0.448 0.17 0.01 0.19 0.11 0.14 0.11 0.18 
20 0.504 0.529 0.500 0.559 0.602 0.548 0.502 0.22 0.13 0.24 0.18 0.06 0.15 0.23 

Mean 0.490 0.509 0.546 0.566 0.556 0.544 0.486 0.25 0.18 0.15 0.18 0.17 0.17 0.27 
SD 0.040 0.041 0.042 0.067 0.062 0.039 0.043 0.08 0.10 0.13 0.11 0.10 0.09 0.08 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C52 

Dataset 5: Predictive performance statistics for the prediction equations developed using the combination of Ambition and Prudence (Study 

4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 6.684 6.787 6.794 6.758 6.712 6.763 6.693 0.17 0.09 0.09 0.10 0.13 0.10 0.14 
2 6.184 6.195 6.190 6.198 6.222 6.201 6.195 0.11 0.12 0.13 0.10 0.10 0.11 0.11 
3 6.144 6.165 6.173 6.167 6.181 6.172 6.159 0.15 0.16 0.15 0.15 0.14 0.15 0.14 
4 6.212 6.230 6.229 6.206 6.215 6.220 6.158 0.12 0.16 0.15 0.15 0.15 0.15 0.14 
5 5.929 5.897 5.887 5.907 5.904 5.899 5.931 0.11 0.15 0.16 0.15 0.15 0.15 0.13 
6 6.252 6.318 6.291 6.252 6.271 6.283 6.260 0.17 0.16 0.16 0.17 0.16 0.16 0.17 
7 5.872 5.964 5.976 5.974 5.963 5.969 5.876 0.08 0.03 0.03 0.04 0.03 0.03 0.06 
8 6.276 6.265 6.253 6.247 6.258 6.256 6.302 0.08 0.13 0.12 0.13 0.12 0.12 0.08 
9 6.373 6.375 6.361 6.391 6.377 6.376 6.330 0.08 0.11 0.12 0.10 0.11 0.11 0.13 

10 5.669 5.696 5.714 5.714 5.698 5.706 5.658 0.17 0.14 0.13 0.13 0.13 0.13 0.16 
11 5.721 5.762 5.758 5.782 5.780 5.770 5.740 0.17 0.16 0.17 0.14 0.14 0.15 0.18 
12 5.918 5.962 5.963 5.918 5.941 5.946 5.857 0.06 0.08 0.08 0.09 0.09 0.09 0.10 
13 5.637 5.686 5.726 5.714 5.709 5.708 5.658 0.09 0.10 0.10 0.10 0.10 0.10 0.09 
14 5.747 5.831 5.843 5.828 5.824 5.831 5.715 0.16 0.14 0.13 0.14 0.14 0.14 0.14 
15 6.174 6.172 6.180 6.163 6.167 6.171 6.166 0.10 0.13 0.13 0.14 0.14 0.13 0.12 
16 5.961 5.996 6.017 5.991 6.036 6.010 5.979 0.15 0.15 0.14 0.15 0.12 0.14 0.17 
17 6.420 6.443 6.463 6.454 6.455 6.454 6.437 0.19 0.21 0.19 0.19 0.20 0.20 0.19 
18 6.395 6.484 6.476 6.465 6.447 6.468 6.395 0.05 0.06 0.06 0.05 0.05 0.05 0.06 
19 6.083 6.119 6.117 6.104 6.109 6.112 6.101 0.14 0.11 0.11 0.12 0.12 0.11 0.13 
20 6.519 6.484 6.518 6.548 6.490 6.510 6.525 0.10 0.15 0.12 0.11 0.13 0.13 0.12 

Mean 6.108 6.142 6.146 6.139 6.138 6.141 6.107 0.12 0.13 0.12 0.12 0.12 0.12 0.13 
SD 0.288 0.287 0.284 0.282 0.273 0.281 0.291 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C53 

Dataset 5: Predictive performance statistics for the prediction equations developed using the combination of Adjustment, Ambition, and 

Prudence (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 6.722 6.777 6.785 6.892 6.829 6.821 6.695 0.14 0.08 0.09 0.03 0.06 0.06 0.13 
2 6.167 6.143 6.174 6.143 6.171 6.158 6.158 0.11 0.13 0.09 0.11 0.11 0.11 0.12 
3 6.133 6.156 6.176 6.181 6.165 6.170 6.166 0.15 0.14 0.12 0.12 0.14 0.13 0.14 
4 6.197 6.193 6.153 6.174 6.241 6.190 6.285 0.12 0.17 0.17 0.16 0.15 0.16 0.13 
5 5.942 5.915 5.905 5.913 5.894 5.907 5.914 0.08 0.13 0.14 0.12 0.14 0.13 0.10 
6 6.241 6.272 6.263 6.339 6.383 6.314 6.228 0.17 0.15 0.14 0.12 0.12 0.13 0.17 
7 5.870 6.013 5.958 5.912 5.948 5.958 5.922 0.08 -0.01 0.03 0.04 0.03 0.02 0.06 
8 6.331 6.327 6.243 6.378 6.401 6.337 6.254 0.05 0.05 0.08 0.06 0.04 0.06 0.07 
9 6.373 6.363 6.341 6.414 6.391 6.377 6.379 0.08 0.11 0.11 0.06 0.08 0.09 0.09 

10 5.660 5.724 5.724 5.733 5.741 5.730 5.661 0.15 0.15 0.15 0.13 0.13 0.14 0.16 
11 5.775 5.844 5.864 5.828 5.842 5.845 5.817 0.09 0.08 0.07 0.10 0.09 0.08 0.06 
12 5.926 6.111 6.075 6.152 6.192 6.132 5.937 0.05 -0.04 -0.02 -0.03 -0.02 -0.03 0.04 
13 5.729 5.802 5.821 5.868 5.863 5.839 5.742 0.04 0.03 0.03 0.00 0.03 0.02 0.02 
14 5.741 5.863 5.833 5.857 5.906 5.865 5.819 0.14 0.12 0.13 0.10 0.10 0.11 0.15 
15 6.167 6.191 6.193 6.215 6.192 6.198 6.174 0.09 0.10 0.09 0.10 0.10 0.10 0.11 
16 6.010 6.079 6.109 6.092 6.090 6.093 6.029 0.12 0.11 0.08 0.11 0.10 0.10 0.14 
17 6.445 6.482 6.504 6.461 6.468 6.479 6.463 0.17 0.14 0.10 0.18 0.14 0.14 0.16 
18 6.461 6.583 6.562 6.538 6.578 6.565 6.452 0.02 0.01 0.01 0.01 0.01 0.01 0.02 
19 6.059 6.046 6.093 6.069 6.073 6.070 6.054 0.13 0.13 0.09 0.10 0.10 0.11 0.13 
20 6.521 6.499 6.559 6.548 6.518 6.531 6.541 0.10 0.14 0.11 0.11 0.13 0.12 0.11 

Mean 6.124 6.169 6.167 6.185 6.194 6.179 6.134 0.10 0.10 0.09 0.09 0.09 0.09 0.11 
SD 0.287 0.271 0.274 0.288 0.278 0.277 0.276 0.04 0.06 0.05 0.05 0.05 0.05 0.04 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C54 

Dataset 5: Predictive performance statistics for the prediction equations developed using the combination of Adjustment, Ambition,

Likeability, and Prudence (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 6.744 6.732 6.802 6.762 6.737 6.758 6.685 0.12 0.12 0.08 0.13 0.12 0.11 0.13 
2 6.227 6.241 6.200 6.169 6.274 6.221 6.171 0.09 0.06 0.12 0.13 0.11 0.11 0.10 
3 6.127 6.207 6.259 6.226 6.210 6.226 6.160 0.15 0.11 0.09 0.11 0.12 0.11 0.16 
4 6.191 6.168 6.225 6.197 6.204 6.199 6.167 0.12 0.16 0.16 0.16 0.19 0.17 0.17 
5 5.942 5.975 6.054 6.037 6.095 6.040 5.922 0.08 0.11 0.10 0.11 0.12 0.11 0.11 
6 6.253 6.281 6.275 6.462 6.483 6.375 6.274 0.17 0.16 0.18 0.13 0.13 0.15 0.17 
7 5.879 5.985 5.992 6.059 6.030 6.016 5.874 0.07 0.03 0.05 0.06 0.06 0.05 0.08 
8 6.329 6.280 6.325 6.496 6.446 6.387 6.308 0.05 0.10 0.09 0.01 0.06 0.06 0.09 
9 6.404 6.404 6.413 6.381 6.377 6.394 6.330 0.05 0.05 0.07 0.07 0.08 0.07 0.07 

10 5.655 5.755 5.736 5.796 5.768 5.764 5.653 0.16 0.15 0.16 0.17 0.16 0.16 0.15 
11 5.787 5.842 5.814 5.811 5.959 5.857 5.796 0.07 0.03 0.07 0.08 0.03 0.05 0.09 
12 5.934 6.051 5.991 6.056 6.061 6.040 5.916 0.05 0.06 0.06 0.01 0.01 0.03 0.06 
13 5.725 5.735 5.751 5.739 5.753 5.744 5.742 0.04 0.04 0.05 0.05 0.05 0.05 0.05 
14 5.791 6.295 6.291 6.550 6.344 6.370 5.956 0.12 0.07 0.09 0.04 0.04 0.06 0.08 
15 6.237 6.424 6.481 6.378 6.410 6.423 6.313 0.04 0.02 0.02 0.05 0.05 0.04 0.04 
16 6.048 6.028 6.108 6.140 6.051 6.082 6.023 0.11 0.13 0.08 0.07 0.11 0.10 0.12 
17 6.456 6.543 6.536 6.532 6.558 6.542 6.406 0.14 0.11 0.13 0.09 0.08 0.10 0.21 
18 6.527 6.660 6.681 6.688 6.695 6.681 6.637 0.00 0.04 0.01 0.04 0.06 0.04 0.01 
19 6.055 6.034 6.096 6.280 6.072 6.120 6.000 0.13 0.13 0.10 0.13 0.14 0.13 0.15 
20 6.555 6.569 6.798 6.615 6.681 6.666 6.591 0.08 0.10 -0.01 0.09 0.09 0.07 0.08 

Mean 6.143 6.210 6.241 6.269 6.260 6.245 6.146 0.09 0.09 0.08 0.09 0.09 0.09 0.11 
SD 0.295 0.281 0.307 0.291 0.283 0.286 0.290 0.05 0.04 0.05 0.04 0.05 0.04 0.05 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C55 

Dataset 5: Predictive performance statistics for the prediction equations developed using the combination of Adjustment, Ambition,

Intellectance, Likeability, and Prudence (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 6.735 6.806 6.773 6.681 6.785 6.761 6.714 0.13 0.09 0.11 0.15 0.13 0.12 0.12 
2 6.316 6.249 6.220 6.265 6.360 6.274 6.222 0.06 0.10 0.08 0.11 0.09 0.09 0.10 
3 6.117 6.167 6.173 6.142 6.186 6.167 6.158 0.15 0.13 0.15 0.17 0.16 0.15 0.15 
4 6.193 6.419 6.224 6.304 6.357 6.326 6.273 0.12 0.14 0.14 0.18 0.17 0.16 0.13 
5 5.994 6.369 6.506 6.309 6.335 6.380 6.102 0.04 -0.03 -0.09 -0.04 -0.02 -0.04 0.02 
6 6.332 6.592 6.657 6.873 6.848 6.742 6.350 0.13 0.02 0.06 0.00 0.02 0.02 0.12 
7 5.880 5.976 6.097 6.159 6.048 6.070 5.948 0.07 0.07 0.04 0.08 0.06 0.06 0.07 
8 6.336 6.378 6.342 6.445 6.595 6.440 6.357 0.05 0.03 0.07 0.02 0.01 0.03 0.06 
9 6.421 6.362 6.367 6.400 6.395 6.381 6.381 0.04 0.06 0.05 0.04 0.05 0.05 0.05 

