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Dynamic Distributed Systems Design 

Abstract 

With the availability of fast network technology and powerful desktop computers, there is 

an increasing demand for the construction of reliable software that can exploit the parallel 

processing power of a network of computers. These typical distributed applications 

include those commonly found in telecommunication and banking industries. To support 

the simpler development of these complex software systems, robust middleware 

technologies such as CORBA, DCE and ActiveX/COM are becoming widely deployed. 

Middleware provides a higher level programming interface for distributed software 

engineers, as the low-level networking details have been hidden. 

However, writing distributed software is still a complex task. Although the low-level 

distribution issues can be mostly ignored with the assistance of middleware, fundamental 

distributed system issues such as concurrency, synchronisation, dynamic process creation 

and deletion and re-configurable communication structures still need to be carefully 

considered. 

This thesis presents a novel software architecture design and verification methodology. 

Architects employ a pragmatic, graphical design method called Dynamic PARSE 

(PARSE-D) to design the software architecture. At the same time, they capture the 

concurrent and dynamic features of the system. Such dynamic features include the 

creation and deletion of processes and re-configurable communication links. Lastly, the 

correctness of the design can be verified, and possible design faults may be detected by 

using an automatic design analysis and verification tool called PARSE-DAT. 
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Introduction 

1. Introduction 

1.1 Motivation and Goals 

1.1.1 Why Build Distributed Software 

There are many reasons for developing distributed software. 

System entities are often identified as being distributed at the user analysis level ( or in the 

problem domain). For example, in a banking application, typical entities include 

customers, transactions, tellers, and data stores. These entities are usually located at 

different places. In this situation, distributed applications model the problem domain 

naturally. 

Collaborative work environment is an application area where it is natural to model both 

the problem domain and solution domain in a distributed manner. In this situation, where 

users are located at different places, accessing various resources either locally or 

remotely, it is natural to have an implementation that reflects this distributed nature, and 

resources such as data stores can be located, duplicated, or migrated closer to the client 

application to increase system efficiency. This is only possible with a distributed 

implementation. 

Hence, and perhaps more importantly, distributed software exploits the power of 

networks of computing resources. These distributed applications use spare resources 

located at different locations within the network [Gorton95a]. 
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Second, with the availability of symmetric multiprocessing machines in the desktop 

computer market, applications can be developed to utilise this increased processing 

power. Applications built using a multithreaded approach will benefit from improved 

performance, lower cost, and higher reliability. 

Lastly, distributed teams developing different software components is an effective and 

efficient way of developing large systems. As long as the interface between the 

distributed components is well-defined, engineers can work independently, possibly at 

different physical locations and in different time-zones. Various system components can 

be implemented by different experts from different areas, and engineers in different teams 

need only to focus on the implementation of their allocated component. 

1.1.2 Difficulties of Writing Distributed Software 

Despite all the benefits of constructing distributed software, there are many difficulties 

involved in this process. In addition to the usual difficulties in writing sequential 

programs, other problems must be dealt with. 

Implementing distributed systems requires low-level communication support. The inter

process communication across a network is complex. If the programmer has to manage 

all the detailed networking operations while programming a high-level application, errors 

are likely to be introduced [Kramer94]. This problem is further complicated if the 

underlying network is heterogeneous. 

It is also essential that large, distributed systems are constructed using sound software 

engineering practices that promote scaleability and modularity, maximise reusability and 

attempt to guarantee reliability and correctness to some degree. Ideally, such a software 

development methodology for distributed systems should be easy for software engineers 

to learn and use; it should provide formal verification to validate the software 

correctness; and facilitate automatic program generation from the system design 

[Gorton97a]. 

Specifically, one major difficulty relating to the lack of software engineering 

methodology for distributed systems is inadequacy of design notations. There is no 
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appropriate design notation that caters for evolving systems with dynamic features. Such 

features include dynamic process creation and deletion, and communication 

reconfiguration. However, the architecture of many existing systems change during 

execution - for example, systems built using CORBA and OLE. These dynamic 

properties which are prevalent in many distributed systems have a large impact on the 

correctness of the software under construction [Liu95]. 

Secondly, existing design methodologies (e.g. object-oriented design methods) do not 

place enough importance on the various concurrency issues [Low96]. Such issues include 

synchronization and global controls. Phenomena such as deadlocks, livelocks and race 

conditions need to be carefully considered when designing a distributed system. 

In close relation to the previous point regarding concurrency issues, there is a lack of 

analysis and verification tools for distributed software. The analysis of possible 

undesirable properties such as deadlocks, livelocks, and race conditions, the verification 

of specification/design conformance, and performance prediction are important issues to 

consider. However, these analysis tasks are difficult, and thus the development of support 

tools for distributed software analysis is important. 

Further on the issue of tool support for design analysis, the state explosion phenomenon 

is one problem associated with model checking tools. The state explosion phenomenon 

occurs when the search space increases exponentially [Peterson91]. Many heuristics such 

as semantic minimization [Elseaidy96], localization reduction [Kurshan94] and the use of 

partial order information [Peled96] are promising approaches that alleviate the state 

explosion problem. 

It is important to bridge the gap between these formal approaches and practicing software 

engineers. The incorporation of formal methods into a software engineering process is 

just as important as the development of the formal methods and tools. 

3 
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1.1.3 Attempts to Overcome These Difficulties 

The various attempts to overcome the above mentioned difficulties are discussed here. 

There are various distributed operating systems that aim to manage distributed resources 

at the operating systems level. Such distributed operating systems include Mach 

[Rashid89] and Chorus [Rozier90]. Common desktop operating systems such as 

Windows NT [Richter94] [Custer93] and Solaris [Sun98] provide a rich set of facilities to 

enable applications to exploit multiple processors. However, the application 

programming interface support for inter-process communication across a network is 

minimal and low-level (and hence error prone). 

The emergmg middleware technology provides an abstraction for the underlying 

communication required by distributed components, simplifying the implementation 

process. Middleware has thus created a strong interest in the software community in 

building distributed systems. Available middleware products include the Object 

Management Group's CORBA [OMG95], and Microsoft's DCOM [Microsoft98]. These 

systems enable the construction of extensible software with reusable, distributed 

components. 

The field of software architecture aims to provide support for the design of the 

architecture of large systems, and advocates the importance of not only data structures 

and functionality, but also inter-component communication synchronisation issues. 

Recent work in this area has demonstrated some of the failings of widely used 

development methodologies for distributed systems [Shaw96]. For example, problems 

have been highlighted with object-oriented design methods for distributed system design, 

despite the fact that the distributed software engineer faces various complex issues 

relating to the partitioning and distribution of software components [Magee95], existing 

object-oriented approaches do not have provisions for architectural issues. There is still 

much work to be done in the software architecture area, especially in the area of dynamic 

architectures. 

4 
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A well established research community exists in the area of concurrency formalism. Such 

work include CSP [Hoare85], CCS [Milner89], n-Calculus [Milner91] and Petri Nets 

[Peterson81]. These formalisms were designed to assist in the mode ling of concurrent 

systems, and through using mathematically sound foundations, can be used to perform 

system analysis and verification against some particular properties/criteria. Some 

examples here include observational equivalence check using CCS [Milner80] and 

reachability analysis using Petri Nets [Peterson81]. However, these formalisms are 

complex and difficult for software engineers to learn and use [Saiedian96]. In addition, 

the use of such formalisms for a large-scale software system is expensive, yet at the same 

time, does not guarantee any extra correctness/performance benefits, over conventional 

testing methods, largely due to the lack of tool support and non-scaleable techniques 

[Holloway96]. 

1.1.4 Concluding Remark 

What is lacking in the field of distributed software engineering is an overall software 

engineering method that supports the modeling of dynamic software architecture at both 

the analysis and design level, and also aids the effective employment of formalisms for 

certain critical sections of the system. This methodology should be supported by a user

friendly CASE tool which facilitates the editing of the software architecture model, 

allows multiple views of the system model, supports navigation, and automates design 

analysis and verification. 

1.2 Contribution 

This thesis presents a software architecture design methodology for dynamic distributed 

systems called Dynamic PARSE (PARSE-D). PARSE-D provides an explicit 

representation of the parallelism and distribution in a system via a well defined set of 

model elements. It also enables the designer to verify their design at an early stage of the 

engineering process, hence reducing resource overheads incurred in discovering 

deadlocks at the later testing stage. There is also a supporting tool-set called PARSE

DAT that aids design construction and automates formal analysis and verification. 

5 
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The PARSE-D work extends the PARSE project [Gorton95] to cater for the design of 

loosely coupled distributed applications. So far, the focus of the work with PARSE has 

been upon tightly coupled, high-performance parallel software systems which are 

implemented in parallel programming languages such as Occam, Ada or Parallel C. 

PARSE-D deals with more coarse grain distributed systems typically implemented with 

conventional programming languages such as C, C++, or Java, with concurrency and 

inter-process communication facilities provided either by an underlying distributed 

operating system, such as Windows NT or UNIX, or middleware such as CORBA, Active 

X/DCOM, and DCE. 

The following is a summary of the contributions made by this thesis. 

• The extension to an architecture description language called PARSE, in order to 

incorporate dynamic features. The resultant set of notations is known as the Dynamic 

PARSE Process Graph Design Notation, which has the extra features of creation and 

deletion of process components, and dynamic communication reconfiguration. 

• The definition of formal semantics of the Dynamic PARSE Process Graph Design 

Notation. The two chosen formalisms are 1t-Calculus [Milner91] and a variant of 

Petri-Net [Peterson81] called Self-Modifying Nets [Valk77]. 

• A distributed software engineering methodology (PARSE-D) supporting design using 

Dynamic PARSE Process Graph Notation and design analysis/verification utilising 7t

Calculus. 

• An integrated tool-set environment called PARSE-DAT for supporting the PARSE-D 

software engineering methodology. The two major components are the CASE tool 

PARSE-OT which enables the construction of Dynamic PARSE designs; and an 

automated analysis/verification tool called PARSE-AT. 

1.3 Thesis outline 

• Chapter 2 presents a literature review. This focuses on existing software architecture 

design methods, and also discusses current distributed computing environments and 

concurrency formalisms. 

• Chapter 3 presents the Dynamic PARSE Design methodology. 

• Chapter 4 presents the Dynamic PARSE Verification Methodology. 

6 
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• Chapter 5 discusses the implementation of the graphical editing environment PARSE

DT, and the automated analysis/verification environment PARSE-AT. 

• Chapter 6 presents a number of case studies. These case studies range from the 

simple client-server architecture, pipeline architecture, to more complex applications 

of a communication protocol and a collaborative work environment. 

• Chapter 7 concludes this thesis, and presents possible directions for further work. 

7 
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2. Review 

This chapter presents a literature review of existing work on supports for the engineering 

of distributed systems. The three major areas of work to be covered are: 

• software architecture methodologies 

• formal methods for architectural design verification 

• distributed computing environments 

Each of the above research areas will be examined in tum, and major projects in each 

area identified and evaluated. 

2.1 Software Architecture Methodologies 

Research in the area of software architecture aims to provide support for the design of the 

architecture of large systems [Shaw96]. Typically, these systems consist of various 

software components, and span a network of computing resources. The design of 

software architecture is thus a level of design concerned with the specification of the 

overall system structure, where these structural issues include: 

• general component organization, 

• global control structure, 

• protocols for communication, 

• synchronization, 

• data access, 

• assignment of functionality to design elements, 

• physical distribution, 

• composition of design elements, 

• scaling and performance, 

• selection among design alternatives. 

8 
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The low level implementation issues such as algorithms and data structures are not 

considered in the software architecture design, and are delayed till a later stage of the 

engineering process [Shaw96]. 

At the centre of software architecture research is the development of architectural 

definition languages (ADLs). These are well-defined languages that facilitate the 

description of an architecture's components and connections. The languages are usually 

graphical, and provide some form of box and line syntax for specifying components and 

hooking them together. These ADLs also have been formerly known as Module 

Interconnection Languages MILs [Rice94]. 

There are a number of software architecture methodologies, each at varying degrees of 

maturity. Most of these software architecture methodologies have a basis in graphical 

ADLs: Darwin [Magee95], LOTOS [Leduc94], SDL [Faergemand91] and PARSE 

[Gorton95], while others provide textual ADLs: C2 [Taylor96] and Rapide [Luckham95], 

and some also have formal foundations based on well defined mathematical constructs: 

SDL, LOTOS and Estelle [Diaz89]. Similarly, the development processes associated with 

the methodologies are at varying levels of detail, some are rather primitive and cover no 

more than a simple instruction on how to use the corresponding ADLs; while others are 

much more refined and powerful, and may incorporate external formal analysis methods 

(e.g. UniCon [Shaw96], PARSE). Various supporting tools have also been built, such as 

the Software Architect's Assistant [Ng95] for Darwin and Aesop [Garland94] [Monroe96] 

for the ABLE project. These tools typically provide a visual rapid prototyping and 

modeling environment. Some provide simulation of events: C2, some provide code 

generation: Occam generator for PARSE [Gorton96b], and some allow for external 

design analysis: UniCon or performance evaluation: HL for PARSE [Hu97]. 

ABLE 

Carnegie Mellon University's ABLE project is concerned with exploring and developing 

the concept of Architectural Style, and building tools that practicing software architects 

might find useful [Monroe96][Garland94]. The tool development effort has focused on 

the Aesop system, a toolkit for rapidly producing software architecture design and 

analysis environments that are customized to support various specific architectural styles. 

Aesop has three main features: 

9 
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• a generic object model for representing architectural designs. 

• the characterisation of architectural styles as specialisation of this object model 

(through sub-typing). 

• a toolkit for creating an open architectural design environment from a description of a 

specific architectural style. 

The architectural styles mentioned here include the commonly found architectural 

patterns and idioms such as client-server, pipeline and filter, layered systems, and 

blackboards. Additional examples include localised ones such as model-view-controller 

and various object-oriented patterns [Gamma95], as well as various reference models for 

communication such as CORBA [OMG95] and OSI [Spragins92], and user-interface 

frameworks. 

UniCon 

UniCon (Universal Connector Language) is an ADL providing representations for 

components and connectors, abstractions and encapsulation, types and type checking. It 

can also describe a system which involves coordinating real-time tasks. An example is a 

system with two 'schedulable' tasks that interact through remote procedure calls. UniCon 

researchers employ rate-monotonic analysis (RMA) techniques to analyse the real-time 

properties of the system. RMA originates from research in scheduling algorithms for real

time systems by Liu and Layland [Liu73] and has been extended and documented by the 

Software Engineering Institute at Carnegie Mellon [Klein93]. Systems scheduled with 

rate-monotonic scheduling (RMS) algorithm could be formally analysed to determine 

whether meeting real-time deadlines could be guaranteed. 