10 5.663 5.774 5.673 5.708 5.827 5.745 5.630 0.16 0.12 0.15 0.14 0.11 0.13 0.17 
11 5.786 5.833 5.821 5.890 5.858 5.850 5.782 0.08 0.08 0.10 0.06 0.07 0.08 0.08 
12 5.948 5.979 6.022 6.147 6.112 6.065 5.946 0.05 0.03 0.06 -0.02 0.04 0.03 0.05 
13 5.736 5.941 5.719 5.844 5.922 5.857 5.736 0.04 0.04 0.08 0.09 0.05 0.06 0.05 
14 5.923 6.393 6.418 6.655 6.789 6.564 6.082 0.05 -0.01 -0.01 -0.02 -0.02 -0.02 0.02 
15 6.247 6.414 6.385 6.545 6.395 6.435 6.285 0.04 0.04 0.06 0.00 0.03 0.03 0.05 
16 6.054 6.254 6.138 6.069 6.090 6.138 6.082 0.11 0.02 0.09 0.13 0.10 0.09 0.11 
17 6.463 6.461 6.505 6.448 6.478 6.473 6.432 0.12 0.17 0.14 0.13 0.12 0.14 0.12 
18 6.529 6.584 6.586 6.536 6.590 6.574 6.458 0.00 0.03 0.02 0.06 0.06 0.04 0.04 
19 6.055 6.126 6.146 6.144 6.255 6.168 6.006 0.13 0.12 0.10 0.14 0.15 0.13 0.16 
20 6.545 6.659 6.820 6.860 6.832 6.793 6.543 0.09 0.07 0.05 0.07 0.11 0.08 0.10 

Mean 6.164 6.287 6.280 6.321 6.353 6.310 6.174 0.08 0.07 0.07 0.07 0.07 0.07 0.09 
SD 0.289 0.275 0.313 0.312 0.312 0.296 0.274 0.04 0.05 0.06 0.07 0.06 0.05 0.04 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C56 

Dataset 5: Predictive performance statistics for the prediction equations developed using the combination of Adjustment, Ambition,

Sociability, Intellectance, Likeability and Prudence (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 6.766 6.746 6.784 6.725 6.758 6.753 6.706 0.11 0.11 0.10 0.13 0.13 0.12 0.12 
2 6.315 6.277 6.264 6.179 6.218 6.234 6.162 0.06 0.04 0.08 0.11 0.11 0.08 0.11 
3 6.117 6.136 6.119 6.247 6.210 6.178 6.141 0.15 0.14 0.13 0.09 0.09 0.11 0.13 
4 6.218 6.331 6.409 6.402 6.383 6.381 6.226 0.11 0.11 0.08 0.10 0.13 0.11 0.13 
5 6.009 6.490 6.458 6.406 6.314 6.417 6.067 0.03 -0.08 -0.03 0.01 0.00 -0.03 0.03 
6 6.386 6.444 6.603 7.137 6.744 6.732 6.510 0.09 0.07 0.06 -0.02 0.02 0.03 0.03 
7 5.889 6.188 6.235 6.325 6.489 6.309 5.936 0.06 -0.06 -0.02 -0.04 -0.11 -0.06 0.03 
8 6.358 6.404 6.393 6.466 6.521 6.446 6.303 0.04 0.05 0.04 0.05 0.02 0.04 0.07 
9 6.482 6.445 6.269 6.379 6.375 6.367 6.414 0.00 0.02 0.08 0.04 0.05 0.05 0.04 

10 5.665 5.798 5.820 5.988 6.038 5.911 5.674 0.16 0.09 0.11 0.06 0.11 0.09 0.15 
11 5.790 5.908 5.966 5.917 5.863 5.914 5.775 0.07 0.02 -0.02 0.07 0.03 0.03 0.06 
12 5.948 6.014 5.940 6.075 5.985 6.003 5.956 0.05 0.02 0.07 0.04 0.07 0.05 0.04 
13 5.771 5.849 5.810 5.880 5.861 5.850 5.756 0.03 0.07 0.06 0.07 0.12 0.08 0.06 
14 5.960 6.281 6.645 6.454 6.504 6.471 6.224 0.02 -0.04 -0.07 -0.06 -0.07 -0.06 -0.02 
15 6.253 6.346 6.411 6.630 6.358 6.436 6.316 0.03 0.01 0.02 -0.02 0.06 0.02 0.03 
16 6.065 6.010 6.185 6.067 6.046 6.077 6.085 0.10 0.14 0.03 0.13 0.15 0.11 0.10 
17 6.478 6.646 6.653 6.608 6.583 6.622 6.481 0.11 0.04 0.09 0.07 0.07 0.07 0.10 
18 6.558 6.646 6.556 6.772 6.646 6.655 6.544 -0.02 -0.01 -0.04 0.01 0.03 0.00 0.01 
19 6.065 6.133 6.078 6.096 6.222 6.132 5.981 0.13 0.12 0.12 0.16 0.12 0.13 0.16 
20 6.553 6.714 6.916 7.008 6.829 6.867 6.546 0.08 0.06 0.05 0.05 0.04 0.05 0.10 

Mean 6.182 6.290 6.326 6.388 6.347 6.338 6.190 0.07 0.05 0.05 0.05 0.06 0.05 0.07 
SD 0.295 0.278 0.306 0.340 0.285 0.291 0.283 0.05 0.06 0.06 0.06 0.07 0.06 0.05 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C57 

Dataset 6: Predictive performance statistics for the prediction equations developed using the combination of Emotional Orientation and 

Cognitive Orientation (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.601 0.600 0.563 0.577 0.585 0.581 0.600 -0.08 -0.06 0.07 0.02 -0.01 0.01 -0.06 
2 0.624 0.614 0.607 0.606 0.612 0.610 0.619 -0.12 0.01 0.02 0.04 0.00 0.02 -0.07 
3 0.578 0.586 0.608 0.567 0.549 0.578 0.587 0.27 0.14 0.08 0.29 0.37 0.22 0.26 
4 0.599 0.599 0.545 0.565 0.557 0.566 0.597 -0.19 -0.15 0.10 0.15 0.20 0.08 -0.11 
5 0.575 0.579 0.589 0.590 0.580 0.585 0.571 0.04 0.01 0.02 0.19 0.20 0.10 0.08 
6 0.638 0.633 0.581 0.543 0.561 0.579 0.629 -0.21 -0.18 0.16 0.34 0.19 0.13 -0.12 
7 0.588 0.638 0.551 0.569 0.597 0.589 0.573 0.31 0.16 0.29 0.29 0.29 0.26 0.39 
8 0.580 0.593 0.603 0.546 0.555 0.574 0.570 -0.01 -0.08 -0.01 0.10 0.09 0.03 0.18 
9 0.559 0.792 0.606 0.643 0.662 0.676 0.554 0.09 0.10 0.00 0.00 0.20 0.07 0.08 

10 0.602 0.622 0.570 0.671 0.634 0.624 0.609 0.02 0.09 0.18 0.11 0.11 0.12 0.00 
11 0.588 0.581 0.591 0.572 0.597 0.585 0.593 0.07 0.17 0.09 0.23 0.06 0.14 0.03 
12 0.603 0.627 0.609 0.577 0.541 0.588 0.591 -0.07 0.05 -0.06 0.14 0.26 0.10 -0.01 
13 0.607 0.600 0.596 0.577 0.577 0.587 0.586 0.13 0.15 0.25 0.31 0.29 0.25 0.20 
14 0.667 0.660 0.599 0.574 0.596 0.607 0.646 -0.14 -0.10 0.32 0.40 0.31 0.23 -0.12 
15 0.554 0.550 0.520 0.583 0.599 0.563 0.565 0.03 0.07 0.17 0.02 -0.02 0.06 -0.02 
16 0.598 0.611 0.567 0.574 0.567 0.580 0.599 0.21 0.08 0.27 0.30 0.35 0.25 0.08 
17 0.617 0.624 0.618 0.610 0.654 0.626 0.612 0.25 0.14 -0.01 0.10 -0.08 0.04 0.12 
18 0.633 0.632 0.608 0.567 0.565 0.593 0.626 -0.02 -0.02 0.12 0.25 0.26 0.15 0.04 
19 0.554 0.564 0.522 0.503 0.506 0.524 0.557 0.09 0.03 0.45 0.50 0.48 0.36 0.23 
20 0.615 0.614 0.589 0.580 0.558 0.586 0.602 -0.40 -0.33 0.18 0.21 0.32 0.10 0.20 

Mean 0.599 0.616 0.582 0.580 0.583 0.590 0.594 0.01 0.01 0.14 0.20 0.19 0.14 0.07 
SD 0.028 0.048 0.029 0.034 0.037 0.029 0.024 0.17 0.13 0.13 0.13 0.15 0.09 0.14 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C58 

Dataset 6: Predictive performance statistics for the prediction equations developed using the combination of Emotional Orientation,

Cognitive Orientation, Interpersonal Orientation, and Task Orientation (Study 4). 

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.584 0.600 0.615 0.718 0.923 0.714 0.572 -0.02 -0.04 -0.03 -0.26 -0.15 -0.12 0.09 
2 0.616 0.609 0.630 0.751 0.729 0.680 0.615 -0.09 -0.03 -0.13 -0.19 -0.08 -0.11 -0.09 
3 0.572 0.585 0.655 0.780 0.880 0.725 0.602 0.15 0.10 -0.20 -0.21 -0.24 -0.14 -0.09 
4 0.599 0.605 0.532 0.788 0.669 0.649 0.599 -0.18 -0.18 0.16 -0.08 0.24 0.04 -0.18 
5 0.583 0.594 0.679 0.620 0.574 0.617 0.598 -0.04 -0.09 -0.14 0.12 0.23 0.03 -0.03 
6 0.640 0.712 0.648 0.689 0.917 0.741 0.620 -0.19 -0.09 -0.03 -0.24 -0.20 -0.14 -0.07 
7 0.585 0.819 0.612 0.816 0.863 0.777 0.575 0.09 -0.12 -0.17 -0.25 -0.03 -0.14 0.04 
8 0.583 0.581 0.628 0.684 0.775 0.667 0.599 -0.04 -0.02 -0.03 -0.02 0.05 0.00 -0.16 
9 0.569 0.617 0.633 0.784 0.743 0.694 0.584 0.01 -0.09 0.01 -0.16 0.11 -0.03 -0.07 

10 0.592 0.628 0.584 0.653 0.646 0.628 0.593 0.02 0.09 0.13 -0.07 -0.06 0.02 0.06 
11 0.571 0.621 0.519 0.547 0.693 0.595 0.583 0.10 0.12 0.17 0.13 -0.22 0.05 0.08 
12 0.599 0.643 0.669 0.687 0.738 0.684 0.588 -0.12 0.05 -0.05 0.20 0.13 0.08 -0.03 
13 0.606 0.577 0.608 0.586 0.964 0.684 0.604 0.13 0.19 0.14 0.30 0.20 0.21 0.19 
14 0.675 0.688 0.718 0.908 0.688 0.750 0.643 -0.14 -0.18 -0.18 -0.06 0.09 -0.08 -0.13 
15 0.541 0.551 0.495 0.647 0.689 0.595 0.555 0.03 0.02 0.19 -0.10 0.06 0.04 -0.05 
16 0.588 0.627 0.657 0.850 1.491 0.906 0.617 0.20 0.08 0.08 0.14 -0.22 0.02 0.01 
17 0.602 0.817 0.790 0.754 1.134 0.874 0.597 0.07 0.10 0.12 -0.01 -0.03 0.05 0.15 
18 0.652 0.700 0.748 0.811 0.801 0.765 0.640 -0.16 -0.25 0.10 -0.13 -0.22 -0.13 -0.10 
19 0.560 0.567 0.640 0.585 0.571 0.591 0.570 0.03 0.00 -0.22 0.06 0.12 -0.01 0.10 
20 0.669 0.669 0.886 0.623 1.078 0.814 0.664 -0.41 -0.42 -0.19 0.14 -0.08 -0.14 -0.33 

Mean 0.599 0.640 0.647 0.714 0.828 0.708 0.601 -0.03 -0.04 -0.01 -0.03 -0.01 -0.02 -0.03 
SD 0.035 0.073 0.088 0.095 0.213 0.087 0.026 0.14 0.14 0.14 0.16 0.16 0.09 0.12 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C59 

Dataset 6: Predictive performance statistics for the prediction equations developed using the combination of Emotional Orientation, Social 

Orientation, Cognitive Orientation, Interpersonal Orientation, and Task Orientation (Study 4).

 MAE Cross-validity coefficient
Partition LR H1 H2 H3 H4 ANN1 ANN2 LR H1 H2 H3 H4 ANN1 ANN2 

1 0.585 0.593 0.595 0.740 1.125 0.763 0.593 -0.04 -0.03 -0.01 -0.14 -0.31 -0.12 -0.08 
2 0.617 0.608 0.594 0.776 1.290 0.817 0.621 -0.09 -0.02 -0.09 -0.16 0.05 -0.05 -0.08 
3 0.578 0.594 0.628 0.995 0.946 0.791 0.609 0.09 0.10 -0.18 -0.20 -0.19 -0.12 -0.10 
4 0.598 0.611 0.614 0.974 0.774 0.743 0.595 -0.18 -0.18 0.06 -0.07 0.05 -0.04 -0.15 
5 0.606 0.617 0.649 0.631 1.085 0.746 0.595 -0.10 -0.13 -0.09 0.15 0.14 0.02 -0.09 
6 0.640 0.808 0.656 0.923 1.297 0.921 0.626 -0.19 -0.12 -0.08 -0.12 0.04 -0.07 -0.09 
7 0.593 0.606 0.591 0.959 1.210 0.842 0.601 0.04 -0.11 -0.01 0.01 0.05 -0.02 -0.04 
8 0.584 0.613 0.589 0.684 1.286 0.793 0.581 -0.05 -0.21 -0.01 0.04 -0.39 -0.14 0.01 
9 0.578 0.613 0.702 0.904 1.902 1.030 0.565 -0.03 -0.07 -0.14 -0.01 0.00 -0.06 -0.06 

10 0.606 0.613 0.608 0.791 1.188 0.800 0.614 -0.03 -0.03 0.06 -0.28 -0.31 -0.14 0.01 
11 0.589 0.774 0.703 0.895 1.342 0.929 0.595 -0.02 -0.28 -0.24 -0.37 -0.35 -0.31 -0.02 
12 0.606 0.608 0.668 0.942 1.075 0.823 0.599 -0.16 -0.09 -0.32 0.10 0.01 -0.08 -0.08 
13 0.608 0.682 0.647 0.656 0.618 0.651 0.613 0.08 0.10 0.07 0.15 0.29 0.15 0.13 
14 0.686 0.679 0.769 0.886 0.883 0.804 0.670 -0.19 -0.43 -0.15 -0.12 0.15 -0.13 -0.17 
15 0.542 0.574 0.620 0.776 0.803 0.693 0.540 0.00 -0.15 -0.24 0.07 0.03 -0.07 -0.02 
16 0.605 0.615 0.832 1.006 2.460 1.228 0.636 0.09 0.03 -0.06 -0.05 -0.25 -0.08 -0.11 
17 0.602 0.845 0.704 0.761 1.436 0.937 0.599 0.07 0.10 0.09 -0.24 0.21 0.04 0.19 
18 0.654 0.705 0.713 0.863 0.884 0.791 0.642 -0.16 -0.24 -0.02 0.04 0.05 -0.04 -0.04 
19 0.595 0.598 0.573 0.694 1.235 0.775 0.600 -0.19 -0.19 -0.07 -0.04 -0.09 -0.10 -0.21 
20 0.689 0.659 0.749 0.947 1.026 0.845 0.670 -0.45 -0.32 -0.17 -0.02 0.19 -0.08 -0.39 

Mean 0.608 0.651 0.660 0.840 1.193 0.836 0.608 -0.07 -0.11 -0.08 -0.06 -0.03 -0.07 -0.07 
SD 0.035 0.075 0.068 0.117 0.399 0.124 0.030 0.13 0.14 0.11 0.14 0.20 0.09 0.12 

               
Note: LR = linear regression equations, H1 to H4 = neural networks developed without early stopping, ANN1 = mean of H1 to H4, ANN2 = early stopping neural network 
committees.
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Table C60 

Dataset 1: Predictive performance statistics for the prediction equations developed 

using the combination of the six Neuroticism facets (Study 5). 

 MAE Cross-validity coefficient
Partition LR ANN1 ANN2 LR ANN1 ANN2

1 7.415 7.526 7.288 0.18 0.21 0.19  
2 6.401 7.671 6.388 0.17 0.17 0.18  
3 6.439 6.702 6.400 0.25 0.27 0.28  
4 7.490 8.492 7.494 -0.02 0.19 -0.01  
5 6.604 7.579 6.689 0.31 0.18 0.32  
6 7.377 7.449 7.341 0.14 0.26 0.17  
7 6.696 10.723 7.278 0.25 -0.13 0.13  
8 7.142 7.579 7.183 0.10 0.17 0.15  
9 7.137 7.937 7.153 0.24 0.18 0.21  

10 7.517 8.650 7.531 0.18 0.12 0.22  
11 7.853 8.442 7.912 0.17 0.11 0.16  
12 7.152 7.744 7.256 0.29 0.26 0.24  
13 6.657 7.259 6.615 0.24 0.22 0.27  
14 6.783 7.541 6.792 0.10 0.05 0.10  
15 6.941 8.379 6.953 0.18 0.04 0.20  
16 7.362 7.477 7.125 0.33 0.23 0.36  
17 7.240 8.176 7.181 0.30 0.17 0.31  
18 7.325 8.116 7.505 0.15 0.05 0.10  
19 7.971 9.002 8.116 0.08 -0.08 0.03  
20 7.824 7.998 7.776 0.08 0.10 0.08  

Mean 7.166 8.022 7.199 0.19 0.14 0.19  
SD 0.462 0.835 0.467 0.09 0.11 0.10

         
Note: LR = linear regression equations, ANN1 = neural networks developed without early stopping (H4 
hidden units), ANN2 = early stopping neural network committees. 
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Table C61 

Dataset 1: Predictive performance statistics for the prediction equations developed 

using the combination of the six Extraversion facets (Study 5). 

 MAE Cross-validity coefficient
Partition LR ANN1 ANN2 LR ANN1 ANN2

1 7.324 7.921 7.278 0.10 -0.02 0.14  
2 6.438 7.378 6.311 0.20 0.22 0.26  
3 6.716 9.294 6.775 0.15 0.01 0.14  
4 8.139 9.153 8.050 -0.08 -0.06 -0.08  
5 6.996 8.554 7.053 0.19 0.09 0.14  
6 7.572 8.367 7.517 0.16 0.07 0.17  
7 6.973 7.292 6.932 0.18 0.19 0.19  
8 7.114 8.288 7.464 0.17 0.05 0.13  
9 7.347 8.784 7.783 0.12 -0.16 -0.11  

10 7.532 8.316 7.615 0.23 0.00 0.10  
11 7.643 8.379 7.612 0.37 0.04 0.37  
12 7.523 8.295 7.480 0.15 0.05 0.12  
13 7.425 8.205 7.430 0.10 0.00 0.10  
14 7.054 6.996 7.070 0.03 0.04 0.04  
15 7.024 8.043 6.948 0.23 0.12 0.27  
16 7.417 7.712 7.410 0.30 0.11 0.21  
17 7.410 8.034 7.330 0.20 0.05 0.21  
18 7.514 7.753 7.432 0.03 0.07 0.08  
19 7.847 9.380 7.867 0.18 0.08 0.18  
20 7.416 8.324 7.481 0.19 0.09 0.15  

Mean 7.321 8.223 7.342 0.16 0.05 0.14  
SD 0.387 0.631 0.403 0.10 0.08 0.11

         
Note: LR = linear regression equations, ANN1 = neural networks developed without early stopping (H4 
hidden units), ANN2 = early stopping neural network committees. 
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Table C62 

Dataset 1: Predictive performance statistics for the prediction equations developed 

using the combination of the six Openness facets (Study 5). 

 MAE Cross-validity coefficient
Partition LR ANN1 ANN2 LR ANN1 ANN2

1 7.518 8.149 7.554 0.09 0.13 0.09  
2 6.429 7.613 6.290 0.23 0.17 0.25  
3 6.701 6.770 6.525 0.11 0.35 0.18  
4 6.931 7.273 6.769 0.23 0.23 0.25  
5 7.187 8.358 7.277 0.21 0.12 0.21  
6 7.881 8.363 7.888 0.05 0.06 0.05  
7 7.086 8.632 7.077 0.15 0.10 0.15  
8 6.610 7.204 6.837 0.35 0.29 0.33  
9 7.773 8.070 7.752 -0.08 0.04 -0.04  

10 7.308 7.336 7.161 0.45 0.32 0.38  
11 8.284 7.761 8.269 0.05 0.14 0.05  
12 7.360 7.257 7.233 0.25 0.22 0.25  
13 6.520 7.066 6.457 0.28 0.24 0.34  
14 6.718 6.928 6.633 0.25 0.25 0.25  
15 7.028 7.373 7.000 0.24 0.24 0.26  
16 7.228 7.289 7.246 0.32 0.12 0.24  
17 7.422 7.459 7.384 0.22 0.19 0.21  
18 7.500 8.776 7.738 0.19 0.07 0.11  
19 7.634 8.433 7.738 0.22 -0.04 0.16  
20 7.518 7.666 7.503 0.11 0.12 0.12  

Mean 7.232 7.689 7.216 0.20 0.17 0.19  
SD 0.487 0.595 0.527 0.12 0.10 0.11

         
Note: LR = linear regression equations, ANN1 = neural networks developed without early stopping (H4 
hidden units), ANN2 = early stopping neural network committees. 
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Table C63 

Dataset 1: Predictive performance statistics for the prediction equations developed 

using the combination of the six Agreeableness facets (Study 5). 