Rapide 

The Rapide project from Stanford Univerisity focuses on building large-scale, distributed 

multi-language systems. It is a concurrent event-based simulation language for defining 

and simulating the behaviour of system architectures [Luckham95]. The system is based 

on an executable ADL (EADL), and a toolset is available for supporting the use of this 

EADL, thus providing for the analysis of system architectures. Rapide adopts an event

based execution model of a distributed, time-sensitive system: "the timed Poset model". 

Partially Ordered Sets of Events (Posets) provide a formal basis for constructing early life 

10 
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cycle prototyping tools, and later life cycle tools for correctness and performance analysis 

of distributed systems. 

PARSE 

The aim of PARSE (P ARallel Software Engineering) is the development of 

techniques and tools to support the production of closely coupled parallel systems 

[Gorton94][Gorton95]. It is a multi-stage software engineering methodology, and all 

of the various software engineering stages are based on the PARSE process graph 

design notations [Gorton96]. 

The PARSE process graph notation is an object-based design notation, where system 

components are decomposed into different types of process objects 

[Gray94][Gorton93]. The interactions between these objects are based on message 

passing, and the various modes of communication can be specified via the notations 

available. 

This methodology has the following features: 

• Systems are composed using a graphical design notation, which enables process 

structures and their precise interactions to be hierarchically constructed. 

• PARSE designs are language and architecture independent. 

• PARSE designs can be transformed into formalisms such as Petri nets or CSP to 

provide for design verification [Gorton96a] [Jelly95]. 

2.1.1 Methodologies for Dynamic Software Architecture 

The primary work of the various software architecture research groups presented so far 

has revolved around Architecture Description Languages (ADLs). However, most of 

these approaches are limited to the specification of static systems. These ADLs cannot 

adequately handle the design of concurrent systems which incorporate the dynamic 

creation and deletion of processes and of communication paths [Liu98]. Similarly, the 

dynamic reconfiguration of systems can not easily be captured in the design. In many 

distributed systems such as retail banking systems, factory automation, and 

telecommunication, the provision of these facilities is important. 
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One exception is Darwin [Magee95] which allows the specification of runtime 

architectural changes. The Imperial College's work on Darwin focuses on the separation 

of program structure and algorithm behaviour. Darwin is also a configuration language 

for the Regis [Magee94] distributed programming environment. This group is also 

currently investigating the use of labeled transition systems for reasoning about the 

behaviour of Darwin-structured programs [Cheung94]. The Software Architect's 

Assistant [Ng95] is a CASE tool for the Regis programming environment which does not 

yet support automated formal analysis and verification of design. 

Another research group that examines dynamic systems issues is the University of 

California, Irvine. This project experiments with dynamic architectures by building a 

prototype tool that supports the construction and run-time modification of software 

architectures in an event-based style called C2 [Taylor96] where components 

communicate via connectors. This approach provides an imperative language for 

modifying architectures [Oreizy98] and the prototype of the supporting tool ArchStudio 

provides interactive tools for software architects to describe architecture and architectural 

modifications. Then, an 'Extension wizard' enacts the runtime modifications. This tool 

does not provide for the complete analysis and verification of the dynamic software 

architecture using an explicit formalism, and is only limited to checking invariants from 

the C2-style rules. This tool also restricts architects to using a specific language: the 

J ava-C2 class framework. 

2.1.2 Formal Description Techniques for Software Architectures 

Estelle [Diaz89], LOTOS [Leduc94] [Pecheur92] and SDL [Faergemand91] are three 

formal description techniques (FDTs) that first came out in the late 80's and conform to 

ISO standards. Both Estelle and LOTOS were developed within ISO for the specification 

of OSI protocols and services [Ansart89]. However, the typical modeling elements such 

as modules and interaction points of Estelle and LOTOS means they are typical ADLs 

and can be used in all software architecture modeling. Estelle supports hierarchical 

structuring of system components, and has supporting tools which include a syntax 

directed editor, symbolic debugger and code generators for C and ML. There are also 
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attempts at LOTOS tools including the European/Canadian LOTOS Protocol Tool Set 

(Eucalyptus) project [Eucalyptus97]. 

SDL (Specification and Description Language), recommended by CCITT for describing 

functions of telecommunications systems, is based on experience of describing systems as 

communicating state machines. Since 1976, SDL has evolved from an informal drawing 

technique to a formal description technique, and several commercial tools exist [e.g. 

Faergemand91] which generate code directly from SDL descriptions. SDL has hence 

received wide use especially in the telecommunication sector [Belina91] [Saracco89]. 

Looking very similar to a flow chart, SDL has provision for the specification of input and 

output between different processes. Recently, SDL has also been extended to incorporate 

object-oriented features [Faergemand94] [Faergemand93] such as process typing, process 

instance sets, and inheritance. The consideration for dynamic process creation and 

termination is limited to the description only, no validation process has yet been 

supported. 

Rice and Seidman presented a formal model for Module Interconnection Languages 

(MILs) [Rice94]. This model formalises the design of hierarchical module structures. The 

model is specified by a collection of Z schema type definitions that is invariant across all 

applications. Any particular application then is described by specifying the values of 

generic parameters and adding application-specific declarations and constraints to the 

schema definitions. Rice and Seidman have applied their technique to describe the ADLs 

CONIC [Magee89] and STILE [Stovsky88], where in these ADLs (or MILs), a module 

interface is described by a collection of named and typed channels. To describe these two 

ADLs, appropriate values for the general parameters of the formal model is provided, 

such as those representing notions of interface ports and the types of ports. 

2.1.3 Architectural Design Using Object-Oriented Methodologies 

In additions to the architectural description languages, distributed software architectures 

are also commonly specified using various object-oriented methodologies [Low96]. Each 

of these methods has its own notation (symbols for communicating object-oriented 
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models), process (describing activities to perform in different stages of the development), 

and tools (the CASE tools that support the notation and the process). 

However, there are shortcomings in employing existing object-oriented modeling 

notations for architectural descriptions of distributed systems [Rasmussen96]. Primarily, 

existing object-oriented modeling elements are not rich enough to express various 

architectural features such as synchronisation, inter-module communication types, global 

control structures and system component reconfiguration [Kramer94]. Further, there has 

been little formal semantics work carried out in the area of object-oriented modeling. 

These object-oriented modeling elements are largely informal graphical modeling 

components, and as a result, there is little support in the formal design analysis and 

verification area [Harel97]. 

The Booch Method 

Booch [Booch94] defined the notion that a system is analysed as a number of views, 

where each view is described by a number of model diagrams. The Booch notation is 

very extensive, and some symbols (such as the cloud for object) are hard to draw. The 

method also contained a process by which the system was analysed from both a macro 

and micro development view, and was based on a highly incremental and iterative 

process. 

OMT 

The Object Modeling Technique (OMT) is a method developed by James Rumbaugh 

[Rumbaugh91]. A system is described by a number of models: the object model, the 

dynamic model, the functional model, and the use-case model, which complement each 

other to give the complete description of the system. The OMT method also contained a 

lot of practical description on how to create a system design, taking into account 

concurrency and mapping to relational database. 

OOSE/Objectory 

The OOSE and Objectory methods both build on the views of Ivar Jacobson 

[Jacobson92]. The OOSE method is Jacobson's version of an object-oriented method, 

and the Objectory method is used for building a number of systems, as diverse as 

telecommunication systems for Ericsson and financial systems for Wall street companies. 
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Both methods are based on use cases, which define the initial requirements on the system 

as seen by an external actor. The use cases are then implemented in all phases of the 

development, all the way through to system testing, where they are used to verify the 

system [Jacobson92a]. Objectory has also been adapted for business engineering, where 

the ideas are used to model and improve business processes. 

Fusion 

The Fusion method from Hewlett-Packard is a second generation method because it is 

based on the experiences of many of the initial methods [Coleman94]. Fusion has 

enhanced a number of important previous ideas, including techniques for the 

specification of operations and interaction between objects. The method has a large 

number of model diagrams. 

OOA/00D 

The Coad/Yourdon method also known as OOA/OOD [Coad91] [Coad9la] was one of 

the first methods for object-oriented analysis and design. The method was rather simple 

and easy to learn, and as such, it worked well to introduce object-oriented concepts to 

novices. 

UML 

The Unified Modeling Language (UML) is a joint effort from Booch, Rumbaugh and 

Jacobson. Aiming to be a standard object-oriented notation and process, it is based 

primarily on the Booch, OMT and OOSE methods. It also includes concepts from several 

other methods. For example, the work of Harel on Statecharts [Harel88] has been adopted 

in the UML state diagrams; parts of the Fusion notation for numbering operations has 

been included in the collaboration diagrams; the work of Gamma-Helm-Johnson

Vlissides on patterns [Gamma95] and how to document them has inspired details of class 

diagrams; the concept of Responsibilities came from Wirfs-Brock [Wirfs90]; and Object 

life cycles from Shlaer-Mellor [Shlaer93]. 

UML provides model elements from which various diagrams are built from. These 

different diagrams then present various different views of the system, not unlike the 

Booch approach. The modeling elements include classes, objects, stereotypes, 

adornments, and so on. The various diagrams available for modeling are: 
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• use case diagrams (functionality of system as perceived by external actor); 

• class diagrams (software structuring); 

• collaboration diagrams and sequence diagrams (class interactions); 

• component diagrams, 

• deployment diagrams. 

The combination of these diagrams thus presents the system in use case, functional, 

logical, component and deployment views. 

Despite the multiple views UML supports, no one single diagram can describe software 

architecture. To describe software architecture fully, model elements from both class 

diagrams, deployment diagrams and often more must be employed. For example, many 

concurrency and synchronization features are not explicitly expressed in any of the UML 

diagrams. 

Various tool supports are available for these object-oriented approaches. Some sample 

object-oriented CASE tools include Rational Rose [Quatrani98], GDPro [AST98], 

Software Through Pictures from Aonix [Aonix98], Class Designer from Cayenne 

Software [Cayenne98] and many more. These CASE tools, depending on complexity 

(level of sophistication) may support the following: 

• visual editor for models 

• provide navigation between different views/diagrams 

• model syntax checking ( consistency checks between different diagrams) 

• code generation 

• reverse engineering 

However, since most of these graphical notations are informal, there has been no 

adequate support for automated design analysis nor formal model validation. 

2.1.4 Comparison 

It should be noted that the distinction between methods and tools is an important one. 

Tools should support methods, and tools should not be built without any real method to 
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support. The accompanying methodology describing the process of how to use design 

notations and associated tools, is just as important as the notation and tools [Jelly96a]. 

Architecture definition languages should provide more ways of describing software 

architecture than just the simple box and line drawings. Several important issues such as: 

the inter-component communication type and protocol, component interfaces, 

concurrency handling and dynamic communication structures and components are just as 

important as getting the functional aspects of the components (algorithms and data 

structures) correct. A well-defined architectural definition language can then be used as a 

solid basis for developing better tools for designing software architectures and reasoning 

about the properties of the architecture. 

The various object-oriented approaches currently do not address the issues of 

concurrency handling well. Most current efforts on architectural description languages do 

not have provisions for dynamic features. Hence there is room for important research 

advances in these areas. 

2.2 Formal Methods for design verification 

Many formal methods exist for the specification and verification of concurrent systems. 

Specification is the process of describing a system and its desired properties. Formal 

specification uses a language that has a mathematically defined syntax and semantics. 

Once specified, the resultant formal model of a system can be subjected to formal 

analysis, e.g. checked to be internally consistent or used to derive other properties of the 

specified system. 

Two well established approaches to verification are model checking and theorem 

proving. 

Model checking is a technique that relies on building a finite model of a system and 

checking that a desired property holds in that model. The check is basically an exhaustive 

state space search. In contrast to theorem proving, model checking is completely 

automatic and fast. Model checking can be used to check partial specifications, and so it 

17 



Review 

can provide useful information about a system's correctness even if the system has not 

been completely specified. The main problem with model checking is the state explosion 

problem. However, there have been numerous promising approaches that alleviate this 

problem [Peled96] [Kurshan94] [Elseaidy96]. 

Theorem proving is a technique where the system and its desired properties are expressed 

in some mathematical logic. This logic is given by a formal system which defines a set of 

axioms and a set of inference rules. Theorem proving is then the process of finding a 

proof of a property from the axioms of the system. Most theorem proving tools are 

interactive. The B tool [Wordworth96] is an example of interactive theorem prover. 

For the design of dynamic systems, it is important to use formal methods to check for the 

validity of system configuration. For example, in distributed object systems that are 

typically built on middleware such as CORBA, software components are often 

dynamically bound and released. It is important to design the software architecture in 

such a way as to eliminate undesirable properties such as structural deadlock resulting 

from these dynamic component reconfigurations. Both the model checking and theorem 

proving approaches are applicable here. 

It is not the intention of this survey to include all existing formalisms, but to present those 

with the capability to describe concurrency and dynamism. These selected formalisms 

will be presented in the following categories: 

• set-theoretic approaches 

• logic based approaches 

• process algebraic approaches 

• state automata approaches. 

An assessment of the expressiveness of formalisms for describing dynamic systems with 

component reconfiguration features will be presented, as well as the availability of the 

corresponding support tools. 
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2.2.1 Set-theoretic Approaches 

Formal methods such as VDM [Jones89], Z [Spivey92] and B [Wordsworth96] have 

foundations in set theory. These methods encourage the construction of a model of a 

system or problem in terms of sets, maps, sequences and predicates. 

VDM 

The Vienna Description Method (VDM) is one of the more mature formal methods. It has 

received industry attention: example projects include [Durr95] which employed an 

object-oriented extension to VDM known as VDM++. The Mural system [Jones91] 

[Fields92] developed at the University of Manchester supports the construction of VDM 

specifications and refinements. Users can generate proof obligations to verify internal 

consistency of specifications. VDM is commonly seen as the predecessor of methods like 

Zand B. 

z 
Z is also based on set theory. Further, to the basic notion of set theory, Z adds the idea 

that objects in its universe may be categorised into different kinds, and that there is no 

overlap between distinct kinds. An important device in Z known as the schema allows 

descriptions of objects to be grouped into units, which can be referred to throughout the 

specification [Potter91] [Spivey88]. 

Z is supported by ZTC, a PC or Sun based type-checking system available for non

commercial purposes, and Fuzz, a commercial type-checker running under Unix and 

DOS. There are also some more integrated packages that support typesetting and 

specification integrity checks including Logica Cambridge's Formaliser, Imperial 

Software Technology's Zola, which includes a tactical proof system, and York Software 

Engineering's Cadiz (a tool suite for Z that supports refinement to Ada code). ICL's 

ProofPower uses Higher Order Logic [FME98] to support specification and verification 

in Z [Bowen95]. The wide choice of Z support tools reflects the popularity of the Z 

formalism. 
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B 

Devised by Abrial, like Z and VDM, B is a model-oriented method based on set theory 

and refinement theory [Lano96]. B has been designed to cover all the development 

phases of the software life-cycle, from specification to implementation, with emphasis on 

modularity and data encapsulation. The formal specification, as well as the design and 

implementation, are expressed in an abstract machine notation. 