 MAE Cross-validity coefficient
Partition LR ANN1 ANN2 LR ANN1 ANN2

1 7.752 8.489 7.965 -0.11 0.00 -0.15  
2 6.871 7.990 6.978 -0.01 -0.06 -0.05  
3 6.788 8.007 6.727 -0.02 -0.09 0.02  
4 7.765 8.239 7.748 -0.15 -0.06 -0.15  
5 7.432 7.945 7.424 -0.04 0.01 -0.06  
6 7.786 10.571 8.457 0.00 -0.12 -0.16  
7 7.485 10.598 7.694 -0.04 -0.06 -0.04  
8 7.420 7.272 7.341 -0.01 0.08 0.00  
9 7.895 8.464 8.036 -0.02 -0.10 -0.09  

10 8.383 9.868 8.334 -0.11 0.02 -0.06  
11 8.118 11.314 8.199 0.01 -0.20 -0.11  
12 7.833 8.061 7.963 -0.07 -0.06 -0.18  
13 7.311 7.913 7.294 -0.06 -0.09 -0.06  
14 6.801 9.014 6.973 0.11 -0.02 0.15  
15 7.287 8.307 7.303 -0.04 -0.08 -0.02  
16 7.698 9.652 7.969 0.08 -0.13 0.01  
17 7.715 8.378 7.782 0.08 -0.11 0.04  
18 7.585 10.901 7.792 -0.08 -0.07 -0.19  
19 8.017 9.123 8.080 0.07 -0.19 0.03  
20 7.956 9.166 8.017 -0.10 0.00 -0.11  

Mean 7.595 8.964 7.704 -0.03 -0.07 -0.06  
SD 0.430 1.155 0.478 0.07 0.07 0.09

         
Note: LR = linear regression equations, ANN1 = neural networks developed without early stopping (H4 
hidden units), ANN2 = early stopping neural network committees. 
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Table C64 

Dataset 1: Predictive performance statistics for the prediction equations developed 

using the combination of the six Conscientiousness facets (Study 5). 

 MAE Cross-validity coefficient
Partition LR ANN1 ANN2 LR ANN1 ANN2

1 8.012 8.916 8.174 0.07 0.02 0.06  
2 6.503 7.023 6.505 0.21 -0.02 0.18  
3 6.547 8.406 6.724 0.26 -0.08 0.19  
4 7.895 8.496 7.912 -0.08 -0.04 -0.05  
5 7.239 9.502 7.248 0.15 -0.11 0.13  
6 7.290 10.154 7.866 0.25 -0.16 0.08  
7 6.810 7.788 6.893 0.26 0.00 0.23  
8 6.980 7.542 6.838 0.18 0.02 0.17  
9 7.372 9.581 7.565 0.20 -0.11 0.15  

10 7.955 8.105 7.720 0.10 0.08 0.13  
11 7.791 8.500 7.888 0.23 0.06 0.16  
12 7.037 9.897 7.258 0.27 -0.10 0.14  
13 7.174 8.391 7.264 0.11 0.02 0.11  
14 7.312 8.835 7.361 -0.05 -0.10 -0.08  
15 6.957 9.619 6.891 0.22 0.08 0.25  
16 7.451 9.149 7.620 0.17 0.10 0.13  
17 7.429 7.426 7.362 0.14 0.08 0.18  
18 7.605 8.502 7.583 0.11 0.05 0.11  
19 7.663 8.238 7.735 0.24 0.09 0.21  
20 7.474 7.955 7.453 0.22 0.11 0.24  

Mean 7.325 8.601 7.393 0.16 0.00 0.14  
SD 0.433 0.856 0.447 0.10 0.08 0.09

         
Note: LR = linear regression equations, ANN1 = neural networks developed without early stopping (H4 
hidden units), ANN2 = early stopping neural network committees. 
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Table C65 

Dataset 1: Predictive performance statistics for the prediction equations developed 

using the combination of the eighteen facets from the three theoretically relevant factors 

Neuroticism, Openness, and Conscientiousness (Study 5). 

 MAE Cross-validity coefficient
Partition LR ANN1 ANN2 LR ANN1 ANN2

1 8.103 15.038 7.903 0.22 -0.01 0.25  
2 5.992 15.744 6.000 0.38 0.05 0.39  
3 6.536 15.473 6.239 0.26 0.08 0.34  
4 7.304 13.728 7.143 0.20 0.11 0.21  
5 7.206 15.563 7.507 0.26 0.21 0.18  
6 7.845 16.546 8.040 0.16 0.16 0.12  
7 6.183 15.243 6.768 0.36 0.20 0.29  
8 6.529 17.148 6.676 0.34 0.02 0.30  
9 7.776 19.245 7.575 0.18 -0.03 0.16  

10 7.080 13.736 7.204 0.33 0.20 0.32  
11 7.496 13.522 7.675 0.32 0.05 0.29  
12 6.765 17.744 7.027 0.43 0.17 0.38  
13 6.541 16.375 6.203 0.37 0.17 0.40  
14 6.586 15.763 6.958 0.22 0.18 0.15  
15 6.570 17.364 6.757 0.40 0.20 0.36  
16 6.907 19.735 6.930 0.37 -0.02 0.33  
17 7.413 16.919 7.729 0.27 0.05 0.20  
18 7.426 16.342 7.596 0.25 -0.03 0.20  
19 8.029 17.337 8.012 0.18 -0.06 0.16  
20 7.267 16.515 7.543 0.29 0.08 0.28  

Mean 7.078 16.254 7.174 0.29 0.09 0.27  
SD 0.608 1.644 0.609 0.08 0.09 0.09

         
Note: LR = linear regression equations, ANN1 = neural networks developed without early stopping (H4 
hidden units), ANN2 = early stopping neural network committees. 
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Table C66 

Dataset 2: Predictive performance statistics for the prediction equations developed 

using the combination of the six Neuroticism facets (Study 5). 

 MAE Cross-validity coefficient
Partition LR ANN1 ANN2 LR ANN1 ANN2

1 27.166 30.148 27.245 0.18 0.04 0.21  
2 34.398 35.139 34.056 0.17 0.25 0.20  
3 33.268 33.694 33.163 0.04 0.12 0.05  
4 30.712 32.498 31.538 0.20 0.23 0.17  
5 33.751 35.144 33.037 0.04 0.04 0.08  
6 31.878 33.733 31.727 0.05 -0.01 0.04  
7 34.499 34.513 34.461 0.03 0.21 0.06  
8 34.074 36.326 33.773 0.07 0.13 0.04  
9 34.855 37.579 34.766 -0.01 -0.03 -0.08  

10 34.945 34.890 34.119 0.06 0.13 0.09  
11 28.954 31.887 28.707 0.13 0.24 0.19  
12 36.294 38.034 36.266 0.05 0.05 0.06  
13 33.568 34.850 33.210 0.10 0.03 0.07  
14 33.111 33.025 33.874 0.10 0.19 0.13  
15 35.991 44.101 36.439 -0.02 0.00 -0.05  
16 30.016 29.649 29.603 0.07 0.14 0.08  
17 35.449 38.239 36.265 0.11 0.01 0.05  
18 32.123 33.019 33.714 0.24 0.23 0.09  
19 32.169 33.398 31.508 0.00 0.19 0.05  
20 34.024 36.980 33.786 -0.01 0.00 0.00  

Mean 33.062 34.842 33.063 0.08 0.11 0.08  
SD 2.380 3.216 2.432 0.07 0.10 0.08

         
Note: LR = linear regression equations, ANN1 = neural networks developed without early stopping (H4 
hidden units), ANN2 = early stopping neural network committees. 
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Table C67 

Dataset 2: Predictive performance statistics for the prediction equations developed 

using the combination of the six Extraversion facets (Study 5). 

 MAE Cross-validity coefficient
Partition LR ANN1 ANN2 LR ANN1 ANN2

1 25.784 27.256 25.669 0.22 0.22 0.24  
2 32.311 33.459 32.450 0.40 0.26 0.36  
3 30.864 33.553 31.654 0.29 0.05 0.05  
4 31.251 45.752 31.726 0.22 0.00 0.18  
5 35.311 40.510 34.919 0.10 -0.01 0.08  
6 30.941 32.070 30.961 0.16 0.17 0.13  
7 35.343 38.348 36.371 0.15 -0.08 0.04  
8 33.981 33.810 33.628 0.21 0.24 0.25  
9 33.832 48.353 34.304 0.10 0.06 0.11  

10 34.034 35.147 33.729 0.13 0.13 0.13  
11 26.915 29.635 28.100 0.37 0.16 0.24  
12 34.148 38.483 35.564 0.11 0.01 0.07  
13 33.696 33.993 33.216 0.18 0.20 0.19  
14 31.943 36.660 32.367 0.37 0.00 0.26  
15 33.212 37.092 33.545 0.33 0.11 0.22  
16 28.598 29.566 28.886 0.25 0.03 0.15  
17 33.773 36.576 33.913 0.34 0.15 0.32  
18 31.828 34.559 32.395 0.29 0.16 0.23  
19 31.188 32.399 30.542 0.22 0.12 0.22  
20 32.939 34.289 33.600 0.19 0.08 0.08  

Mean 32.095 35.576 32.377 0.23 0.10 0.18  
SD 2.577 5.088 2.589 0.10 0.09 0.09

         
Note: LR = linear regression equations, ANN1 = neural networks developed without early stopping (H4 
hidden units), ANN2 = early stopping neural network committees. 



295

Table C68 

Dataset 2: Predictive performance statistics for the prediction equations developed 

using the combination of the six Openness facets (Study 5). 

 MAE Cross-validity coefficient
Partition LR ANN1 ANN2 LR ANN1 ANN2

1 26.635 29.682 27.386 0.17 0.05 0.11  
2 34.347 36.840 34.744 0.23 0.12 0.19  
3 32.688 33.705 32.720 0.11 0.08 0.11  
4 30.180 37.318 31.086 0.22 0.08 0.16  
5 32.343 36.063 33.186 0.19 0.12 0.11  
6 33.909 35.669 34.954 -0.11 0.01 -0.10  
7 34.716 37.223 35.017 0.06 0.07 0.06  
8 32.318 35.616 32.732 0.33 0.01 0.27  
9 33.953 40.947 34.129 0.06 -0.02 0.04  

10 36.864 40.109 36.741 0.08 -0.04 0.05  
11 28.978 31.111 29.961 0.15 0.04 0.10  
12 36.657 38.902 37.267 0.07 0.05 0.08  
13 31.277 35.017 31.922 0.27 0.14 0.24  
14 34.359 39.182 34.044 0.11 0.06 0.10  
15 33.974 37.578 34.414 0.12 0.05 0.10  
16 29.958 33.463 30.200 0.05 0.01 0.03  
17 33.958 34.329 33.844 0.21 0.18 0.26  
18 33.817 37.235 34.396 0.12 0.11 0.11  
19 29.952 33.642 29.857 0.20 0.14 0.22  
20 32.952 35.090 33.532 0.13 0.16 0.11  

Mean 32.692 35.936 33.107 0.14 0.07 0.12  
SD 2.559 2.844 2.446 0.10 0.06 0.09

         
Note: LR = linear regression equations, ANN1 = neural networks developed without early stopping (H4 
hidden units), ANN2 = early stopping neural network committees. 
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Table C69 

Dataset 2: Predictive performance statistics for the prediction equations developed 

using the combination of the six Agreeableness facets (Study 5). 