The B tool from B-Core supports the B method [B-Core96]. The tool supports the 

construction of specifications called machines. The method advocates specification reuse, 

and the tool supports this by providing a library of base machines from which other 

machine specifications can be extended. Specifications can also be checked for 

consistency between subsequent refinements via proof obligations and generated into 

skeleton C code. 

The French company Matra Transport is using the B method to design safety-critical 

software for the driverless trains on the new Meteor line in the Paris Metro [Naim96] 

[Dehbonei95]. 

Discussion 

These methods and associated tools model data structures and algorithms well, and have 

received usage in various applications such as the specification of the IBM Customer 

Information Control System (CICS) using Z [Hayes91] and using B [Hoare-JP95]. 

(Although only about one-tenth of the entire system was actually subjected to formal 

techniques [Bowen95]). 

However, these set-theoretic approaches cannot easily verify concurrent systems. In 

dealing with concurrent and distributed systems, care must be taken to define the notion 

of correctness. Traditional (deterministic) sequential programs may be viewed as partial 

functions from inputs to outputs, specification may be given as a pair consisting of a 

precondition describing the allowed input and a postcondition describing the desired 

output for these inputs (e.g. models described in Z and B). However, for reactive and 

non-deterministic concurrent systems, this approach is too limited. 
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There have been attempts at specifying distributed systems using the B method, however, 

the resultant models are often awkward [Butler96]. 

2.2.2 Logic Based Approaches 

Temporal Logic 

This category emphasizes the use of logical formulas to encode properties of interest in a 

concurrent system. In the seminal paper [Lamport77], Lamport argues that the 

requirements that designers wish to impose on reactive systems fall into two categories. 

Safety properties state that "something bad never happens"; Liveness properties, on the 

other hand state that "something good eventually happens". Much work has been 

produced in developing logics that formalise these informal yet useful notions. The most 

widely studied is Temporal Logic [Pnueli77] which supports the formulation of 

properties of system behaviour over time. 

There are different types of temporal semantics: interval, point, linear, branching and 

partial order. Correspondingly, there are variants of Temporal Logic that uses different 

semantics. The variants include: the TTM/RTTL framework - explicit clock linear logics 

[Ostroff85], Metric Temporal Logic (MTL) - hidden clock linear logics [Koymans90], 

and XCTL - discrete time propositional explicit clock logic [Harel-E90]. The various 

temporal logics can be used to reason about qualitative temporal properties. Safety 

properties that can be specified include mutual exclusion and absence of deadlock. 

Liveness properties include termination and responsiveness. Fairness properties include 

scheduling a given process infinitely often, or requiring that a continuously enabled 

transition ultimately fires. 

Real-Time Logic 

Real-Time Logic (RTL) is another logic based formal language for reasoning about 

events and their times of occurrence [Mok91]. In [Jahanian88], a visual formalism called 

Modecharts is introduced. Modecharts specify a decidable fragment of RTL, in a state

based fashion. A method is provided for translating Modecharts into computational 

graphs, from which the verification can be performed. RTL's event occurrence function 

allows for a rich expression of periodic and non-periodic real-time properties. However, 

unrestricted RTL is undecidable. It does not treat infinite state systems, nor dynamically 
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reconfigurable systems. RTL formulas impose a partial order on computational actions 

which is useful for representing high level timing requirements. 

Assertional Logic 

There are various other assertional logic approaches such as the Real-Time Hoare Logic 

[Hooman89] which is based on the classical Hoare triples: { q} P { r}, where P is a 

program, q and r are first order predicates [Hoare69]. Hoare triples can only express 

partial correctness (properties that hold if the program terminates). This is hence not 

suitable for distributed systems which must deal with non-terminating programs, and 

interactions with the environment. 

2.2.3 Process Algebraic Approaches 

The set theoretic models and logic models discussed in previous sections encourage the 

construction of a model of a system in terms of mathematical data structures and of the 

static and dynamic constraints on them. By contrast, the process algebraic approaches 

exemplified by CSP [Hoare85] and CCS [Milner89] allow a system to be modeled by a 

collection of processes which communicate with one another. 

CSP 

Communicating Sequential Processes (CSP) devised by C.A.R. Hoare presents a process 

as a mathematical abstraction of the interactions between a system and its environment. 

Events, communication between processes, and non-determinism inherent in concurrent 

systems can be modeled in CSP. Further, in addition to the usual logic, functions and set 

operators, there are various other operators for describing processes and their interactions 

such as: sets of messages, event ordering, choice, parallelism, interleaving, chained to, 

subordinate to, interrupted by, restartable, repeat, satisfies, assignable and accessible. The 

primary reasoning mechanism of CSP is the concept of execution traces, where the sets of 

all sequences of events in which a process can participate can be analysed, and checked 

for certain properties such as deadlock. 

FDR [Roscoe97] from Formal Systems Europe is a model and refinement checker for 

CSP. 
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ccs 
CCS is also aimed at describing concurrent processes. The syntax of CCS is simpler than 

CSP, in that Milner has kept the number of operators in CCS to a minimum, and believes 

that higher level constructs such as conditionals and data structures can be encoded using 

primitive operations. 

Similar to CSP, CCS captures the ordering of events and interleaving actions of 

concurrent processes. The creation and termination of processes can also be described. 

However, the communication links between processes is pre-determined, and dynamic 

reconfiguration of communication can not be captured here. 

The Concurrency Workbench [Stevens98] is a CCS model checker. 

n-Calculus 

Milner devised the 1t-Calculus [Milner91] [Milner92] [Milner92a] after his work on CCS, 

and 1t-Calculus is often seen as a descendent of CCS. The basic notion of the 1t-Calculus 

is the idea of 'naming', where 'names' can be freely passed around. This powerful notion 

enables the modeling of dynamic reconfiguration of system components and 

communication links. 

Like CCS, there has also been extensive research work into equivalences of models in the 

1t-Calculus work, which provides the basis for model refinement [Carrington94] 

[Morgan90]. 

The Mobility Workbench is a model checker for the 1t-Calculus [Victor94]. It allows 

syntactical checks on 1t-Calculus expressions, as well as equivalence checks on two 1t

Calculus expressions at a time, in the manner defined by the equivalence theories 

[Sangiorgi96]. Further, it provides facilities for deadlock checks. 

Ambient Calculus 

Devised by Luca Cardelli in 1997, Ambient Calculus [Cardelli98] is an extension to 1t

Calculus which aims to capture the relationship between mobile processes and run-time 

environment. Novel concepts here include the 'in' and 'out' operators which describe the 
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actions of a process entering into and exiting from a computing processor. Ambient 

Calculus seems promising in describing mobile processes, however, the model is not yet 

mature, and there are no support tools at present. 

2.2.4 State Automata Based Approaches 

State machines have been a useful modeling technique in many branches of engineering. 

More powerful variants such as Statecharts by David Harel [Harel88] and Petri Nets 

[Peterson81] have provision for describing concurrency. 

Statecharts 

A state diagram is a bipartite graph of states and transitions. It shows the sequence of 

states that an object or an interaction goes through during its life in response to received 

stimuli, together with its responses and action. 

Hare I's work on Statecharts [Harel84] was a substantial improvement on the traditional 

flat state machines. It also contains features such as hierarchical decomposition and 

nested states, as well as the specification of concurrently executing components using 

substates. The interactions between these components can also be specified using 

message passing. 

Statemate is a widely used tool for Statecharts [Harel90]. 

Recently, the Statechart formalism has been incorporated as a part of the dynamic 

behaviour specification notation in the Unified Modeling Language (UML) [Penker98] 

[Harel97]. 

Petri nets 

Most theoretical work on Petri nets is based on formal definition of Petri net structures in 

terms of bag theory. However, the graphical representation of the Petri net structure is 

much more powerful and useful for modeling systems. 

A Petri net is a representation of a Petri net structure as a bipartite directed multigraph, 

consisting of places, transitions and directed arcs [Petri62]. 
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The basic Petri net consists of places and transitions. The firing of transitions depends on 

the availability of tokens. Petri nets can be easily used to model concurrent processes, 

whereby the tokens represent active threads of control, places represent the different 

states thread executions may be in, and various synchronization mechanisms may be 

modeled via the use of transitions. 

Figure 2.1 illustrates the well known reader/writer problem [Petersen81], where writer 

processes must mutually exclude all other reader and writer processes, but multiple 

reader processes can access the shared data simultaneously. This solution allows n 

readers to read at a time. 

readers writers 

Figure 2.1. Reader/Writer Problem with Bounded Number of Readers 

Initially s Readers and t Writers 

However, if an unbounded number of readers and writers are assumed, and that we want 

to allow an unbounded number of readers at a time, then the system cannot be 

represented by Petri-nets. In fact, it is necessary for readers to keep count of the number 

of readers reading, and increment or decrement this counter when it starts or finishes 

reading. This can be modeled by a place with a number of tokens equal to the number of 

readers. This means that for a write to begin, it must be able to read for an empty place. 

However, there is no mechanism in Petri nets which allows an unbounded place to be 

tested for zero. Thus, if there is an unbounded number of processes entering the system, 

then it cannot be represented by Petri nets. 
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Inhibitor arcs 

To overcome this problem, the additions of inhibitor arcs allow zero testing. It has a 

small circle rather than an arrowhead at the transition, where the small circle means 'not'. 

The firing rule is a transition is enabled when tokens are in all of its (normal) inputs and 

zero tokens are in all of its inhibitor inputs. The transition fires by removing tokens from 

all of its (normal) inputs. 

Self-modifying Net 

The self-modifying Petri net is another extension to the Petri net, which permits the 

labelling of an arc with the name of a place, to denote that the enabling of the arc depends 

on the number of tokens present in that particular place. If the place has no tokens, then 

the arc does not exist. Formally, a self-modifying net is defined like an ordinary Petri net 

as a bipartite multi-graph having edges of the form: 

If q = 1 then the firing rule of the transition is defined as in the ordinary case. But q is 

also allowed to be the name of an arbitrary place of the net. In this case, the number of 

tokens to be moved from or to the place equals the actual number of tokens in q. 

Therefore, self-modifying nets are able to modify their own firing rules [Valk77]. Figure 

2.2 illustrates how a self-modifying arc can be disabled. 

s p q 

Figure 2.2. Self-Modifying Arc 

We now can provide an alternative solution to the readers/writers problem. 
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• the in transition controls the entry of reader and or writer processes, so that the n 

place can keep count of the actual number of processes in the system. 

• the w' place is the complementary place of w. The presence of a token in place w' 

means the absence of writer processes. In this case, arc x is enabled, and the in 

transition can add tokens to places, which can be used to enable transition b (reader) 

or accumulated to enable transition y (writer). 

in 

n 

out 

Figure 2.3. Reader/Write Problem Revisited - Self Modifying Net Solution 

Other Petri Net Variants 

There are many other variants of the basic Petri Net beside the inhibitor arcs and Self

Modifying Nets. These include: 

• Coloured-Petri Nets [Jensen92], these are high level Petri Nets often used to model 

data types, 

• Stochastic Petri Nets [Ciardo94], for timing sensitive systems, and 

• Object-oriented Petri Nets [Lakos91]. 

Each of these variants have varying degrees of expressiveness, and thus have an impact 

on the complexity of corresponding Petri Net tools. 
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2.2.5 Discussion 

There is a general consensus among the software industry that formal methods are 

difficult to use. These are often attributed to the complexity in formalism, and the lack of 

support tools [Holloway96]. 

Hence, there is a need for good supporting tools for various functions such as: 

• (visual) modeling 

• model checking (e.g. safety, live-lock, deadlock, reach-ability) 

• design analysis 

• model refinement 

• code generation. 

2.3 Distributed Computing Environments and Language 
Support 

Existing operating systems do not have adequate support for distributed software 

engineering [Liu96]. Network operating systems such as Windows NT [Custer95] and 

Novell enable the sharing of network resources, however, not at a transparent level. 

Distributed operating systems such Mach [Rashid89] and Amoeba [Renesse89] are not 

mature enough to be used outside the research community. One exception is Chorus 

[Rozier90] where the CHORUS/COOL ORB has been recently acquired by Sun 

Microsystems and is receiving wide usage [Lea93]. 

Instead of adding more functionality to existing operating systems, support for distributed 

software engineering has been introduced at the middleware level. See Figure 2.4. There 

is also support at a programming language and/or environment level, e.g. Java. 
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Distributed Application 

Middle-Ware 

Conventional Operating System A Conventional Operating System B 
e.g. Windows NT e.g. UNIX 

Hardware 1 Hardware 2 
e.g. PC e.g. DEC Workstation 

Figure 2.4. Layers of Support for Distributed Software 

2.3.1 Middleware 

In order to provide support for distributed systems, various middleware layers have been 

developed. Middleware provides the basic infrastructure for abstracting the 

communication layer, thus simplifying the software engineering process. Existing 

middleware includes CORBA, DCOM from Microsoft, and the longer standing DCE. 

CORBA 

CORBA is a de-facto industry standard for distributed object systems development 

[OMG95]. The Object Management Group (OMG) brought vendors and end users 

together to agree on the technical content of this distributed object architecture. The 

CORBA specification details how objects should be able to transparently make and 

receive requests and responses in a distributed environment. It is the foundation for 

building applications from distributed objects and for interoperability between 

applications in heterogeneous and homogeneous environments. 

The ORB (Object Request Broker) is central to the CORBA architecture. An ORB is a 

software component whose purpose is to facilitate communication between objects. It 

does so by providing several capabilities. These include locating a remote object when 

given an object reference, and the marshaling of parameters and return values to and from 

remote method invocations. The ORB thus provides platform-independence to distributed 

CORBA objects. 
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Language independence is achieved in CORBA via a common object Interface Definition 

Language (IDL) which defines the types of objects according to the operations that may 

be performed on them and the parameters to those operations that is part of CORBA. The 

following is a sample OMG IDL of an Account interface: 

II Account.id! 

II Forward declaration of Account interface. 
Interface Account; 

#ifndef Account_idl 
#define Account_idl 

II sequence of Accounts 
typedef sequence<Account> AccountList; 

# include "Customer.id!" 

interface Account { 

} ; 
#endif 

II This Account's account number. 
readonly attribute string accountNumber; 

II This Account's current balance. 
readonly attribute float balance; 

II return list of Customers who hold this Account 
CustomerList getCustomers(); 

II Withdraw the given amount from this Account. 
II Returns new Account balance. 
float withdraw(in float amount); 

II Deposit the given amount into this Account. 
II Returns the new Account balance. 
float deposit(in float amount); 

Interfaces described in IDL can be translated into any programming language. CORBA 

applications and components are thus independent of the languages used to implement 

them. For example, a client written in Java can communicate with a server implemented 

using C++, which can in tum communicate with another server written in COBOL. 