 MAE Cross-validity coefficient
Partition LR ANN1 ANN2 LR ANN1 ANN2

1 28.282 35.428 29.598 0.03 -0.13 0.05  
2 33.838 36.058 33.375 0.15 0.16 0.20  
3 32.332 34.956 33.094 0.03 -0.06 -0.03  
4 31.774 34.331 33.196 0.07 0.12 -0.03  
5 32.717 37.821 33.903 0.12 -0.02 0.06  
6 31.407 33.204 31.803 0.00 0.06 0.01  
7 34.309 37.200 35.541 0.07 0.03 -0.01  
8 33.986 37.783 33.871 -0.01 -0.09 0.02  
9 32.074 38.454 32.813 0.17 0.01 0.04  

10 34.426 36.933 34.869 0.04 0.23 -0.02  
11 28.053 28.669 28.158 0.11 0.15 0.10  
12 35.581 41.715 36.050 0.06 -0.09 0.01  
13 32.907 34.580 33.920 0.17 0.07 0.05  
14 36.585 36.322 36.669 -0.14 -0.04 -0.19  
15 37.647 41.254 37.481 -0.01 0.07 -0.04  
16 28.637 31.061 28.680 0.13 -0.04 0.08  
17 36.422 36.223 35.998 0.07 0.12 0.08  
18 33.128 37.736 33.439 0.04 -0.04 0.00  
19 29.935 33.885 30.468 0.16 -0.03 0.08  
20 32.757 38.326 32.933 0.16 0.03 0.15  

Mean 32.840 36.097 33.293 0.07 0.03 0.03  
SD 2.699 3.079 2.559 0.08 0.10 0.08

         
Note: LR = linear regression equations, ANN1 = neural networks developed without early stopping (H4 
hidden units), ANN2 = early stopping neural network committees. 
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Table C70 

Dataset 2: Predictive performance statistics for the prediction equations developed 

using the combination of the six Conscientiousness facets (Study 5). 

 MAE Cross-validity coefficient
Partition LR ANN1 ANN2 LR ANN1 ANN2

1 28.801 30.322 28.368 0.12 0.14 0.15  
2 33.117 40.631 34.222 0.31 0.07 0.20  
3 30.750 32.948 31.851 0.25 0.11 0.16  
4 30.449 31.498 30.836 0.24 0.14 0.18  
5 33.260 36.758 34.220 0.18 0.07 0.11  
6 30.819 33.682 30.737 0.15 0.01 0.12  
7 34.204 36.715 33.481 0.14 0.10 0.15  
8 33.108 34.772 33.283 0.23 0.18 0.22  
9 35.168 39.245 35.048 0.11 0.09 0.12  

10 37.432 38.488 36.858 0.08 0.01 0.09  
11 28.618 31.208 28.967 0.21 0.07 0.15  
12 35.572 34.103 35.566 0.12 0.20 0.15  
13 34.114 35.086 34.155 0.11 0.09 0.11  
14 32.073 36.365 32.036 0.24 0.10 0.23  
15 33.737 36.402 34.051 0.25 0.19 0.23  
16 29.819 32.742 29.672 0.15 0.16 0.18  
17 35.434 41.705 35.382 0.15 -0.01 0.15  
18 32.672 35.283 32.279 0.24 0.14 0.22  
19 30.491 33.502 31.029 0.20 0.13 0.20  
20 32.706 36.229 32.066 0.15 0.16 0.20  

Mean 32.617 35.384 32.705 0.18 0.11 0.16  
SD 2.383 3.061 2.311 0.06 0.06 0.04

         
Note: LR = linear regression equations, ANN1 = neural networks developed without early stopping (H4 
hidden units), ANN2 = early stopping neural network committees. 
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Table C71 

Dataset 2: Predictive performance statistics for the prediction equations developed 

using the combination of the twenty-four facets from the four theoretically relevant 

factors Neuroticism, Extraversion, Openness, and Conscientiousness (Study 5). 

 MAE Cross-validity coefficient
Partition LR ANN1 ANN2 LR ANN1 ANN2

1 27.942 55.513 26.182 0.25 0.16 0.31  
2 33.369 64.988 32.635 0.34 0.16 0.39  
3 31.376 60.994 31.767 0.25 0.06 0.22  
4 31.281 63.982 30.233 0.34 0.23 0.37  
5 35.196 67.763 34.262 0.20 0.12 0.23  
6 32.500 61.108 32.483 0.08 0.02 0.06  
7 36.013 57.808 36.078 0.11 0.22 0.12  
8 34.098 54.648 33.351 0.23 0.15 0.26  
9 34.137 56.990 33.705 0.19 0.16 0.21  

10 37.631 63.744 38.053 0.09 0.00 0.08  
11 30.245 73.856 28.644 0.21 -0.03 0.23  
12 37.167 52.745 36.379 0.15 0.07 0.12  
13 35.745 70.652 33.967 0.16 0.05 0.16  
14 32.189 63.690 31.151 0.22 0.13 0.24  
15 36.208 55.859 35.710 0.15 0.08 0.09  
16 31.457 56.486 30.028 0.11 0.30 0.11  
17 34.061 58.717 35.394 0.32 0.11 0.24  
18 34.726 57.562 34.999 0.23 0.08 0.19  
19 31.546 66.252 30.070 0.25 0.09 0.29  
20 36.096 39.577 35.184 0.02 0.28 0.02  

Mean 33.649 60.147 33.014 0.19 0.12 0.20  
SD 2.540 7.414 2.967 0.09 0.09 0.10

         
Note: LR = linear regression equations, ANN1 = neural networks developed without early stopping (H4 
hidden units), ANN2 = early stopping neural network committees. 
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Table C72 

Dataset 4: Predictive performance statistics for the prediction equations developed 

using the combination of the six Neuroticism facets (Study 5).

 MAE Cross-validity coefficient
Partition LR ANN1 ANN2 LR ANN1 ANN2

1 0.501 0.690 0.492 0.06 -0.17 0.08  
2 0.474 0.542 0.470 0.07 -0.07 0.08  
3 0.564 0.591 0.547 -0.01 0.08 0.04  
4 0.499 0.672 0.503 0.15 -0.10 0.06  
5 0.495 1.017 0.488 0.17 0.27 0.17  
6 0.506 0.743 0.515 0.10 -0.08 0.06  
7 0.547 0.837 0.539 0.01 -0.10 0.00  
8 0.553 0.640 0.553 0.14 -0.08 0.13  
9 0.587 1.096 0.598 0.29 -0.14 0.23  

10 0.474 0.497 0.471 0.05 -0.06 0.07  
11 0.553 0.716 0.558 0.21 0.07 0.21  
12 0.448 0.821 0.447 0.32 -0.19 0.25  
13 0.462 0.896 0.472 0.28 -0.03 0.22  
14 0.508 1.035 0.532 0.22 -0.14 0.13  
15 0.500 0.653 0.500 0.28 0.14 0.27  
16 0.479 0.599 0.486 0.14 -0.09 0.10  
17 0.436 1.019 0.442 0.24 0.23 0.22  
18 0.430 0.545 0.433 0.11 -0.01 0.12  
19 0.427 0.745 0.441 0.18 -0.31 0.03  
20 0.523 0.895 0.525 0.00 -0.22 0.00  

Mean 0.498 0.762 0.501 0.15 -0.05 0.12  
SD 0.046 0.182 0.045 0.10 0.15 0.08

         
Note: LR = linear regression equations, ANN1 = neural networks developed without early stopping (H4 
hidden units), ANN2 = early stopping neural network committees. 
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Table C73 

Dataset 4: Predictive performance statistics for the prediction equations developed 

using the combination of the six Extraversion facets (Study 5). 

 MAE Cross-validity coefficient
Partition LR ANN1 ANN2 LR ANN1 ANN2

1 0.490 0.598 0.482 0.07 0.18 0.11  
2 0.472 0.642 0.460 0.15 0.04 0.13  
3 0.537 0.725 0.544 0.02 -0.13 0.01  
4 0.528 0.712 0.528 0.08 -0.15 0.06  
5 0.503 0.568 0.505 0.19 0.19 0.17  
6 0.485 0.629 0.489 0.16 0.19 0.15  
7 0.562 0.919 0.559 0.09 -0.04 0.08  
8 0.552 0.644 0.547 0.27 0.16 0.27  
9 0.606 0.724 0.602 0.21 0.06 0.22  

10 0.509 0.571 0.517 -0.08 0.04 -0.09  
11 0.554 0.685 0.574 0.24 0.02 0.14  
12 0.457 0.748 0.461 0.39 -0.03 0.36  
13 0.475 0.640 0.479 0.13 -0.16 0.05  
14 0.512 0.643 0.521 0.19 -0.11 0.13  
15 0.536 0.591 0.531 0.11 0.11 0.10  
16 0.473 0.640 0.475 0.14 0.12 0.13  
17 0.441 0.531 0.437 0.30 0.19 0.28  
18 0.452 0.618 0.446 0.13 -0.05 0.14  
19 0.474 0.780 0.467 0.04 -0.07 0.04  
20 0.574 0.883 0.561 -0.01 0.22 -0.02  

Mean 0.510 0.674 0.509 0.14 0.04 0.12  
SD 0.045 0.101 0.046 0.11 0.13 0.11

         
Note: LR = linear regression equations, ANN1 = neural networks developed without early stopping (H4 
hidden units), ANN2 = early stopping neural network committees. 
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Table C74 

Dataset 1: Predictive performance statistics for the prediction equations developed 

using the combination of the six Openness facets (Study 5). 

 MAE Cross-validity coefficient
Partition LR ANN1 ANN2 LR ANN1 ANN2

1 0.504 0.676 0.495 0.00 -0.19 -0.02  
2 0.453 0.438 0.441 0.14 0.21 0.20  
3 0.537 0.640 0.532 0.10 0.03 0.10  
4 0.504 0.516 0.507 0.28 0.21 0.23  
5 0.515 0.634 0.505 0.21 0.13 0.21  
6 0.474 0.497 0.482 0.14 0.12 0.10  
7 0.513 0.563 0.514 0.13 0.03 0.09  
8 0.511 0.548 0.522 0.25 0.18 0.21  
9 0.605 0.693 0.599 0.15 0.11 0.15  

10 0.458 1.014 0.457 0.22 -0.15 0.20  
11 0.587 0.669 0.596 0.15 -0.01 0.07  
12 0.489 0.862 0.479 0.18 -0.13 0.18  
13 0.472 0.529 0.460 0.25 0.14 0.26  
14 0.525 0.552 0.516 0.11 0.16 0.16  
15 0.510 0.538 0.503 0.23 0.14 0.21  
16 0.457 0.472 0.465 0.22 0.20 0.18  
17 0.427 0.532 0.435 0.37 0.24 0.31  
18 0.470 0.511 0.477 0.13 0.08 0.12  
19 0.427 0.597 0.422 0.25 0.10 0.23  
20 0.490 0.527 0.502 0.26 0.18 0.17  

Mean 0.496 0.600 0.496 0.19 0.09 0.17  
SD 0.046 0.137 0.046 0.08 0.13 0.08

         
Note: LR = linear regression equations, ANN1 = neural networks developed without early stopping (H4 
hidden units), ANN2 = early stopping neural network committees. 
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Table C75 

Dataset 4: Predictive performance statistics for the prediction equations developed 

using the combination of the six Agreeableness facets (Study 5). 