Existing implementations of CORBA include Iona Technologies's Orbix [Iona95], 

BBN's freely available Corbus [BBN98] and Hewlett-Packard's ORB Plus [HP96]. 
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DCE 

The Open Software Foundation's Distributed Computing Environment (DCE) is another 

middleware product that supports distributed computing. DCE enables computers from 

different manufacturers operating on different system software platforms to interact, 

sharing data and applications transparently across networked, distributed environments. 

The fundamental communication mechanism of DCE is the Remote Procedure Call 

(RPC). RPC allows direct calls to procedures on remote systems as if they were local 

procedure calls. This simplifies development of distributed applications by eliminating 

the need to explicitly program the network communications between the client and 

server. The DCE RPC mechanism masks differences in data representations on different 

hardware platforms, allowing distributed programs to work transparently across 

heterogeneous systems. The primary difference between DCE and CORBA is that DCE is 

not necessarily object-oriented. There are many implementations of DCE around, most 

notably the ones from Transarc [Transarc98] and Siemens [Siemens97]. 

DCOM 

The Distributed Component Object Model (DCOM) [Microsoft98] is a protocol that 

enables software components to communicate directly over a network. Previously called 

"Network OLE", DCOM is designed for use across multiple network transports, 

including Internet protocols such as HTTP. DCOM is based on the Open Software 

Foundation's DCE-RPC specification and will work with both Java applets 

[Horstmann98] and ActiveX [Chappell96] components through its use of the Component 

Object Model (COM). For example, a developer could use Java to build a Web browser 

applet that calculates the value of a portfolio of securities, using DCOM to communicate 

stock values to the applet in real time over the Internet. 

ActiveX [Chappell96] controls are among the many types of components that use COM 

technologies to provide interoperability with other types of COM components and 

services. ActiveX controls are the third version of OLE controls (OCX), providing a 

number of enhancements specifically designed to facilitate distribution of components 

over high-latency networks and to provide integration of controls into Web browsers. 

These enhancements include features such as incremental rendering and code signing, to 

allow users to identify the authors of controls before allowing them to execute. 
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2.3.2 Distributed languages 

Java 

Software system components written in Java can be transported across the World Wide 

Web via HTTP, and executed on different types of machines. Java's portability is due to 

the concept of a Java Virtual Machine which acts as a translator that transforms general 

Java platform instructions into platform dependent executable code. Java thus supports 

the construction of distributed systems, although the actual transporting of Java software 

components is by no means a transparent process. 

In addition to Java's portability, Java Remote Method Invocation (RMI) is a CORBA-like 

architecture that enables distributed software construction. One advantage of RMI is that 

it supports the passing of objects by value, which is a feature not currently supported by 

CORBA. A disadvantage is that RMI is a Java only solution, i.e. both RMI severs and 

clients must be written in Java. For all Java applications, particularly those that benefit 

from the capability to pass objects by value, RMI is a good choice. For those where 

interoperability will be a concern, CORBA is the obvious choice. 

2.4 Conclusion 

This chapter has reviewed existing work on support for the engineering of distributed 

systems. The three groups of work are: 

• software architecture methodologies 

• formal methods for architectural design verification 

• distributed computing environments 

We have seen that there is an abundance of theories and models for describing and 

analysing concurrency. However, it is not clear how these theories can best be applied in 

real world systems. There are also robust distributed computing environments present, 

however, there is no adequate methodology guiding the design of distributed systems that 

runs on these environments [Gorton97a]. 

There is clearly a need for a software architecture design and analysis methodology for 

dynamic distributed systems. This methodology should be supported by an integrated 
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toolset, for the purposes of prototyping architectural design, and automating the formal 

analysis of these designs. 
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3. Dynamic PARSE Design 
Methodology 

The PARSE software engineering methodology has been introduced in section 2.1. This 

chapter presents Dynamic PARSE (PARSE-D) which is an extension of PARSE that aims 

to cater for not only the design of static, closely-coupled parallel software (as supported 

by existing PARSE), but also the design of loosely-coupled distributed systems. These 

loosely coupled distributed systems often exhibit dynamic reconfiguration features such 

as those commonly found in mobile communication systems and various types of 

software applications running across a network. These dynamic features add to the 

complexity of the system greatly, and have severe implications for the system's 

correctness at run-time. It is thus important for software engineers to capture these 

dynamic reconfiguration features at an early stage of the software development process, 

and thus refining and implementing the system with these distribution and concurrency 

issues in mind. The representation of these dynamic features can also be used for design 

analysis and verification. 

A presentation of PARSE [Gorton95] in sufficient detail will firstly be given. This is 

followed by a presentation of Dynamic PARSE design notation and the associated usage 

rules [Liu96]. The Dynamic PARSE design methodology and a sample design will also 

be presented. 

3.1 The PARSE Methodology and Design Notation 

PARSE (PARallel Software Engineering) is a software engineering methodology to 

facilitate the design of reusable parallel systems. This methodology exhibits the following 

features: 
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Graphical Design Notation: Systems are composed using a graphical design notation , 

which enables process structures and their precise interactions to be hierarchicall y 

constructed. 

Language and Architecture Independence: PARSE designs do not rely on any specific 

programming language features or target machine architecture. 

Formal Verification: PARSE designs can be mechanically transformed into Petri nets to 

provide the potential for design verification . 

Code Generation: PARSE designs can be mechanically transformed into skeleton 

program code: an example is Occam [Gorton96b]. 

A PARSE process graph thus acts as a basis for subsequent software engineering stages 

such as design verification and code generation . 

PARSE process graphs depict the process partitioning and communications relationships 

between processes, together with the role of each process in the system. Conceptually a 

process graph comprises several concurrently executing processes that interact and 

synchronise via message passing. Figure 3.1 shows the designs notations of PARSE 

process graphs. 

Process Objects 

Data 
Server 

Communication Paths 

~onous 

■) 
asynchronous 

()) 
synchronous 
bidirectional 

broadcast 

Path Constructors 

non-deterministic 

I 1 2 

deterministic 

-
concurrent 

Figure 3.1. Summary of the PARSE Process Graph Notation 

A system consists of a set of process objects, where these process objects have some 

encapsul ated data and or functionality (object) as well a thread of control (process). 
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There are three fundamental categories of process objects, namely Function server, Data 

server and Control process objects. Essentially, Function servers take a passive role in the 

system behaviour and basically encapsulate some well-defined functionality required by 

the system; Data servers also take a passive role and encapsulate some required data and 

associated access methods. Control process objects have an active role in the system and 

implement tasks such as the distribution of work and synchronisation of the system. The 

process notation thus represents a simple formalism which captures the design heuristics 

used by software engineers when partitioning a problem into processes. Further, it 

encourages designers to create the passive process objects Function and Data servers 

which may be candidates for reuse in subsequent developments. 

The PARSE process graph also supports four types of communication paths between 

processes. These are as shown in Figure 3.1 and include synchronous, asynchronous, bi

directional synchronous, and broadcast. In addition to process objects, some 

communication paths may have external objects as the source or destination. Typical 

external objects include hardware devices or other software subsystems outside the scope 

of current development. These external objects are represented by a named, solid vertical 

bar, and it is only the interface of these external objects that is important. Hence, it is only 

necessary to specify the type of communication path connecting process objects to 

external objects. 

Path constructors indicate how individual processes should respond to pending messages 

on multiple input paths. Annotating a design diagram with this information is important 

as it specifies how a process is to react when competing messages are received on 

different input paths. This increases the amount of design information captured in a 

design diagram, and creates scope for automated design verification and code generation 

tools. There are four types of path constructors, namely deterministic (prioritised choice), 

non-deterministic, and concurrent (only applied to composite process objects, where 

independent process object components exist to handle the incoming messages 

separately). 

Some of the other features of PARSE process graph include: 

• The specification of replicated instances of a process object by using an index after 

the process name. 
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• Ability to specify regular process structures such as pipelines and matrices. 

• Hierarchical decomposition of process objects to manage complexity in design 

diagrams. 

3.2 Dynamic PARSE Design Notation 

The Dynamic PARSE (PARSE-D) process graph notation (Figure 3.2) is designed to 

supplement the static PARSE process graph notation discussed in section 3.1, while 

maintaining the machine and language independence property. Some of the usage rules 

present in PARSE also apply to Dynamic PARSE. The resulting extended notation 

enables the design of distributed and parallel systems incorporating dynamic features. In 

distributed object systems commonly built on middleware such as CORBA, software 

components are often dynamically bound and released. It is important to explicitly 

specify this feature. 

Dynamically Created Process Objects: function server, data server, and control 

processes all may be created and deleted dynamically. The existing behavioural and 

functional rules applying to their static counterparts also apply to them. In addition to the 

inherited functionality of their static counterparts, these dynamic process objects may 

enter and or exit the system at run time. This should not affect the execution of other 

processes. Also, communication paths going into and/or coming out from dynamic 

process objects are also dynamic in nature. These communication paths are set up when 

the associated process objects are created, and are destroyed when process objects 

terminate. 

Dynamic process objects are often replicated. Each replicated instance has the same 

process-internals. Different instances may be created and terminated at different times 

throughout the run-time. The series of numbers enclosed by square brackets [O .. n] 

denotes the range of the number of instances of the object that may be present in the 

system at any one time. The symbol n may be replaced by a constant integer, or by 

default, is the maximum number of thread instances a process may have as defined by the 

underlying system. When expanded, each instance has an associated subscript. This 

provides a way to uniquely identify each instance of the process. 
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Figure 3.2. Summary of Extended-PARSE Process Graph Notation 

Creation/Deletion of Dynamic Process Objects: Function servers and control process 

objects may create and delete dynamic process objects by invoking create and or delete 

signals. They are shown via the twisted arrow notation. There are two rules of usage: 

• the process object at the invoked end of a creation/deletion arrow must be of dynamic 

type. 

• the process object at the invoking end of a creation/deletion arrow must be an active 

process object. This means the passive data server and function server is excluded. 

Termination Modes of Dynamic Process Objects: There are three ways that dynamic 

process objects may exit from the system: assassination, suicide, and aging. 

Assassination: Any running process can kill a dynamic process. This ensures that 

Dynamic PARSE designs are machine and language independent. In different distributed 

operating systems, there are limitations imposed on deletion of processes by other 

processes. For examples, in some operating systems, only parent processes may kill their 

own children processes. In others, and especially when the processes are running in 

different memory locations such as a distributed object system across a network, as long 

as the process id is known, any process may kill it. 

Suicide: A process or a thread may terminate its own execution . For example, threads in 

Windows T may terminate themselves by calling the Win32 function: ExitThread. 
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Other heavy weight processes or a subsystem component may exit the system by itself 

due to certain system exceptions. 

Aging: This is the default termination mode. The created process dies from aging when it 

completes its work. This occurs naturally, hence the term aging. 

The notation provides a rich set of notations for describing all possible ways of 

termination, and leaves the design decision for the software engineer. 

Dynamically Created Communication Path: The four types of communication paths 

can be used to connect to dynamic process objects. When both the sender and receiver 

process objects are static process objects, the semantics of the communication path 

remains the same as in PARSE, and any existing PARSE design rules apply here. 

However, when either the sender or receiver process object is dynamic, the life-time of 

the communication path is dependent on the associated dynamic process object. For 

example, in Figure 3.3, the communication path data is not valid at all times. It is valid 

when both the sending process and the receiving process are present in the system. 

Hence, in this case, the data path is set up only after the creation of sender by control and 

the creation of receiver by an external entity. 

r create - - - - --- -- 1 -- - ' da) 
, 

' / [0 .. 1] ', control ~ I [0 .. 1] \ 

I 

sender I 

\' _r~~~i~~~ - , ,' 
\ I \ ' - -, 

'- ,J - - - - - -
not valid at all times 

Figure 3.3. Implicit Dynamic Behaviour of Communication Paths 

In the above example, there is (at any time) a maximum of one communication path 

between the two dynamic process objects. However, this is not always the case. By 

default, a communication path going into or coming out from a dynamic process object is 

replicated if there are multiple instances of the process. 
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Figure 3.4. Replication of Dynamic Communication Path 

The existing replication rules and notations in PARSE also apply to dynamic processes in 

Dynamic PARSE. That is, by default, all associated processes are fully connected by 

communication paths when all the dynamic process object instances exist. Path 

restriction can also be used here to overwrite default behaviours (see Figure 3.5). 

______ data: from sender[i] to receiveriiJ ___ _ 
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\ I / \ I 

, - - - - - - , data: from sender[2] 
( sender[2] '\ to r)ceiver[2] 
\ , 

,✓ ' 

: receiver[l]) 
\ , 

' 

Figure 3.5. Path Restriction in Dynamic PARSE 

Transactional communication path: Software designers can explicitly show that the 

communication between two processes is of a transactional type by using dotted arcs (see 

Figure 3.6). These are different to the ordinary communication paths in the sense that 

they are set up only when they are needed to transfer messages. As soon as the transfer is 

complete, the path is no longer valid. Hence, the life span of a communication path is not 

dependent on the life spans of the processes using it, but is dictated by the activity of 
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transferring the message. In a database system, a typical example would be a 

transactional update to a data store. 

~ _ -I database 
~ . 

update : customer 
I 

collect_ 
changes 

Figure 3.6. Transactional Communication Path Example 

The period of validity of the communication path depends on the associated process 

internals, where process internals can be explicitly defined using an internal behaviour 

specification language such as the PARSE Behavioural Specification Language (BSL) 

[Gray94]: 

PROC database 
SEQ 

-- other processing 
sy-receive(update) 

other processing 
ENDSEQ 

ENDPROC 

PROC c o llect_changes 
SEQ 

-- other processing 
s y -send(update) 

other processing 
ENDSEQ 

ENDPROC 

In thi s case, the transactional communication path update is not valid while other 

processing are happening. 

Communication Path Constructors: Not all four types of path constructors may be 

applied when dynamic process objects are associated. Consider the example of an 

incorrect use of path constructor in Figure 3.7 : the updates communication paths may be 

replicated depending on the number of worker processes present in the system. Hence, 
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there may be multiple paths going into the data store, which need to be handled non

deterministically. The data server receives update messages from workers randomly. 

Concurrent and deterministic input handling can not be used here as concurrent input 

handling implies there is concurrency within the process. That is, the process may be 

further decomposed. This cannot be used here since the data store is primitive. With 

deterministic input handling, the receiving process selects between ready paths according 

to path labels. However, when the paths are coming from instances of the same dynamic 

process, the priority cannot be specified since there is no guarantee that a particular 

instance of the process is present at a point in time. Hence, deterministic input handling 

cannot be used here. 

11
,, - - [O . .3] - - ',1 upc4ltes d 

7 data server ', worker _ , ' .__ ___ __, 

◊ 
,,, worker[l] \ __ \' -< ;~;;0~[::-:-~::]~-~ ,-,:-=-_ --,-~+------.1q data server I 

- ..,, ' 
:, worker[3] , 

' / 

Figure 3.7. Dynamic Updates to Data Server Requiring Non-deterministic 

Constructor 

Hence, path constructors are not to be used in conjunction with dynamic process objects. 

All multiple inputs to dynamic process objects are handled non-deterministically. 

Note: figure 3.7 illustrates an incorrect use of path constructor. Further, the figure is not 

syntactically correct. 
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3.3 The Dynamic PARSE Design Methodology 

The Dynamic PARSE software design methodology provides a hierarchical, object-based 

approach to the design of dynamic software architecture. A system is decomposed into a 

set of concurrently executing process objects which communicate via message passing. 

These process objects can also be hierarchically decomposed in order to handle 

complexity in design. The graphical design notation is used to capture the architectural 

(structural and dynamic) properties of the required distributed software system. 

A typical design process involves the following steps: 

1. identify the various system components in the system. 

2. classify the system components to be one of: active control process object (either 

composite or primitive), passive function process object, and passive data server. 

3. identify any process objects that are created and or deleted dynamically. Denote the 

dynamic process objects and the corresponding creation and deletion actions by using 

Dynamic PARSE design notations. 

4. specify the interaction between the process objects using the 4 different types of 

communication paths: synchronous, asynchronous, bi-directional (request-reply), and 

broadcast. 

5. use dynamic communication paths to specify any re-configurable communications. 

6. For each composite process object, identify its component process objects and the 

interaction modes. This step is repeated until all composite process objects at all 

levels have been specified in terms of primitive process objects. 

7. for each static primitive process object, indicate the order of handling of all incoming 

messages to that process object using path constructors. 

3.3.1 Sample Design -A Lift Controller 

This section illustrates a typical Dynamic PARSE design. The example chosen here is a 

simplified version of the Ubiquitous Elevator Problem discussed in [Howland-Rose94], 

where the software structure changes according to client requests. It will be shown how 

this dynamic change to software structure can be easily described using the Dynamic 

PARSE design notation. 
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Figure 3.10. Top Level Process Graph of the 'Lift Problem' 

doors 

lift 
sensors 

The requirement is to design software which controls passenger elevators. Elevators can 

be called via up or do wn buttons on each floor. Inside an elevator, passengers may select 

destination floors by pressing buttons on a panel. However, while the elevator is in 

motion , only requests to go to floors in the same direction are accepted by the controller. 

Figure 3 .10 shows the top level design of the system, after carrying out the design steps 1 

- 5 listed in section 3.3. 
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Figure 3.11. Decomposition of the 'Lift Controller' Process 

Figure 3.11 is derived by decomposing the Lift Controller process, i.e. carrying out step 6 

presented in section 3.3. 

For a set of m lifts, there are m lift controller processes, each controls their own lifts 

(Figure 3.10). There is also a process requests_allocator, which delegates tasks to 

different lifts upon the receipt of requests from outside sensors. Notice there is only one 

path being used at any time between requests_allocator and lift_controller. There is 

always only one lift allocated the job to service a request. The request_allocator chooses 

a lift by reading the movement status of all lifts, as well as the job_allocation_table. Thus 

ensuring all lifts have approximately equal number of requests to serve, and at the same 

time minimises overhead movement of lifts in order to service requests. Lastly, the 

external entities: doors and lift_sensors provide status information to the corresponding 

lift controller. 

The process objects inside a lift_controller process are: 
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• Data server lift_position accepts input from the external entity lift_sensor. Whenever 

requested, it provides the lift position information to the control process object 

elevator _movement_control, and a control process object request_interpreter. 

• Outside_request_filter is modeled as a control process object. Its main function is to 

receive requests from the request_allocator and obtains movement information from 

the movement_table. It subsequently sends processed requests to request_interpreter. 

• Request_interpreter is also a control process object. It receives requests to go to 

particular levels from two sources: the outside_request_filter - requests from outside 

the lift, and panel_sensors - request from inside the lift. Request_interpreter obtains 

current lift position information and determines which requests to be placed onto the 

request_queue. 

• Request_queue stores requested level numbers. 

• Elevator _movement_control obtains the next request to service from the 

request_queue. It determines the movement direction of the lift. If a change in 

direction is required, it sends an update message to the movement_table. This control 

process also tells the door _manager when the requested level has been reached or 

not. It does this by comparing the requested level with the current lift position. 

• Door _manager controls the opening and closing of the lift door. 

The decomposition of the two processes: outside_request_filter and request_interpreter 

are shown in Figure 3.12. 
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Figure 3.12. Decomposition of 'Outside Request Filter' and 'Requests 

Interpreter' 

In both of these process objects, the level numbers (and up or down signals in the case of 

outside_requestJilter) are received by the internal control processes, which then create 

dynamic worker processes to carry out the work. The information such as level_numbers 

and up or down signals are passed to corresponding instances of dynamic worker 

processes upon creation. 

The filter process inside the process outside_requestJilter simply checks whether the 

request is going up or down. It also obtains current movement from the movement table. 

If the request is in the same direction as the lift_movement, then the request is sent to 

request_interpreter which subsequently places the request onto the queue. If however, the 

request is in the other direction, the filter process waits till the lift movement has changed 

before sending request to the interpreter. 

Within the process request_controller, each instance of the interpreter checks current 

lift_movement and position in order to decide if the request can be serviced without 

changing lift movement direction. Thus adding the request to the request_queue. Both 

requests from outside and inside the lift are serviced. 

Both filter and interpreter processes die from aging . 

Figure 3. 13 illustrates examples of alternative designs where the filter process exits the 

system through either assassination or suicide. 
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Figure 3.13 Examples of Assassination and Suicide 
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3.4 Conclusion 

In this chapter, the Dynamic PARSE Process Graph Design Notation has been presented. 

The Dynamic PARSE Process Graph Notation has the following features: 

• platform independent 

• scaleable - encourages component-based design 

• hierarchical - to manage system complexity 

• user-friendly - graphical notation is simple to use 

• rich set of process object types - enable architects to capture client-server 

relationships easily 

• rich set of communication types 

• path constructors encourages explicit specification of concurrency 

• dynamic properties such as process creation/deletion and communication 

reconfiguration can be captured 

Once the architectural properties have been captured using PARSE-D, the designs can be 

subjected to analysis and verification. In chapter 4, the formal semantics of Dynamic 

PARSE Process Graph Notation will be presented. This forms the basis of automated 

design verification. 
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4. Dynamic PARSE 
Analysis/Verification 
Methodology 

4.1 Introduction 

In this chapter, the Dynamic PARSE Design Analysis and Verification process will be 

described. In order to facilitate design analysis, Dynamic PARSE designs are translated 

into corresponding formal models. These mathematically sound models then form the 

basis for design analysis and verification. 

Firstly, the translation scheme of Dynamic PARSE Process Graph Notation to the Petri 

Net formalism will be presented. Then, the translation scheme for Dynamic PARSE to 

the 1t-Calculus formalism will be described. A comparison between the use of Petri Nets 

and 7t-Calculus will then be presented. 
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4.2 Translation Scheme 

4.2.1 Translating Dynamic PARSE Designs to Petri Nets 

Introduction and Past Work 

Petri Nets are an important mathematical model for the analysis of systems with 

interacting concurrent components. Petri Nets have been used previously as the auxiliary 

tool for PARSE design analysis [Jelly95]. Once the corresponding skeleton Petri Net 

model has been derived from a PARSE design, system properties can be analysed, and 

knowledge gained about the system can subsequently be used to revise the design. Some 

system properties that are desirable to be analysed include liveness and reachability 

properties. 

It is thus important to devise a set of rules for the translation of PARSE design 

components to corresponding partial Petri Net models. Initial work in this area has been 

carried out [Jelly95][Pateman95] where mappings for the four communication types, 

basic programming structures such as sequence, selection and iteration, non-deterministic 

constructors and concurrent constructors have been described and explained. There was 

also a substantial case study carried out [Gorton96]. However, there has not been any 

work carried out on deterministic constructors, nor dynamic features such as those 

present in PARSE-D [Liu96]. 

In the following, the transformation from PARSE design elements to Petri Net models 

will be presented, followed by the transformation rules for Dynamic PARSE to Petri 

Nets. In order to model re-configurable system structures such as those commonly 

designed using Dynamic PARSE, it is necessary to use a higher-level Petri Net known as 

Self-Modifying Nets, proposed by Valk [Valk77]. 
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PARSE to Petri Net 

Here, the mappings for the four communication types are described. This is essentially 

the same as those presented in [Jelly95] [Pateman95] and [Gorton96]. In addition, the 

mapping for the three types of path constructors are shown. 
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asynchron9us 
send \ 

p 

p 

•, 

p 

Q 

·· ...... 

\ b af y~~~~:ous . . . ' . . 
\ :' 

...... ,.:' 

Q 

\\ 
\accept 

/ eply 

Q 

Figure 4.1. Petri Nets Model: Four Communication Types 
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p Q 

( 

·· .. 

·· .. 

R 

p Q 

R 

p Q 

R 

Figure 4.2. Petri Nets Model: Path Constructors 

Basic Petri Nets are not expressive enough to model deterministic path constructors. The 

inhibitor arc (represented by an arc with a small circle at the end) is necessary to model 

the prioritised choice behaviour present in the deterministic path constructor. 

PARSE-D to Self-Modifying Net 

PARSE-D supports the design of systems with evolving system structures. To model 

systems designed using PARSE-D, Self-Modifying Net [Valk77] is used. Figures 4.3 and 

4.4 present two example mappings. 
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p Q 

... -·· / .. ····· 
···-........... . 

· ......... . 

return: 

re::1 p .--~---.') 
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...... j/l:~: 
( Client ·; 

client may or 
may not block, 

can do other ····• ..... 
things. •- ... 

receive 
result 

Client 

i-·············••: 
' • ................ .. 

Figure 4.3. Self-Modifying Nets Model: Creating Worker Processes 

For the Creating Worker Processes example: 

• tokens are threads of control: initially, tokens are present in P and Client only, since 

they are the only active objects in the system at start up time; 

• the tokens in Client means there are 2 clients active in system; 

• place c counts the number of active Q processes in system at any time; 

• when place c contains zero tokens, there are no active Q processes in the system. To 

reflect this change in the system, the two arcs labeled with c are disabled, thus 

separating the sub-net representing process Q away from the main net representing 

processes P and Client. Since the sub-net representing Q would have no token, it can 

be ignored; 

• the dynamic result path is also appropriately modeled via the self-modifying arc. 
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8····· ····· -(-■······P,~-m.e _____ ___ __ __ _______ _________ _ 
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printer( 
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create : Filter[i] creates filter[i+ I] . ..... __ 

,__ __ .......,,___.....,:..::--filter .. ) 

Odd: from filter[i] 
to filter[i+ I] 
for i = l..n- 1 
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----~e-------,-------,t.-\eil? 

e 
pri mO .. \.\ 

Odds
generator 

discard 

Static filter 

d 

.... -· 

dynamic filters ···-... _ 

Figure 4.4. Self-Modifying Nets Model: Sieve of Erastosthenes Problem 

For the Sieve of Erastosthenes example: 

.. ··· 

• Initially, 3 tokens in the processes: printer, odds_generator, and staticJilter, 

representing that these are the 3 initial active processes. 

• Place d is used to provide information regarding the last pnme number being 

generated. The self-modifying arcs d and 'd are correspondingly enabled and 

disabled. 

• Placed is used for 2 purposes: for the creation of a new filter process, and for passing 

an odd number to the next filter in the pipeline. 

• Place e is used to record if the static filter has generated a prime number or not. The 

self-modifying arc labeled with e thus represents the behaviour of a dynamic 

communication path prime. 

Table 4.1 presents the mappings between PARSE-D design notation components and 

Self-Modifying ets. 
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Dynamic Process Objects 

• initially 

• created 

• Create Signal 

• Delete Signal 

Dying Objects 

• Suicide 

• Assassination 
• Aging 

Dynamic PARSE AnalysisNerification Methodology 

Self-Modifying Nets 

Sub-nets 

• initially disconnected from rest of the net, and has no 
token, i.e. Not in system yet! 
• once created, connected to main net, and has a token 
for thread of control. Multiple tokens for replicated 
objects. 

• an enabled self-modifying arc, with associated create 
transition, through which a token (thread of control) is 
passed to a newly connected sub-net. 
• A disabled self-modifying arc, with associated delete 
transition, so to disconnect sub-net from main-net. 

Absorb token, or disconnect sub-net 

• absorb a token within the sub-net itself, disconnect 
by reading a place in its own sub-net 
• same as the delete signal 
• once a token has traversed through all places, the 
token is absorbed. Use self-modifying arc to disconnect 
sub-net when no tokens left. 

Transactional Communication Self-Modifying arcs 
Paths 

• synchronous send/receive otherwise same as for static communication paths. 

• asynchronous send/receive 
• broadcast 
• bi-directional 

Table 4.1. Summary Mapping of PARSE-D Components To Self-Modifying Nets 
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4.2.2 Translating Dynamic PARSE Designs to n-calculus 

Monadic n-calculus 

The 1t-calculus is a calculus for describing and analysing concurrent systems with 

evolving communication structures. The simple monadic form of 1t-calculus is used here. 

1t-calculus is based around the notion of naming. A system in the 7t-calculus is a 

collection of independent processes that communicate via channels that in tum are 

referred to by names. Names are the most primitive entities in the calculus, and have no 

structure. There are infinite numbers of names, generally represented by lower case 

letters. 

Processes can be built up from names in the following ways: 

Action term::= x <y>.P Outputs the name y along the channel named x then executes 

P. 

x(y).P 

terms::= PI+ ... + Pn 

PI I P2 

(vy)P 

!P 

0 

Input a name, call it y, along the link named x, and then 

execute P (binds all free occurrences of y in P). 

Choice operator, alternative actions, execute only one of Pi. 

Composition (both + and I commutative and associative). 

PIQ means that P and Q are concurrently active. They can 

act independently, but can also communicate. 

Restriction operator. Introduces a new name y with scope P 

(binds all free occurrences of y in P). 

Replication operator. Provides many copies of P. 

!P means PI PI ... as many copies as you like. It satisfies !P 

=PI !P. 

Dead process. 

Communication in the calculus is expressed by the following reduction rule: 

COMM:( ... + x(y).PI ... ) I( ... + x <z>.P2 + ... ) ~PI{z/y} I P2 
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Sending z along channel x reduces the left hand side to P 1 I P2 with free occurrences of y 

in PI replaced by z. Notice that {zly} has the same meaning as a-reduction in A-calculus, 

which basically means replace free occurrences of y with z. 

PARSE-D to 1t-Calculus 

Process Objects: Similar to the classical process algebra model, a system is composed of 

a collection of interacting agents, where each agent is defined by the actions it can 

perform or as a composition of smaller agents. Hence, the agents in 1t-calculus may be 

used to represent process objects in PARSE, with basic message passing modeled via the 

input and output bindings such as the action terms x(y) and x <y>. 