 MAE Cross-validity coefficient
Partition LR ANN1 ANN2 LR ANN1 ANN2

1 0.503 0.597 0.503 0.06 0.01 0.08  
2 0.466 0.505 0.470 0.02 0.16 0.03  
3 0.545 0.672 0.529 -0.14 -0.15 -0.05  
4 0.526 0.526 0.523 0.13 0.42 0.03  
5 0.523 0.714 0.522 0.04 0.25 0.10  
6 0.536 0.723 0.538 -0.15 -0.20 -0.07  
7 0.518 0.753 0.531 0.17 -0.03 0.13  
8 0.549 0.561 0.557 0.11 0.13 0.08  
9 0.640 0.890 0.620 -0.09 -0.07 0.08  

10 0.482 0.530 0.481 0.13 0.13 0.19  
11 0.578 0.894 0.578 0.04 0.03 0.12  
12 0.497 0.734 0.488 -0.07 0.19 0.04  
13 0.509 0.548 0.500 0.01 0.17 0.04  
14 0.560 0.587 0.549 -0.02 0.11 0.05  
15 0.554 0.652 0.533 -0.02 -0.15 0.20  
16 0.517 0.532 0.504 -0.05 0.05 -0.03  
17 0.445 0.636 0.441 0.19 0.08 0.30  
18 0.449 0.545 0.441 0.19 0.09 0.26  
19 0.478 0.557 0.482 -0.12 0.04 -0.01  
20 0.530 0.669 0.542 0.00 0.02 -0.01  

Mean 0.520 0.641 0.517 0.02 0.06 0.08  
SD 0.046 0.115 0.044 0.11 0.15 0.10

         
Note: LR = linear regression equations, ANN1 = neural networks developed without early stopping (H4 
hidden units), ANN2 = early stopping neural network committees. 
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Table C76 

Dataset 4: Predictive performance statistics for the prediction equations developed 

using the combination of the six Conscientiousness facets (Study 5). 

 MAE Cross-validity coefficient
Partition LR ANN1 ANN2 LR ANN1 ANN2

1 0.460 0.500 0.455 0.24 0.08 0.26  
2 0.432 0.527 0.438 0.28 0.14 0.24  
3 0.524 0.535 0.518 0.17 0.11 0.19  
4 0.523 0.694 0.515 0.12 -0.29 0.14  
5 0.475 0.576 0.492 0.30 0.09 0.22  
6 0.488 0.577 0.490 0.20 0.04 0.18  
7 0.519 0.560 0.524 0.18 0.14 0.17  
8 0.526 0.568 0.531 0.37 0.23 0.37  
9 0.557 0.632 0.568 0.35 0.05 0.29  

10 0.459 0.562 0.461 0.19 0.06 0.18  
11 0.535 0.574 0.546 0.34 0.17 0.31  
12 0.434 0.535 0.445 0.39 0.05 0.33  
13 0.461 0.484 0.455 0.30 0.15 0.31  
14 0.501 0.528 0.498 0.18 0.09 0.19  
15 0.485 0.604 0.492 0.37 0.12 0.30  
16 0.439 0.489 0.439 0.29 0.08 0.30  
17 0.475 0.562 0.466 0.15 -0.03 0.14  
18 0.456 0.584 0.467 0.22 -0.07 0.20  
19 0.442 0.500 0.453 0.23 0.13 0.22  
20 0.482 0.553 0.491 0.36 -0.06 0.38  

Mean 0.484 0.557 0.487 0.26 0.06 0.25  
SD 0.037 0.050 0.037 0.08 0.11 0.07

         
Note: LR = linear regression equations, ANN1 = neural networks developed without early stopping (H4 
hidden units), ANN2 = early stopping neural network committees. 
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Table C77 

Dataset 4: Predictive performance statistics for the prediction equations developed 

using the combination of the eighteen facets from the three theoretically relevant factors 

Neuroticism, Extraversion, and Conscientiousness (Study 5). 

 MAE Cross-validity coefficient
Partition LR ANN1 ANN2 LR ANN1 ANN2

1 0.479 0.890 0.464 0.20 0.13 0.24  
2 0.475 1.231 0.464 0.17 -0.20 0.13  
3 0.558 1.081 0.543 0.04 -0.04 0.09  
4 0.545 0.832 0.515 0.00 -0.04 0.10  
5 0.502 0.845 0.490 0.15 0.15 0.21  
6 0.514 0.989 0.501 0.22 0.01 0.19  
7 0.559 0.807 0.533 0.12 0.15 0.13  
8 0.532 1.092 0.532 0.34 -0.15 0.25  
9 0.555 1.121 0.566 0.38 0.04 0.34  

10 0.493 0.978 0.484 0.06 0.05 0.00  
11 0.537 1.155 0.529 0.28 0.01 0.34  
12 0.443 1.241 0.418 0.37 -0.06 0.46  
13 0.451 0.981 0.455 0.30 -0.06 0.28  
14 0.524 0.937 0.528 0.16 -0.06 0.12  
15 0.484 1.024 0.490 0.30 0.02 0.25  
16 0.456 0.847 0.441 0.27 -0.06 0.27  
17 0.483 1.084 0.449 0.13 0.12 0.22  
18 0.438 0.884 0.441 0.25 0.26 0.25  
19 0.484 0.814 0.477 0.14 0.19 0.12  
20 0.556 1.079 0.544 0.04 -0.08 0.09  

Mean 0.503 0.996 0.493 0.20 0.02 0.20  
SD 0.041 0.137 0.042 0.11 0.12 0.11

         
Note: LR = linear regression equations, ANN1 = neural networks developed without early stopping (H4 
hidden units), ANN2 = early stopping neural network committees. 
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Appendix D: Corrected t-Test Results 

Table D1.

Study 1: Corrected t-test comparing MAE of linear regression and neural networks.

Dataset and predictor SD SE t

1. University students
Neuroticism 0.001 0.111 0.083 0.01
Extraversion -0.004 0.105 0.078 -0.05
Openness -0.033 0.036 0.027 -1.22
Agreeableness -0.043 0.062 0.046 -0.92
Conscientiousness -0.031 0.098 0.073 -0.43

2. Police recruits
Neuroticism -0.214 0.446 0.330 -0.65
Extraversion -0.038 0.630 0.466 -0.08
Openness -0.379 0.528 0.390 -0.97
Agreeableness -0.352 0.381 0.282 -1.25
Conscientiousness -0.131 0.256 0.190 -0.69

3. Flight attendants
Neuroticism -0.006 0.007 0.005 -1.06
Extraversion -0.005 0.010 0.008 -0.63
Openness -0.006 0.009 0.007 -0.84
Agreeableness -0.014 0.015 0.011 -1.22
Conscientiousness -0.001 0.008 0.006 -0.24

4. Managers
Neuroticism -0.006 0.011 0.008 -0.76
Extraversion -0.001 0.009 0.007 -0.22
Openness -0.007 0.012 0.009 -0.76
Agreeableness -0.005 0.010 0.008 -0.72
Conscientiousness -0.003 0.004 0.003 -1.04

5. Bus drivers
Adjustment -0.009 0.018 0.014 -0.64
Ambition -0.012 0.020 0.015 -0.81
Sociability -0.030 0.065 0.048 -0.63
Intellectance 0.055 0.068 0.051 1.09
Likeability -0.016 0.036 0.027 -0.61
Prudence -0.013 0.037 0.028 -0.46

6. Professionals
Emotional Orientation -0.008 0.026 0.019 -0.43
Social Orientation -0.004 0.006 0.004 -0.92
Cognitive Orientation -0.010 0.014 0.011 -0.97
Interpersonal Orientation -0.042 0.060 0.044 -0.94
Task Orientation 0.000 0.010 0.007 0.07

Note:  = linear regression MAE – neural network MAE. The standard error (SE) is obtained by applying 
the adjustment outlined in Appendix B. Degrees of freedom = 19 for all comparisons.  
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Table D2

Study 1: Corrected t-test comparing cross-validity coefficients (CVR) of linear 

regression and neural networks. 

Dataset and predictor SD SE t

1. University students
Neuroticism -0.04 0.08 0.06 -0.69
Extraversion 0.01 0.05 0.04 0.22
Openness 0.06 0.08 0.06 0.98
Agreeableness 0.01 0.05 0.04 0.23
Conscientiousness 0.02 0.05 0.04 0.61

2. Police recruits
Neuroticism 0.04 0.07 0.05 0.73
Extraversion 0.04 0.11 0.08 0.56
Openness 0.02 0.04 0.03 0.64
Agreeableness 0.04 0.07 0.05 0.88
Conscientiousness 0.01 0.02 0.01 0.80

3. Flight attendants
Neuroticism 0.04 0.04 0.03 1.23
Extraversion 0.02 0.03 0.02 0.91
Openness 0.03 0.04 0.03 0.81
Agreeableness 0.04 0.04 0.03 1.33
Conscientiousness 0.01 0.03 0.02 0.56

4. Managers
Neuroticism 0.05 0.09 0.07 0.80
Extraversion -0.04 0.06 0.04 -0.84
Openness -0.05 0.06 0.04 -1.16
Agreeableness 0.11 0.15 0.11 0.92
Conscientiousness 0.01 0.01 0.01 1.42

5. Bus drivers
Adjustment 0.02 0.03 0.02 0.97
Ambition 0.01 0.02 0.01 0.75
Sociability 0.03 0.06 0.04 0.73
Intellectance -0.15 0.04 0.03 -4.63**
Likeability 0.03 0.06 0.04 0.58
Prudence 0.00 0.03 0.03 -0.14

6. Professionals
Emotional Orientation -0.03 0.11 0.08 -0.40
Social Orientation 0.04 0.07 0.06 0.71
Cognitive Orientation 0.09 0.16 0.12 0.76
Interpersonal Orientation 0.01 0.15 0.11 0.07
Task Orientation -0.03 0.05 0.04 -0.68

Note:  = linear regression CVR – neural network CVR. The standard error (SE) is obtained by applying 
the adjustment outlined in Appendix B. Degrees of freedom = 19 for all comparisons.  
** p < .01 
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Table D3 

Study 2. Corrected t-test comparing MAE of linear regression and early stopping neural 

networks.