-- Communication Paths --

Synchronous: In 1t-calculus, a reduction between a pair of input binding and an output 

binding can be used to synchronise communication between two agents. The reduction 

rule discussed in section 4.2.2 (previous page) is synchronous in nature. 

e.g. P= x.P and Q=x.Q 

Here, P does a blocking send along communication path x, i.e. P cannot send messages to 

Q until Q is ready to receive. 

Asynchronous: in asynchronous communication, the sender does a non-blocking send: 

P = x.O IP 
Hence, in a more complex environment, P may resume doing other work, rather than 

waiting for messages along x to be successfully received. 

Bi-directional: a bi-directional communication typically models the request-reply type of 

communication protocol. In 1t-calculus, we model it using two uni-directional 

synchronous communication bindings. However, we need to make sure that the request is 

sent earlier in time than reply. 
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p p 

Figure 4.5. Bi-directional Communication 

A single bi-directional communication can be modeled as: 
- - - -
x <u>.u(z).0 I x(u). u <v>.0 or x <u>.u(z) I x(u). u <v> 

where x is the forward request path, and u is the reply path. 

A continuous bi-directional communication between processes P and Q can then be 

modeled as: 

P(x,u) = x <u>.u(z).P(x,u) 

-
Q(x, v) =x(u). u <v>.Q(x, v) vis the desired/computed result 

and thus the system is: 

system =PI Q 

where processes P and Qare executed concurrently. 

Broadcast: 

p X 

Figure 4.6. Broadcast Communication 

Consider this: 

P = x<y>.P 

Q =X(y).0 

R =x(y).O 

S =x(y).0 

System = P I Q I R I S 
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Upon receiving y from channel x, processes Q, R, S becomes null processes O which can 

not continue receiving copies of y. Hence Q, Rand S each receives one copy of y. 

Further, P does not need to know how many copies of y to send out. P is repeated to 

output unbounded copies of y through channel x. The system is terminated when no 

active processes exist to receive y through x. 

Although there is no primitive broadcast operation in n-calculus, we can simulate it via a 

combination of the primitives presented in this section. We may view the above model of 

broadcast communication as an atomic operation, thus achieving the purpose of design 

verification and deadlock detection using the corresponding formal model. 

-- Communication Path Constructors --

In PARSE, the order of handling of multiple input to a process object can be explicitly 

specified using path constructors. The various types of path constructors include 

deterministic, non-deterministic, and concurrent. 

Non-deterministic 

X 

p 

y 

Figure 4.7. Non-deterministic Input Ordering 

Consider Figure 4.7. Process Q handles the incoming messages in a non-deterministic 

order. The choice operator inn-calculus '+' is non-deterministic: 

-
P = x<v>.P 
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R = y <w>.R 

Q = x(v).Q + y(w).Q 

In this case, it is non-deterministic whether message along path x will be handled first by 

Q, or message along path y takes precedence. 

Concurrent 

In this case, the receiver process is always composite, and there are internal primitive 

processes that may handle the multiple inputs separately/independently. 

, .. . . ... . - - .. .. .. .. . . . -... 

X 

p 

y 

Figure 4.8. Concurrent Input Ordering 

The corresponding n:-calculus model for Figure 4.8 is as follows: 

Q = QI I Q2 

QI= x(v).QI 

Q2 = y(w).Q2 

y 

and the definitions of P and R remains the same as the case for non-deterministic input 

handling. 
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Determinstic 

X 
p 

y 

Figure 4.9. Deterministic Input Handling 

Consider: 

Q = x(v).y(w).Q 

this is specifying that the message from channel x will be received before the message 

along y is received. Hence, it implicitly specifies some sort of order in the handling of 

messages. However, it also specifies that the handling of the messages is alternating, that 

is, unless w is received via y, Q cannot go back and repeat processing v from x. This is 

clearly an undesirable behaviour. 

If we model it this way: 

Q = x(v).y(w).Q + y(w).Q + x(v).Q 

The first choice x(v).y(w).Q is for when both input from channels x and y arrive together, 

then x is handled first before input from y, since x is the higher priority channel. The 

second choice y(w).Q and the third choice x(v).Q are for when the inputs from x and y 

arrive at different times, then whichever input has arrived, it is handled by Q. 

-- Hierarchical Construction --

The Dynamic PARSE design notation supports hierarchical construction of software 

components. 
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When using n-calculus for correctness verification, the description of the high-level 

(composite) object is simply the total of all its internal process objects and the behaviour 

of the higher-level object is the individual behaviour of the internal objects combined. 

Figure 4.10 is a simple PARSE design which is constructed hierarchically: 

X 

s 

X 
p 

( s J-> 

Figure 4.10. A Simple Hierarchically Constructed PARSE Design 

The corresponding n-calculus description is as follows: 

System = (v x)(S(x) I Q(x)) 

Q(x) = x(y).Q(x) 

S(x) = (vy,z,w)(P(x,y,z,w) I R(z)) 

P(x,y,z,w) = x <y>. x <w>.P(x,y,z,w) 

R(z) = z(w).R(z) 

Notice the use of the restriction operator v in the description of S. The name z is 

restricted so that its scope is within S. Hence, even if z occurs freely in Q, it is not the 

same z as that which is restricted to P and R. 

-- Other Dynamic Process Structures --

Dynamic process creation can be modeled in n-calculus easily due to the basic idea of 

naming, and that all references to various objects can be passed just like names. 
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Consider the example in Figure 4.11 where process P creates a helper process Q to carry 

out work for a client. 

req p 

,,----.... 
, ', 

I 

\. Q /I 
✓> ... .._ ___ ,, , , , ., 

,~ result , , ,--------, 
I q:=:7· I ....._ _____ , ~ I 
L---------1 
I I 
I l '--------~ 

Figure 4.11. Dynamic Process Creation 

The creation of process Q by process P can be modeled as in the following: 

P(req,create) = req(result). create <result>.(P(req,create)I ("r)(Q(r,create))) 

where P sends the handle to the Client communication path to Q, namely result, and Q 

then subsequently uses to send reply of work done back to the client. Notice that P has 

the ability to create several copies of Q depending on the number of requests from clients. 

The process Q is defined as follows: 

Q(r,create) = create(result). result <r>.0 

In this case, the helper process Q dies of aging, that is, it automatically exits the system 

once its work has been carried out. Process Q may also exit the system via the 

assassination method, where it terminates when receiving the signal delete from another 

process, possibly process P: 

Q(r,create,delete) = create(result). result <r>.Q(r,create,delete) + delete(die).0 

Lastly, we need the client processes to fire off the request: 

client = req <r>.client 

and the total system at the beginning can be modeled as: 

system = client I P 

64 



Dynamic PARSE Analysis/Verification Methodology 

to reflect the fact that process Q does not exist at compile time, but it may be created by 

process P during run-time. 

-- Dynamic Communication Structures --

Dynamic communication structures occurring frequently in (for example) mobile systems 

can be easily modeled using 1t-calculus. Figure 4.12 is a PARSE design of an example of 

a dynamic communication structure. In this example, the control and access to a specific 

communication path is not held exclusively by one and only one process object, but is 

passed around between various different process objects. 

start I data 

···········->-·······················: 

stop I 

0 
data 

start2 
···········)························i 

Figure 4.12. Dynamic Communication Structure Example 

Here, the data communication path is dynamic, where process objects QI and Q2 have 

access to the data communication path at different times in order to pass information to 

process R. 

The corresponding 1t-calculus expressions for this example is as follows: 

Pl(startl, stop], start2, stop2, data)= 
-----
stopl. start2 <data>.P2(startl, stop], start2, stop2, data) 

P2(startl, stop], start2, stop2, data)= 

----
stop2. start I <data>.P l(startl, stop], start2, stop2, data) 

QJ(startl,stopl,data) = data.Ql(startl,stopl,data) + stopl(sl).ldleQJ(startl,stopl) 
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Q2( start2,stop2,data) = data .Q2( start2,stop2,data) + stop2( s2).ldleQ2( start2,stop2) 

IdleQJ(startl,stopl) = startl(data).Ql(startl,stopl) 

IdleQ2( start2,stop2) = start2( data).Q2( start2,stop2) 

R(data) = data.R(data) 

SYSTEM= (Astartl,start2,stopl,stop2,data) 

(Pl(startl, stop], start2, stop2, data) 

I Ql(startl,stopl,data) 

I IdleQ2(start2,stop2) 

I R(data)) 

Note: data in the above n-calculus expression is an output channel. This is a shortcut 

where the name of the output is not specified. This syntax is commonly used in various n

calculus literature [Milner91] [Milner92], and is also accepted by the automated n

calculus tool [Victor94]. 
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Summary 

Table 4.2 is a summary of mappings from Dynamic PARSE to n-calculus. 

Dynamic PARSE 

A software architecture 

Process objects 

Communication Paths 

(Message passing) 

· Synchronous 

· asynchronous 

· bi-directional 

· broadcast 

Path constructors 

· non-deterministic 

· concurrent 

Corresponding n-Calculus Expression 

A parallel composition of a set of interacting agents. 

Agents 

Input/output bindings, i.e. action term such as <y> and x(y). 

· a pair of input/output bindings, e.g .... <y> ... I ... x(u) ... 

reduction rule is synchronised 

· sender sends a non-blocking send, e.g. P = I P (analogous to 

asynchronous n-Calculus), or, insert a buffer agent between 

the coupled input/output binding. 

· 2 uni-directional synchronous communication bindings, 

where time ordering is strictly request before reply: 

e.g ... <u> ... u(v) .. -I ... x(z) ... <y> ... 

· can be simulated with a set of asynchronous uni-directional 

communication 

Different ways of "composing" multiple communication paths 

so as to have different ways of ordering. 

· Choice operator is non-deterministic, e.g. P = x.P + y.P 

· Independent handling by different sub-components 

e.g. P(x,y) = Pl(x) I P2(y), Pl(x) = x.Pl, P2(y) = y.P2 
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· deterministic 

(prioritised input 

handling) 

Dynamic Process 

Creation 

Process Deletion 

· aging 

· assassination 

· suicide 

Transactional 

Communication Paths 

Hierarchical 

Construction 

/modular encapsulation 

Dynamic PARSE AnalysisNerification Methodology 

· There is no prioritised choice in p-Calculus. However, for 

deadlock analysis and verification purposes, we simplify this 

to be a non-deterministic choice of all possible combination 

of choices, thus covering all possible situation for state 

exploration. 

Newly spawned process is to be composed in parallel to the 

parent process. The name 'create' can be used as a handle to 

pass any other names (parameters, state info) to the newly 

created process. 

Process exits system by becoming null 'O' process. 

· After all action terms, agent becomes 'O', e.g. P = y .. 0 

· Explicit 'delete' signal sent to process to be deleted. 

e.g. P = ....... , Q = ... d ... , agent P assassinates Q here 

· Upon receiving certain state information (name), process 

terminates itself by becoming the null 'O' process 

Handles to communications paths are simple 'names'. Names 

can be freely passed around to different agents, thus achieving 

re-configurable communication structure. 

Use of restriction operator n for hiding internal details of a 

module, e.g. S(x) = (nz)(P(x, z)IR(z)), where z is an internal 

communication path of the composite module S. 

Table 4.2. Summary Mapping of PARSE-D Components ton-Calculus 

Expressions 
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4.2.3 Comparison between the n-Calculus and Petri Nets Approach 

I. Mathematical Foundations 

.1r-Calculus is a process algebraic approach, whereas Petri Nets is a state automata 

approach, which is based on bag theory. 

The process algebraic and the state automata approaches are better than set-theoretic 

models such as Z, VDM, and B in describing the actual happenings during 

reconfiguration of a distributed system. While set-theoretic models capture the states of 

components as a result of (communication) reconfiguration, they are not equipped to 

describe the actual happenings during the reconfiguration. Both the process algebraic and 

state automata methods can better capture the interaction between process components, 

and can be 'transformed' or 'executed' to model behaviour of the system over time. 

Both .1r-Calculus and Petri-Nets use some form of state-space exploration method (e.g. 

reachability trees, traces) for model checking. 

II. Expressiveness of Modeling Elements 

1t-calculus enables the modeling of concurrent and distributed processes where the 

system structure is dynamic. It is based on the notion of naming and the passing of those 

names between processes in the system, to enable dynamic communication, or message 

passing amongst entities. Complex, powerful features can be expressed in 1t-calculus 

precisely and succinctly. 

The basic place-transition Petri Net is not expressive enough to model distributed systems 

with dynamic features. An extension of Petri Net, namely Self-Modifying Net must be 

used in order to model dynamic structural changes in a system. 
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III. Pragmatics - Ease of Use 

The use of n-Calculus for systems modeling involves a substantial training and learning 

period at startup. In general, software engineers are reluctant to use formal algebraic 

methods to model systems [Saiedian96]. 

Petri-nets can have textual representation for tool machine analysis, but also importantly, 

the graphical representation of concurrency is intuitive to use. 

IV. Hierarchical Composition/Decomposition 

n-Calculus models support true hierarchical structuring. Composition is carried out via 

well defined mathematical operators,+ (choice composition) and I (parallel composition), 

coupled with encapsulation, and the A operator for hiding in modules. 

Petri Nets do not support true hierarchical composition [Valmari96]. Different levels of 

designs are firstly flattened in order to generate a single large Petri Net model for the 

system. This has implications in limiting the use of composition reachability analysis 

[Cheung94] [Russo97]. 

V. Automatic Verification Tool Support 

For the basic Petri Net, the formal framework has been thoroughly researched. There are 

various mature Petri Net tools that support the construction, and subsequent verification 

of Petri nets. An example of a widely used Petri Nets tool is Design/CPN [Jensen92]. 

However, for Self-Modifying Nets, there is currently no known tool support. It has been 

shown that the reachability problem is undecidable for Self-Modifying Net [Valk78]. In 

fact, it has been shown that extended Petri Nets with the ability to test for zero allows a 

Petri Net to simulate a Turing machine. Thus, a Petri Net with inhibitor arcs can model 

any system. As a consequence, almost all analysis questions for Petri Nets become 

undecidable, since they are undecidable for Turing machines. Hence, the Self-Modifying 

Net is a good theoretical framework for modeling PARSE designs, but subsequent 

analysis of the resultant Self-Modifying Net can only be done manually, and only to a 

certain extent. 
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Model checking tools for n-Calculus also suffer from the same state explosion problem. 

However, this problem is alleviated in two ways. Firstly, the use of compositional 

reachability analysis is possible with n-Calculus models, hence an analysis of the system 

design can be carried out on isolated modules, and if required, integrated analysis with 

black-box components that have been proven correct can be carried out. Secondly, then

Calculus model checking tool (Mobility Workbench) employs heuristics which reduce 

the search space during model checking. The details for the on-the-fly algorithm can be 

found on [Victor94]. 

In short, n-Calculus is supported by the Mobility Workbench, and there is no tool support 

for Self-Modifying Nets. 

VI. Future Work 

There is an abundance of theoretical work in the area of n-Calculus equivalence. The 

equivalence theory, once mature, can be used to aid the refinement of specifications 

[Morgan90], and bridge the gap between design and implementation. There is much 

scope in this area of research. 