Dataset and predictor SD SE t

1. University students
Neuroticism 0.016 0.065 0.048 0.33
Extraversion 0.014 0.065 0.048 0.29
Openness -0.009 0.045 0.034 -0.26
Agreeableness 0.002 0.034 0.025 0.06
Conscientiousness -0.005 0.068 0.051 -0.09

2. Police recruits
Neuroticism -0.031 0.242 0.179 -0.17
Extraversion -0.069 0.309 0.229 -0.30
Openness 0.004 0.226 0.167 0.03
Agreeableness -0.131 0.235 0.174 -0.75
Conscientiousness -0.053 0.178 0.132 -0.40

3. Flight attendants
Neuroticism -0.003 0.005 0.004 -0.68
Extraversion -0.001 0.008 0.006 -0.12
Openness -0.002 0.007 0.005 -0.50
Agreeableness -0.006 0.005 0.004 -1.61
Conscientiousness -0.004 0.006 0.005 -0.88

4. Managers
Neuroticism -0.002 0.004 0.003 -0.66
Extraversion 0.001 0.004 0.003 0.44
Openness -0.001 0.006 0.005 -0.18
Agreeableness -0.001 0.005 0.003 -0.22
Conscientiousness -0.001 0.003 0.002 -0.54

5. Bus drivers
Adjustment -0.008 0.036 0.026 -0.30
Ambition -0.008 0.043 0.032 -0.27
Sociability -0.022 0.034 0.025 -0.86
Intellectance 0.027 0.050 0.037 0.73
Likeability -0.005 0.022 0.017 -0.32
Prudence -0.012 0.044 0.033 -0.37

6. Professionals
Emotional Orientation -0.002 0.009 0.007 -0.25
Social Orientation 0.001 0.008 0.006 0.09
Cognitive Orientation -0.003 0.006 0.004 -0.66
Interpersonal Orientation -0.007 0.013 0.010 -0.73
Task Orientation -0.002 0.006 0.005 -0.41

Note:  = linear regression MAE – early stopping neural network MAE. The standard error (SE) is 
obtained by applying the adjustment outlined in Appendix B. Degrees of freedom = 19 for all 
comparisons. 
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Table D4 

Study 2: Corrected t-test comparing cross-validity coefficients (CVR) of linear 

regression and early stopping neural networks. 

Dataset and predictor SD SE t

1. University students
Neuroticism -0.03 0.04 0.03 -1.00
Extraversion -0.01 0.03 0.02 -0.24
Openness 0.01 0.02 0.01 0.96
Agreeableness 0.00 0.04 0.03 -0.11
Conscientiousness 0.01 0.02 0.01 0.44

2. Police recruits
Neuroticism 0.01 0.03 0.02 0.47
Extraversion 0.03 0.05 0.04 0.72
Openness 0.01 0.01 0.01 0.94
Agreeableness 0.02 0.05 0.04 0.50
Conscientiousness 0.00 0.01 0.01 0.75

3. Flight attendants
Neuroticism 0.02 0.02 0.02 0.99
Extraversion 0.01 0.01 0.01 0.85
Openness 0.01 0.02 0.02 0.74
Agreeableness 0.01 0.02 0.02 0.94
Conscientiousness 0.00 0.01 0.01 0.57

4. Managers
Neuroticism 0.01 0.02 0.02 0.58
Extraversion -0.04 0.03 0.02 -1.60
Openness -0.01 0.06 0.04 -0.17
Agreeableness 0.07 0.15 0.11 0.59
Conscientiousness 0.00 0.00 0.00 1.03

5. Bus drivers
Adjustment 0.01 0.01 0.01 0.68
Ambition 0.00 0.01 0.01 0.53
Sociability 0.03 0.05 0.04 0.72
Intellectance -0.09 0.06 0.04 -2.06
Likeability 0.05 0.12 0.09 0.61
Prudence -0.01 0.02 0.01 -0.57

6. Professionals
Emotional Orientation -0.03 0.16 0.12 -0.29
Social Orientation 0.04 0.08 0.06 0.74
Cognitive Orientation 0.04 0.09 0.07 0.66
Interpersonal Orientation -0.04 0.22 0.16 -0.27
Task Orientation 0.03 0.06 0.04 0.65

Note:  = linear regression CVR – early stopping neural network CVR. The standard error (SE) is 
obtained by applying the adjustment outlined in Appendix B. Degrees of freedom = 19 for all 
comparisons. 
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Table D5 

Study 3. Corrected t-test comparing MAE of linear regression and neural networks 

developed without early stopping (ANN1). 

Dataset SD SE t

1. University students -0.154 0.142 0.106 -1.45
2. Police recruits -0.439 1.141 0.844 -0.52
3. Flight attendants -0.060 0.035 0.026 -2.32* 
4. Managers -0.018 0.023 0.017 -1.03
5. Bus drivers -0.061 0.082 0.062 -0.98
6. Professionals -0.020 0.051 0.038 -0.52

Note:  = linear regression MAE – ANN1 MAE. The standard error (SE) is obtained by applying the 
adjustment outlined in Appendix B. Degrees of freedom = 19 for all comparisons. 
* p < .05 

Table D6 

Study 3. Corrected t-test comparing cross-validity coefficients (CVR) of linear 

regression and neural networks developed without early stopping (ANN1). 

Dataset SD SE t

1. University students 0.05 0.04 0.03 1.75
2. Police recruits -0.01 0.05 0.04 -0.34
3. Flight attendants 0.08 0.06 0.04 1.88
4. Managers 0.04 0.09 0.06 0.56
5. Bus drivers 0.02 0.03 0.02 0.80
6. Professionals -0.10 0.12 0.09 -1.13

Note:  = linear regression CVR – ANN1 CVR. The standard error (SE) is obtained by applying the 
adjustment outlined in Appendix B. Degrees of freedom = 19 for all comparisons. 
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Table D7 

Study 3. Corrected t-test comparing MAE of linear regression an early stopping neural 

networks (ANN2). 

Dataset SD SE t

1. University students 0.001 0.112 0.083 0.01
2. Police recruits 0.210 0.442 0.327 0.64
3. Flight attendants -0.016 0.026 0.019 -0.81
4. Managers -0.001 0.008 0.006 -0.13
5. Bus drivers -0.013 0.043 0.033 -0.41
6. Professionals 0.007 0.015 0.011 0.67

Note:  = linear regression MAE – ANN2 MAE. The standard error (SE) is obtained by applying the 
adjustment outlined in Appendix B. Degrees of freedom = 19 for all comparisons. 

Table D8 

Study 3. Corrected t-test comparing cross-validity coefficients (CVR) of linear 

regression an early stopping neural networks (ANN2). 

Dataset SD SE t

1. University students 0.01 0.02 0.02 0.48
2. Police recruits -0.01 0.03 0.02 -0.47
3. Flight attendants 0.01 0.04 0.03 0.51
4. Managers -0.01 0.03 0.02 -0.39
5. Bus drivers 0.00 0.02 0.01 0.33
6. Professionals -0.03 0.08 0.06 -0.41

Note:  = linear regression CVR – ANN2 CVR. The standard error (SE) is obtained by applying the 
adjustment outlined in Appendix B. Degrees of freedom = 19 for all comparisons. 
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Table D9 

Study 5. Corrected t-test comparing MAE of linear regression and neural networks 

developed without early stopping (ANN1). 

Dataset and predictors SD SE t

1. University students
Neuroticism facets -0.856 0.848 0.630 -1.36
Extraversion facets -0.902 0.578 0.430 -2.10* 
Openness facets -0.457 0.524 0.390 -1.17
Agreeableness facets -1.369 1.047 0.778 -1.76
Conscientiousness facets -1.276 0.907 0.675 -1.89
Theoretical combination -9.176 1.737 1.292 -7.10**

2. Police recruits
Neuroticism facets -1.780 1.854 1.372 -1.30
Extraversion facets -3.481 4.048 2.995 -1.16
Openness facets -3.244 1.664 1.231 -2.63*
Agreeableness facets -3.257 2.102 1.555 -2.09*
Conscientiousness facets -2.767 1.924 1.423 -1.94
Theoretical combination -26.497 8.456 6.256 -4.24**

4. Managers
Neuroticism facets -0.264 0.180 0.134 -1.97
Extraversion facets -0.165 0.088 0.065 -2.52* 
Openness facets -0.104 0.136 0.102 -1.02
Agreeableness facets -0.121 0.093 0.069 -1.74
Conscientiousness facets -0.073 0.041 0.030 -2.42*
Theoretical combination -0.492 0.142 0.106 -4.66**

Note:  = linear regression MAE – ANN1 MAE. The standard error (SE) is obtained by applying the 
adjustment outlined in Appendix B. Degrees of freedom = 19 for all comparisons. 
* p < .05, ** p < .01 
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Table D10 

Study 5. Corrected t-test comparing cross-validity coefficients (CVR) of linear 

regression and neural networks developed without early stopping (ANN1). 

Dataset and predictors SD SE t

1. University students
Neuroticism facets 0.05 0.12 0.09 0.51
Extraversion facets 0.11 0.10 0.07 1.47
Openness facets 0.03 0.11 0.08 0.37
Agreeableness facets 0.04 0.12 0.09 0.45
Conscientiousness facets 0.16 0.13 0.09 1.75
Theoretical combination 0.20 0.10 0.08 2.66*

2. Police recruits
Neuroticism facets -0.03 0.08 0.06 -0.49
Extraversion facets 0.13 0.11 0.08 1.59
Openness facets 0.07 0.09 0.06 1.09
Agreeableness facets 0.05 0.11 0.08 0.57
Conscientiousness facets 0.07 0.08 0.06 1.31
Theoretical combination 0.07 0.13 0.09 0.78

4. Managers
Neuroticism facets 0.20 0.17 0.12 1.62
Extraversion facets 0.10 0.16 0.12 0.87
Openness facets 0.10 0.10 0.08 1.27
Agreeableness facets -0.04 0.14 0.10 -0.42
Conscientiousness facets 0.20 0.11 0.08 2.47*
Theoretical combination 0.18 0.17 0.13 1.37

Note:  = linear regression CVR – ANN1 CVR. The standard error (SE) is obtained by applying the 
adjustment outlined in Appendix B. Degrees of freedom = 19 for all comparisons. 
* p < .05 
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Table D11 

Study 5. Corrected t-test comparing MAE of linear regression an early stopping neural 

networks (ANN2). 

Dataset and predictors SD SE t

1. University students
Neuroticism facets -0.032 0.159 0.118 -0.27
Extraversion facets -0.021 0.141 0.105 -0.20
Openness facets 0.015 0.115 0.086 0.18
Agreeableness facets -0.109 0.167 0.124 -0.88
Conscientiousness facets -0.068 0.167 0.124 -0.55
Theoretical combination -0.096 0.242 0.180 -0.54

2. Police recruits
Neuroticism facets 0.000 0.606 0.448 0.00
Extraversion facets -0.282 0.569 0.421 -0.67
Openness facets -0.415 0.398 0.295 -1.41
Agreeableness facets -0.453 0.570 0.422 -1.07
Conscientiousness facets -0.088 0.540 0.400 -0.22
Theoretical combination 0.635 0.833 0.616 1.03

4. Managers
Neuroticism facets -0.002 0.009 0.007 -0.33
Extraversion facets 0.000 0.008 0.006 0.04
Openness facets 0.001 0.009 0.006 0.13
Agreeableness facets 0.004 0.010 0.007 0.51
Conscientiousness facets -0.004 0.008 0.006 -0.61
Theoretical combination 0.010 0.012 0.009 1.11

Note:  = linear regression MAE – ANN2 MAE. The standard error (SE) is obtained by applying the 
adjustment outlined in Appendix B. Degrees of freedom = 19 for all comparisons. 
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Table D12 

Study 5. Corrected t-test comparing cross-validity coefficients (CVR) of linear 

regression an early stopping neural networks (ANN2). 