For Petri Nets, the translation to program code is not possible. The refinement of Petri

nets does not give rise to interesting results. 
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4.3 The Dynamic PARSE Design Analysis and Verification 
Process 

The general approach to the development of the Dynamic PARSE Design Analysis and 

Verification process involves the following steps: 

• choose an appropriate formalism 

• devise mapping from Dynamic PARSE design features to the formalism chosen 

• reason about system by analysing the formal model 

Dynamic PARSE designs can be analysed for the presence of structural deadlocks 

[Birkinshaw95]. In a Dynamic PARSE design, a structural deadlock occurs at an 

architectural level when there is circular dependency amongst process objects. In n

Calculus terms, deadlock occurs when a system of collaborating agents is equivalent to a 

dead process. That is, when the system cannot proceed to do any useful work. For an in

depth discussion on n-Calculus' equivalence theory, please refer to [Sangiorgi96]. 

The Dynamic PARSE Design Analysis and Verification process works in two ways: 

Process 1: Design analysis process for a single design - design refinement aid 

A designer would typically go through the following process in developing a software 

architecture using the Dynamic PARSE method: 

1. devise an initial software architecture design using the Dynamic PARSE process 

graph notation 

2. transform the Dynamic PARSE design to the corresponding formal model (e.g. n-

Calculus) 

3. analyse the formal model for any design faults (e.g. deadlock checking) 

4. revise the initial Dynamic PARSE design to eliminate design fault 

5. repeat steps 2-4 to refine the software architecture design. 
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Dynamic PARSE 
,~ 

Design 

Corresponding Design 
Formal Model Feedback 

' 

Property Checking 
(e.g. deadlock) 

Figure 4.13. The Dynamic PARSE Design Analysis/Verification Process for 

Single Designs 

Process 2: Design analysis for multiple designs (design alternatives) - design decision 

aid. 

The Dynamic PARSE method can also be used as a design decision aid by taking the 

following steps: 

1. devise multiple/alternative designs using the Dynamic PARSE process graph notation 

2. transform the alternative Dynamic PARSE designs to their corresponding formal 

models. 

3. analyse the various formal models for design faults. 

4. based on the feedback from step 3, choose the best design alternative. 
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Figure 4.14. The Dynamic PARSE Design Analysis/Verification Process for 

Multiple Design Alternatives 

Hybrid approaches can also be taken. 

• Multiple design alternatives can be analysed first. Once a particular design has been 

selected, it can be further refined iteratively. 

• All designs can firstly be refined separately using Process 1, and then a single design 

can be chosen from analysing all refined design alternatives. 

The Dynamic PARSE Design and Analysis processes are supported by the PARSE-DAT 

tool. Chapter 5 details this supporting environment. 

4.4 Conclusion 

Additional confidence in the validity and correctness of the Dynamic PARSE process 

graph design notation is gained via n-calculus and Petri Net modeling. 

We have chosen n-calculus as the formalism to support design analysis and verification 

in Dynamic PARSE over the Self-Modifying Net. This decision was made according to 

comparisons between them in the areas of expressiveness, usability of modeling 

language, tool support and possible future works. 
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However, n-calculus is a complex formalism that has a steep learning curve, and often 

software professionals do not have the time or resource to master its use. Hence, tool 

support for this verification should be constructed to hide the details of 7t-calculus from 

software engineers. 

By using the n-calculus formalism to model Dynamic PARSE designs, we also have 

increased understanding of the role and nature of module interconnection languages 

[Rice94]. 

All of the n-calculus definitions in this chapter have been checked for correctness and 

deadlock freedom using the Mobility Workbench [Victor94], which is an automated tool 

for manipulating and analyzing systems described in 7t-calculus. 

By adopting the Dynamic PARSE Design Analysis and Verification methodology, 

software developers may reduce risks involved in large-scale software development 

projects. Design alternatives can firstly be explored through analysis according to certain 

properties, before an investment is placed on a single design. Chapter 5 will describe the 

PARSE-DAT environment which supports the design and analysis stages of the Dynamic 

PARSE methodology. This supporting environment will simplify the use of the Dynamic 

PARSE methodology by automating the analysis process. 
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5. Dynamic PARSE Design 
Analysis Tool 

5.1 Introduction 

For a software engineering methodology to be widely adopted, it is important to have 

accompanying tool support. A Computer Aided Method Engineering (CAME) tool and or 

a Computer Aided Software Engineering (CASE) tool should have the following features 

[Quatrani98]: 

• easy to use graphical editing environment, which supports: 

- click and drop diagram construction, 

- consistency checks, 

- syntax and semantic validation ( of design notation), 

- navigation, 

- printing facility, 

- documentation, 

- repository and multi-user support. 

• provision for abstraction of underlying formal model 

• support for design analysis 

• provision for seamless transition between development stages 

• steps involved in the use of the tool must reflect the development process as 

described by the methodology. 

There are several ways to achieve CASE and CAME tool support for a new software 

engineering methodology [Gray97]: 

1. Use existing CASE tools that have been built for a different, but similar methodology. 
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2. Use general-purpose application software such as word processors and drawing 

packages. 

3. Construct full-featured custom tools using metaCASE products. 

4. Construct custom tools using other implementation technologies not specifically for 

CASE tool constructions. For example, hand coding in 3GLs. 

We have chosen to use a metaCASE tool (method 3) in constructing a CASE tool that 

supports the Dynamic PARSE design and analysis methodology. These meta CASE tools 

are specialised application generation environments specifically intended for the 

construction of new CASE/CAME tools. Naturally, resultant CASE/CAME tools will be 

more powerful than simply reusing existing CASE/CAME tools (method 1) or from using 

general purpose packages (method 2). At the same time, less tool development time and 

resources are required, as we are not building CASE/CAME tools from scratch as in 

method 4 [Gray97]. 

PARSE-DAT (PARallel Software Engineering - Design Analysis Tool) is an integrated 

environment that enables the design and analysis of distributed software architectures. 

PARSE-DAT supports the Dynamic PARSE Design and AnalysisNerification 

methodology by providing a design tool for the software design stage (PARSE-OT), as 

well as supporting the translation of graphical designs into corresponding 7t-Calculus 

formalism expressions, for analysis and verification purposes (PARSE-AT). Figure 5.1 

illustrates the iterative design process, with feedback from the analysis/verification result 

obtained from the tool. 
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Figure 5.1. Dynamic PARSE Design and Verification Methodology 

This chapter firstly presents the metaCASE approach to the implementation of the 

PARSE-DAT design and analysis/verification environment. Then, the PARSE-DAT 

design environment and the PARSE-DAT analysis/verification environment will be 

described. Sample use of the integrated environment will be given through a sample 

design constructed and formally analysed in PARSE-DAT. 

5.2 The MetaCASE Approach 

5.2.1 MetaEdit+ Overview 

MetaEdit+ [Metacase96a] is a metaCASE tool that can be customised to allow the 

construction of multi-user CASE tools to support different software engineering 

methodologies. The specification of methods in MetaEdit+ is managed with the Method 

Workbench method engineering toolset. This includes tools that can be used to describe 

the methods to be supported in MetaEdit+. 

The following is a list of features of MetaEdit+: 

• Multi-user - several users can concurrently operate on the same repository 

• multi-tool - different tools provide a different view of the same object 
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• multi-method - the environment provides mechanisms for method integration and 

consistency checking 

• multi-form - the environment provides several representation formats for the same 

design object 

• multi-platform - MetaEdit+ is platform independent both for the environment and the 

data. 

Further, MetaEdit+ provides the following four families of tools: 

• Environment management tools 

• Model editing tools 

• Model retrieval tools 

• Method management tools 

Table 5.1 taken from [Metacase96c] details the functionality of the various tools. 

Tool Family Tool Tool Functionality 

Environment Startup Launcher Initialization of the environment, login, launching of 
Mana2ement tools Main Launcher other tools, modification of run time parameters 
Model Editing Tools Diagram Editor Manipulation and creation of diagrams where objects 

and relationships can be viewed and manipulated as 
graphical diagrams 

Matrix editor Manipulation and creation of models which can be 
viewed and edited as matrices, and algorithms 
performed on them to aid design decisions. 

Table Editor Manipulation and creation of object types in models 
and all their properties. Model object types can be 
viewed together. This is especially useful for 
requirements analysis. 

Model Retrieval tools Repository Browsers Allows hierarchical access to models and metamodels 
stored in the repository; 

Report Editor Generates textual descriptions of the models stored in 
the repository using a procedural query and data 
manipulation language. 

Method Management Object tool Specification of conceptual object types and their 
Tools Property tool textual representations 

Relationship tool 
Role tool 
Graph tool 
Symbol Editor Specification and design of graphical objects and their 

behaviors. Linking of graphical objects to conceptual 
object types 

Table 5.1. MetaEdit+ Tools 
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The PARSE-DAT environment has been implemented using the MetaEdit+ metaCASE 

tool. Although MetaEdit+ supports a multi-user, collaborative editing environment, the 

particular version we used i~ building this prototype is a single user version running on 

Windows NT. However, the model implementation stored in the repository can be 

migrated to a multi-user (client-server) version running on other platforms such as the 

various flavours of UNIX. 

5.2.2 The GOPRR Meta-Model 

The conceptual data model employed by MetaEdit+ is the GOPRR model 

[MetaCase96d]. 

The basic GOPRR modeling constructs are: 

• A Graph denotes an aggregate concept that contains a certain set of objects and their 

relationships (with specific roles). An example of a graph is a Data Flow Diagram 

[Y ourdon79] [Y ourdon89]. The graph concept is fundamentally a generalised 

decomposition graph: it can be included in a parent graph, attached to an object, role 

or relationship. Hence, a graph enables modeling and representation of recursive 

structures such as decomposition, or complex objects as often found in development 

methods. 

• Objects, which consist of independent and identifiable design objects. These 

typically appear as shapes in diagrams, and can have properties such as names. 

Objects are basic components of methods. Examples of objects are an Entity in an 

Entity Relationship Diagram or a Process in a Data Flow Diagram. 

• Properties are attributes of objects and can only be accessed as parts of objects or 

relationships. Properties typically appear as textual labels in diagrams, and they 

can contain single data entries such as a name, text field or number. An example 

of a property is the number of a Process in a Data Flow Diagram. 

• Relationships are associations between objects, and can also have properties. 

Relationships typically appear as lines between shapes in diagrams, or verbs in 

texts. An example of a relationship is a Data Flow in a Data Flow Diagram. 

• Roles define the ways in which objects participate in specific relationships. In 

diagrams roles typically appear as the end points of Relationships (e.g. an 
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arrowhead). Roles too can have properties. An example of a role is the 

specification by directed arrow which end of a data flow relationship is 'to' and 

which 'from' part of the flow. 

Through the use of this GOPRR meta-model, the concepts, languages, graphical 

representations and operations of a software architecture design method can be supported 

in MetaEdit+. 

5.2.3 Output Specification Tool 

There are three environment generators in MetaEdit+. 

• The Method support environment generation system compiles the method's object 

specifications into parts of the metamodel repository when they are defined. 

• The Method help generation system generates on-line help components associated 

with each method. This help can then be accessed through a model editing tool 

interface from the repository. 

• The Report and Transformation generation system. It is used for delivering various 

reports and conducting checking on the models. 

The primary output specification tool is the Report Editor, which is a part of the Report 

and Transformation generation system. After the conceptual content of the method has 

been defined, textual representation from the developed models can be produced within 

MetaEdit+. The textual outputs can be for example check lists, interconnection lists, 

skeleton program code for the system, or acts as input to external model analysis tools. 

Such outputs can be defined within MetaEdit+ using the Report Editor tool. 

The Report Editor is based on the use of templates. The templates provide access to the 

programming constructs in the Report Definition Language. The Report Definition 

Language is similar to a 3GL providing sequence, selection and iteration, as well as 

references to each element in the GOPRR model, i.e. Graphs, Objects, Properties, Roles 

and Relationships. 
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Once the report has been specified, it can be tested by selecting the Run menu option. 

The reports are automatically tied to the method used, and thus are loaded automatically 

when the method is selected. 

5.3 PARSE-DAT Design Environment (PARSE-OT) 

5.3.1 Implementation 

The development of PARSE-OT involved the following steps: 

1. Development of the method data-model 

2. Development of representations 

3. Evaluation of the models 

4. Development of reports and model checking 

5. Generation of support environment and guidance 

The steps were carried out partially in parallel, and there were iterations through the 

steps. The evaluation of the model led to redesign and corrections, and the use of the 

method led to its subsequent evolution. 

The primary focus of the development of the Dynamic PARSE data model involves an 

examination of the conceptual content of the Dynamic PARSE method, i.e. identifying 

the objects and their relationships in the method. Once these objects have been identified, 

they are visually represented using the GOPRR notation [Metacase96d]. The conceptual 

structure forms the core of the PARSE-OT tool development, because it defines the data

model of the PARSE-OT environment, and is used as the source of all other definitions 

and tool functionality. Figure 5.2 shows the GOPRR model of Dynamic PARSE. 
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The similarities between the various types of Dynamic PARSE Process Objects led to the 

abstract parent object. These similarities include the properties of name and description, 

as well as the connections via the various types of communication paths. This inheritance 

hierarchy can be seen in the centre of Figure 5.2, where the rectangles are object types, 

diamonds are relationship types, circle role types, and ovals property types. Dynamic 

PARSE Process Objects thus has two properties: Name and Description, and the three 

Dynamic Process Objects inherit these properties, as well as adding another: Cardinality. 

Process objects are connected by communication paths via To and From roles. 

5.3.2 Using PARSE-OT 

Dynamic PARSE designs are constructed in the PARSE-DAT design environment 

(PARSE-DT). Figure 5.3 shows the main graph editor window, where Dynamic PARSE 

designs can be constructed using various Dynamic PARSE design components provided 

in the palette. This supports rapid prototyping. The main MetaEdit+ control window is 

also displayed, from which the graph editor window can be invoked. 

The software architecture design of an example Data_Control module has been 

constructed using various tools in the palette, and is displayed in the main graph editing 

window. There are two passive data server process objects, coordinated by two control 

process objects. The four process objects are connected by various communication paths. 

Design rules are built into the PARSE-DT environment, hence imposing restrictions on 

designs. For example, if a designer attempts to connect an asynchronous communication 

path to a data process object, the editor will display a message window indicating that 

this is not allowed, as it is meaningless to send messages to a data server asynchronously. 

This feature removes many common design errors. 

Designers can also specify various properties about the individual design components. 