Dataset and predictors SD SE t

1. University students
Neuroticism facets 0.00 0.04 0.03 0.05
Extraversion facets 0.02 0.07 0.05 0.40
Openness facets 0.00 0.04 0.03 0.15
Agreeableness facets 0.03 0.06 0.04 0.76
Conscientiousness facets 0.03 0.05 0.04 0.71
Theoretical combination 0.02 0.04 0.03 0.80

2. Police recruits
Neuroticism facets 0.00 0.05 0.04 0.06
Extraversion facets 0.05 0.07 0.05 1.07
Openness facets 0.02 0.03 0.02 1.00
Agreeableness facets 0.04 0.05 0.04 1.15
Conscientiousness facets 0.02 0.04 0.03 0.58
Theoretical combination 0.00 0.04 0.03 -0.07

4. Managers
Neuroticism facets 0.03 0.05 0.04 0.72
Extraversion facets 0.02 0.03 0.02 0.83
Openness facets 0.02 0.04 0.03 0.70
Agreeableness facets -0.06 0.07 0.06 -1.01
Conscientiousness facets 0.02 0.03 0.02 0.71
Theoretical combination -0.01 0.05 0.04 -0.20

Note:  = linear regression CVR – ANN2 CVR. The standard error (SE) is obtained by applying the 
adjustment outlined in Appendix B. Degrees of freedom = 19 for all comparisons. 
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Appendix E: Polynomial Regression Results 

Table E1 

Dataset 1: Polynomial regression results. 

Predictor and step R2 R2 df t
Neuroticism
Step 1: Linear .003 .003 225 0.78
Step 2: Quadratic .014 .011 224 -1.57
Step 3: Cubic .015 .001 223 0.53

Extraversion
Step 1: Linear .017 .017 225 -1.96
Step 2: Quadratic .024 .007 224 -1.30
Step 3: Cubic .024 .000 223 -0.18

Openness
Step 1: Linear .015 .015 225 1.82
Step 2: Quadratic .015 .000 224 0.33
Step 3: Cubic .015 .000 223 0.21

Agreeableness
Step 1: Linear .001 .001 225 0.49
Step 2: Quadratic .002 .001 224 0.36
Step 3: Cubic .002 .000 223 -0.24

Conscientiousness
Step 1: Linear .040 .040 225 3.06**
Step 2: Quadratic .044 .004 224 0.99
Step 3: Cubic .048 .004 223 -0.99

** p < .01 
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Table E2 

Dataset 2: Polynomial regression results.

Predictor and step R2 R2 df t
Neuroticism
Step 1: Linear .026 .026 284 -2.74**
Step 2: Quadratic .027 .001 283 -0.56
Step 3: Cubic .028 .001 282 0.68

Extraversion
Step 1: Linear .026 .026 284 2.74**
Step 2: Quadratic .032 .006 283 1.32
Step 3: Cubic .044 .012 282 -1.94

Openness
Step 1: Linear .011 .011 284 1.75
Step 2: Quadratic .011 .000 283 0.36
Step 3: Cubic .019 .008 282 -1.49

Agreeableness
Step 1: Linear .012 .012 284 1.85
Step 2: Quadratic .013 .001 283 -0.54
Step 3: Cubic .015 .002 282 -0.71

Conscientiousness
Step 1: Linear .075 .075 284 4.79**
Step 2: Quadratic .075 .000 283 0.03
Step 3: Cubic .076 .001 282 -0.68

** p < .01 
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Table E3 

Dataset 3: Polynomial regression results.

Predictor and step R2 R2 df t
Neuroticism
Step 1: Linear .014 .014 303 -2.09*
Step 2: Quadratic .014 .000 302 -0.23
Step 3: Cubic .015 .001 301 0.58

Extraversion
Step 1: Linear .023 .023 303 2.68**
Step 2: Quadratic .025 .002 302 0.69
Step 3: Cubic .025 .000 301 0.31

Openness
Step 1: Linear .022 .022 303 2.62**
Step 2: Quadratic .024 .002 302 0.68
Step 3: Cubic .025 .001 301 -0.77

Agreeableness
Step 1: Linear .030 .030 303 3.04**
Step 2: Quadratic .030 .000 302 -0.25
Step 3: Cubic .036 .006 301 -1.39

Conscientiousness
Step 1: Linear .013 .013 303 1.98*
Step 2: Quadratic .015 .002 302 0.74
Step 3: Cubic .015 .000 301 0.38

* p < .05, ** p < .01 
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Table E4 

Dataset 4: Polynomial regression results.

Predictor and step R2 R2 df t
Neuroticism
Step 1: Linear .039 .039 177 -2.69**
Step 2: Quadratic .039 .000 176 -0.11
Step 3: Cubic .042 .003 175 -0.66

Extraversion
Step 1: Linear .011 .011 177 1.43
Step 2: Quadratic .028 .017 176 1.74
Step 3: Cubic .032 .004 175 -0.87

Openness
Step 1: Linear .000 .000 177 0.28
Step 2: Quadratic .005 .005 176 0.87
Step 3: Cubic .009 .004 175 0.85

Agreeableness
Step 1: Linear .006 .006 177 -1.07
Step 2: Quadratic .011 .005 176 0.87
Step 3: Cubic .011 .000 175 -0.34

Conscientiousness
Step 1: Linear .076 .076 177 3.82**
Step 2: Quadratic .076 .000 176 0.17
Step 3: Cubic .077 .001 175 0.39

** p < .01
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Table E5 

Dataset 5: Polynomial regression results.

Predictor and step R2 R2 df t
Adjustment
Step 1: Linear .007 .007 484 1.80
Step 2: Quadratic .007 .000 483 0.62
Step 3: Cubic .007 .000 482 -0.09

Ambition
Step 1: Linear .011 .011 484 2.33*
Step 2: Quadratic .012 .001 483 -0.58
Step 3: Cubic .012 .000 482 -0.38

Sociability
Step 1: Linear .000 .000 484 -0.19
Step 2: Quadratic .000 .000 483 0.35
Step 3: Cubic .000 .000 482 -0.11

Intellectance
Step 1: Linear .000 .000 484 0.08
Step 2: Quadratic .005 .005 483 -1.56
Step 3: Cubic .020 .015 482 2.75**

Likeability
Step 1: Linear .009 .009 484 2.12*
Step 2: Quadratic .011 .002 483 0.96
Step 3: Cubic .013 .002 482 0.87

Prudence
Step 1: Linear .021 .021 484 3.19**
Step 2: Quadratic .026 .005 483 -1.68
Step 3: Cubic .027 .001 482 0.58

* p < .05, ** p < .01 
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Table E6 

Dataset 6: Polynomial regression results.

R2 R2 df t
Emotional Orientation
Step 1: Linear .007 .007 118 0.92
Step 2: Quadratic .021 .014 117 1.28
Step 3: Cubic .021 .000 116 -0.09

Social Orientation
Step 1: Linear .005 .005 118 -0.77
Step 2: Quadratic .005 .000 117 -0.14
Step 3: Cubic .005 .000 116 0.11

Cognitive Orientation
Step 1: Linear .016 .016 118 -1.37
Step 2: Quadratic .016 .000 117 -0.29
Step 3: Cubic .038 .022 116 -1.61

Interpersonal Orientation
Step 1: Linear .012 .012 118 -1.20
Step 2: Quadratic .017 .005 117 -0.73
Step 3: Cubic .017 .000 116 0.18

Task Orientation
Step 1: Linear .000 .000 118 0.04
Step 2: Quadratic .004 .004 117 0.65
Step 3: Cubic .004 .000 116 -0.28



321

Appendix F: Moderated Multiple Regression Results 

Table F1. 

Dataset 1. Moderated multiple regression results. 

Product term R2 R2 df t

N x O .020 .000 223 -0.24
N x C .057 .000 223 0.28
O x C .053 .000 223 -0.02
N x O x C .080 .004 219 1.04

Note. For each product term, only the results associated with the last step of the analysis are provided. 
N = Neuroticism, O = Openness, C = Conscientiousness. 

Table F2. 

Dataset 2. Moderated multiple regression results.

Product term R2 R2 df t

N x E .049 .008 282 -1.56
N x O .037 .005 282 1.23
N x C .076 .001 282 0.45
E x O .035 .007 282 -1.44
E x C .082 .000 282 0.05
O x C .081 .000 282 0.36
N x E x O .076 .010 278 1.73
N x E x C .115 .021 278 2.53*
N x O x C .102 .014 278 2.12*
E x O x C .115 .030 278 -2.69**
N x E x O x C .169 .001 270 -0.48

Note. For each product term, only the results associated with the last step of the analysis are provided. 
N = Neuroticism, E = Extraversion, O = Openness, C = Conscientiousness. 
* p < .05, ** p < .01 
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Table F3. 

Dataset 3: Moderated multiple regression results. 

Product term R2 R2 df t

N x E .027 .000 301 0.05
N x O .032 .000 301 0.15
N x A .031 .000 301 0.03
N x C .020 .002 301 -0.78
E x O .032 .001 301 0.47
E x A .036 .001 301 0.35
E x C .029 .002 301 0.72
O x A .036 .000 301 0.29
O x C .030 .000 301 -0.33
A x C .036 .005 301 1.30
N x E x O .038 .001 297 0.58
N x E x A .047 .011 297 1.85
N x E x C .037 .003 297 1.03
N x O x A .043 .005 297 1.24
N x O x C .038 .001 297 0.54
N x A x C .040 .001 297 0.61
E x O x A .043 .002 297 -0.78
E x O x C .041 .001 297 -0.45
E x A x C .048 .002 297 -0.79
O x A x C .049 .001 297 -0.53
N x E x O x A .059 .002 289 0.47
N x E x O x C .058 .001 289 -0.63
N x E x A x C .056 .000 289 -0.11
N x O x A x C .071 .007 289 -1.45
E x O x A x C .073 .005 289 -1.24
N x E x O x A x C .113 .001 273 0.08

Note. For each product term, only the results associated with the last step of the analysis are provided. 
N = Neuroticism, E = Extraversion, O = Openness, A = Agreeableness, C = Conscientiousness. 

Table F4. 

Dataset 4: Moderated multiple regression results.

Product term R2 R2 df t

N x E .063 .020 175 -1.91
N x C .085 .000 175 0.10
E x C .080 .001 175 -0.09
N x E x C .119 .008 171 1.23

Note. For each product term, only the results associated with the last step of the analysis are provided. 
N = Neuroticism, E = Extraversion, C = Conscientiousness. 
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Table F5. 

Dataset 5: Moderated multiple regression results.

Product term R2 R2 df t

Adj. x Lik. .016 .005 482 1.49
Adj. x Pru. .021 .000 482 -0.41
Lik. x Pru. .022 .000 482 -0.16
Adj. x Lik. x Pru. .030 .001 478 -0.81

Note. For each product term, only the results associated with the last step of the analysis are provided. 
Adj. = Adjustment, Lik. = Likeability, Pru. = Prudence. 

Table F6. 

Dataset 6: Moderated multiple regression results.

Product term R2 R2 df t

EO x CO .062 .043 116 -2.30* 
EO x TO .055 .047 116 -2.40* 
CO x TO .018 .001 116 0.28
EO x CO x TO .118 .026 112 -1.79

Note. For each product term, only the results associated with the last step of the analysis are provided. 
EO = Emotional Orientation, CO = Cognitive Orientation, TO = Task Orientation. 
* p < .05 
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