Such properties include for process objects - process object name, behavioural 

description, decomposition (for composite process objects), and for communication 

paths: path name, type of message, protocol and priority. 
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The PARSE-DAT tool may be used in a multi-user mode, due to the support from 

MetaEdit+. Thu , collaborative oftware architecture de ign work can be carried out 

amongst a design team, and the precise usage of the Dynamic PARSE design notation 

eliminates any possibility of design ambiguity or confusion. 
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5.4 The Design Analysis Environment (PARSE-AT) 

5.4.1 Implementation 

The design analysis environment consists of a model transformation processor, built using 

the Meta-Edit+ Report Generator. This generates a corresponding n:-Calculus model in 

textual form. These n:-Calculus models may then be analysed for correctness. 
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Figure 5.4 n:-Calculus Report Generator 

The control structures available for use include Do, DoWhile and ForEach (iterations), and 

If (selections). The iterations can be applied to all of the GO PPR data model entities, which 

correspond to the PARSE-0 process graph, the various process objects, the communication 

paths, as well as their respective properties and roles. In the translation, the process object 

names' have been used as agent names, and the communication path names used as n:-
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composition of all the static process objects. Figure 5.4 shows the Report generator in 

PARSE-DAT. 

5.4.2 External Design Analysis Tool: Mobility Workbench 

Once a Dynamic PARSE design has been constructed in the PARSE-OT environment, 

the corresponding 1t-Calculus can be automatically generated for analysis/verification 

purpose. The 1t-Calculus generator has been implemented by utilising the MetaEdit+ 

Report Editor. 

The Mobility Workbench is a model checker for 1t-Calculus. It has the following 

capabilities: 

• syntactical checks on 1t-Calculus expressions 

• equivalence checks on multiple 1t-Calculus expressions 

• deadlock detection (with output trace) 

• deadlock freedom verification 

• textual file input 

• timing information 

• debugging messages 

The Mobility Workbench employs the on-the-fly search algorithm to alleviate the state 

explosion problem. The On-the-fly algorithm relies on demand-driven generation of 

states to avoid the construction of irrelevant system configurations [Andersen94] 

[Bhat95]. 

5.4.3 Using PARSE-AT 

Figure 5.4 shows how users can invoke the 1t-Calculus report generator in the PARSE 

design analysis and verification environment (PARSE-AT). 
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Figure 5.5 PARSE-AT Screen Capture 

The user can firstly generate the corresponding re-Calculus expressions from the graphical 

design by invoking the re-Calculus generator. The resultant re-Calculus agent expressions 

are displayed in the 'Report Output' window. This textual output can then act as textual file 

input to the Mobility Workbench [Victor94] , where analysis and verification can be carried 

out. Currently, the Mobility Workbench runs on Windows NT (as its corresponding license 

on UNIX is around 10 times more expensive), and the University facility provides more 

powerful Sun machines which are suited for running the mobility Workbench. Hence, we 

have adopted the textual file sharing method for integrating the use of Mobility 
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use of Mobility Workbench's Report Editor and the Mobility Workbench. In future 

versions, this mechanism can be improved through either of two means: 

purchase MetaEdit+ license for UNIX platforms, or 

recompile Mobility Workbench to produce executables running on PCs. 

In this example, the Data_Control module has been analysed and shown to be deadlock 

free. 

In some other cases, the analysis result from the Mobility Workbench may indicate that 

the design is not deadlock free. In which case, that information should be taken into 

account in the next refinement phase. Alternatively, the architect may wish to discard the 

faulty design altogether and opt for a different design. 

5.5 Conclusion 

This chapter has presented an environment for supporting the design and analysis of 

distributed software architectures. PARSE-DAT provides an editing environment for 

software architects to specify software architectures quickly and precisely using the 

Dynamic PARSE Process Graph Notation. The resultant designs can then be analysed 

and checked for structural deadlocks. 

The PARSE-DAT environment has been implemented using a metaCASE tool called 

MetaEdit+. The advantage of taking this approach is twofold: by using a meta-CASE 

tool, which is a specialised application generation environments, less tool development 

time and resource is required compared to implementation using 3GLs. At the same time, 

the resultant tool/method can be fully customised according to the methodology, and is 

more powerful and useful compared to using general-purpose applications. 

The various features of the PARSE-DAT environment include the following: 

• Easy to use graphical editing environment (PARSE-OT), which includes 

completeness and consistency checks. 

• Automatic transformation of graphical design to corresponding formal model 

(PARSE-AT). 

• Support for external design analysis (PARSE-AT). 
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The Dynamic PARSE software design methodology coupled with the supporting 

environment thus encourages an iterative design process by enabling software architects 

to check for design correctness of various alternate designs at an early stage of 

engineering process. 

The advantages of this early iterative design process include: 

• Early detection of design fault reduces cost in development. 

• Iterative verification of alternate design choices allows software architects to choose 

the better design. 

90 



Case Studies 

6. Case Studies 

This chapter presents four case studies designed and analysed using the Dynamic PARSE 

methodology. 

The case studies range from the simple client-server and pipeline architectural style, to a 

novel design of a high speed network, and a collaborative work environment. 

For each of these case studies, the Dynamic PARSE architectural design will be 

presented. This is followed by the corresponding design analysis and verification carried 

out using PARSE-DAT. 

6.1 A Client-Server System 

6.1.1 Dynamic PARSE Design 

Client-server computing exploits all the strong points of a distributed system, such as 

fault tolerance and application portability. Developing software using the client-server 

paradigm encourages code reuse. In a networking environment, a server often serves 

multiple clients [Comerford94] [Larocque94]. In order to exploit the hardware 

parallelism, the main server often creates multiple workers to provide services to all 

clients. 

In the top-level diagram (Figure 6.1), client is modeled to be a dynamic process. This 

means there may be multiple clients at any one time, or there may be no clients at all. An 

external object called client_generator is used to create clients in the system. In real 

world applications, the client request may come from the user keying a request through 
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the keyboard, or may simply be a part of an appl ication program needing certain 

computations carried out by another program. 

~ ate ~/~~~~~'\,..., ____ r_eq_u_es_t--t■-)--ir Secvec J 
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Figure 6.1. Top Level Process Graph of a Client-Server System 

There are two communication paths between a client and the server. There 1s a non

blocking send from the client to request service to be done, with a blocking receive at the 

server's end. Then, a bi-directional communication path is set up, for the actual request 

message and reply to be transferred. 
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Figure 6.2. Decomposition of the server process 

The server process here is modeled as a control process. Its decomposed structure is as 

shown in Figure 6.2. Its function is to receive requests from clients, create instances of 

workers to perform the necessary work or computation, and upon completion, send the 

required result back to clients. Notice that the work request and reply messages are 

passed between clients and the worker processes without the supervision of the 

main_server process. Upon work completion , instances of the worker process objects exit 

the system. Hence the default terminati on behaviour: aging. 
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6.1.2 Dynamic PARSE Analysis and Verification 

The following is the corresponding partial n-Calculus model generated by PARSE-AT 

for the purpose of checking for structural deadlocks. Basically, the process objects have 

been translated into n-Calculus agents with possible actions or events being possible 

messages passed along the various communication paths, which essentially represent the 

dependency relationships between the various process objects in the system. Notice 

reliable communication is assumed, hence the simplified translation for asynchronous 

communication paths. This simplification does not alter the deadlock checking result. 

The creation of WORKER process is similarly simplified. In addition to achieving a 7t

Calculus model that is easier to understand (for the presentation purpose in this thesis), 

this simplification also reduces the search space, hence reducing the time required for the 

analysis process. 

agent CLIENT( reqreply, request) = 'request. 'reqreply. CLIENT <reqreply, request> 

agent CLIENTSERVER = (SERVER I CLIENT) 

agent SERVER = ( MAINSERVER I WORKER) 

agent MAIN SERVER( create, request) = 

request. 'create.MAINSERVER<create, request> 

agent WORKER (reqreply,create) = create.reqreply. WORKER<reqreply,create> 

The overall system is thus a parallel composition of all the process objects, namely the 

CLIENTSERVER agent. A deadlock check can then be carried out to detect any structural 

deadlock in this client-server software architecture. Also note that the composite 

SERVER object can firstly be analysed for deadlocks, as this n-Calculus model supports 

compositional analysis for a hierarchical Dynamic PARSE design. The following is the 

analysis output from Mobility Workbench: 

MWB>deadlocks CLIENTSERVER 

No deadlocks found. 

MWB>deadlocks SERVER 

No deadlocks found. 
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The analysis results from Mobility Workbench indicate that this cli ent-server architecture 

is free from structural deadlocks. Hence, the designer have gained some confidence in 

this design by using PARSE-DAT, and may continue to refine the design, and or further 

develop the system using for example an OOD method [Eriksson98]. 

6.2 Primes Sieve of Erastosthenes 

6.2.1 Dynamic PARSE Design 

This example is the classic problem "Primes Sieve of Erastosthenes". This problem of 

generating prime numbers using multiple processes is described in [Kramer85]. The aim 

is to compute all the prime numbers up to a certain positive integer limit. To achieve this, 

we require a process that generates a stream of odd numbers, a set of processes that filters 

out non-primes, and an output process that returns prime numbers. However, we do not 

know in advance how many filtering processes are required since we do not even know 

how many prime numbers to compute. Dynarruc PARSE allows the design of this type of 

program, where the structure cannot be determined statically. 

~---«E----1----------------r ~ • • I 

odds-

pnm~ pnme 1 
I I 
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1 : filter[i] creates filter[i+l] 
,,,,,,.-J...-- ......... 

s_fi lter ( [O .. n] 'i 
,._..__+--\, filter ,/ --- odd _____ ; 
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odd : from filter[i] 

to filter[i+ l] 

for i = l..n-1 

Figure 6.3. Dynamic PARSE Design of 'Primes Sieve of Erastosthenes' 
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The process graph in Figure 6.3 computes prime numbers. The process odds_generator 

generates a stream of odd numbers that are fed into a pipeline of processes. Each filter 

process sends the first number it receives to a printer process and subsequently filters out 

multiples of that number from the stream of odd numbers. It also creates a new filter 

process when it detects a new prime. The program terminates when a filter sends a prime 

to the printer process that is greater than limit. 

For example, odds_generator generates 3 as the first number, and passes it to the first 

filter process. This filter process passes 3 as a prime number to the printer process, and 

the printer process subsequently prints 3. The next number generated is 5, since 5 is not a 

multiple of 3, the first filter process creates a second filter process, and passes 5 to it. 

Upon receiving the number 5, the second filter process sends 5 to the printer process for 

printing. This process is continued for number 7, hence a third filter process is created. 

When 9 has been generated, it however does not bypass the first filter process. Since 9 is 

a multiple of 3, it is discarded. We can see from this process, a sequence of prime 

numbers is generated: 3, 5, 7, 11, 13, ... and so on, with each prime number received by 

the last filter in the pipeline at all times. 

The following is a set of design features: 

• The s_filter process is static. It is created when the system begins execution. 

• Value of n depends on limit. It is determined at run time. This is consistent with filter 

processes being created at run time. 

• The creation of filter processes in the growing pipeline is ordered. Each filter process 

is created by the last created process. The unique numbering of filter process 

instances can be used to define the ordering here: filter[2] is created after filter[]], 

filter[3] is created after filter[2], and so on. Hence, for example, filter[4] does not 

exist in the system if filter[i] for i = 1,2, and 3 are not present in the system. 

• Once an instance of the filter process has been created, it stays in the system until the 

termination of the entire program itself. That is, when all prime numbers up to limit 

have been computed. 

• The paths named prime going into the printer process are dotted. There is always just 

one prime number coming from the last filter in the pipeline. As soon as a particular 

filter instance has used its prime path to send a number to printer, that path is no 

longer needed. Hence the transactional nature of this communication path. 
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• The printer process may be modeled as a control process if it controls the termination 

of the program. Whenever the printer process receives a prime number from an 

instance of the filter process, it checks to see if it is greater than limit. If it is, then the 

program is terminated. 

• The pipeline may grow forever. If limit is specified as unlimited or not specified at 

all, then the printer process accepts all numbers coming from the prime 

communication path, and new filter processes are generated all the time (although 

becoming less frequent!). 

~ ~ ~ : - filt~r11J .... _____ 
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I 

Processor A Processor B Processor C Processor D 

Figure 6.4. Process Distribution on a Multi-Processor Machine 

The solution to this problem is a perfect example of an application program that can fully 

exploit the processing power of symmetric multi-processing machines. Each time a filter 

process is created, the underlying system would dispatch it to a processor with the 

smallest load. So, basically, all filter processes could be more or less evenly distributed 

around different processors. 
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6.2.2 Dynamic PARSE Analysis and Verification 

The corresponding n-calculus model to the Sieve of Erastosthenes design is as follows: 

-
agent ODD_GENERATOR(odd,x) = x <odd>.ODD_GENERATOR(odd,x) 

agent PRINTER(y) = y(prime).PRINTER(y) 

agent FILTER(x,y) = x(odd). y <odd>.FILTER'(x,y) 

agent FILTER'(x,y) = x(odd).(FILTER'(x,y) + ("mid)(FILTER"(x,mid) I FILTER(mid,y))) 

agent FILTER"(x,mid) = x(odd). mid <odd>.FILTER"(x,mid) 

The names x and y have been introduced to model the incoming and outgoing path 

respectively for passing the odd number from one filter to the next. The name mid has 

been introduced to model the intermediate connection between two adjacent filter 

processes. Notice that the name odd represents the data (i.e. an odd number) being passed 

through the pipeline of filter processes. Hence, this model is data dependent, and is a 

more complete model of the Dynamic PARSE design. 

However, this n-calculus model is infinite in nature. It generates an infinite search space, 

and hence any analysis on structural deadlocks would be inconclusive. However, one 

should notice that the behaviour of all the filter processes are identical. Hence, the n

calculus model used for deadlock checking can be reduced to the following: 

agent ODD_GENERATOR(odds) = 'odds.ODD_GENERATOR(odds) 

agent PRINTER(prime) = prime.PRINTER(prime) 

agent SFILTER(odds,odd,prime) = odds. 'prime. 'odd.SFILTER'(odds,odd) 

agent SFILTER'(odds,odd) = odds. 'odd.SFILTER'(odds,odd) 

agent FILTER(odds,odd,prime) = odds. 'prime. 'odd.FILTER'(odds,odd) 

agent FILTER'(odds,odd) = odds. 'odd.FILTER'(odds,odd) 

agent SIEVE= SFILTER I FILTER I ODD_GENERATOR 

This PARSE-DAT generated n-calculus model can then be analysed by Mobility 

Workbench, and has been found to be free from structural deadlocks. 
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6.3 HTPNET 

6.3.1 Dynamic PARSE Design 

This network transfer protocol example is taken from [Gorton94], which is an 

experience report on the design and implementation of the packet management 

component of a transport protocol for broadband networks. The protocol, known as 

HTPNET [Chan94], has been designed to exploit parallel architectures. It consists of 

the protocol software at both the transmitter node and the receiver node, as well as a 

simulation of a high speed network to connect transmitter and receiver. In this case 

study, only the design of the software for the receiving node will be considered in 

detail. 

The highest level of the system design is shown in Figure 6.5. Transmit and Receive 

respectively encapsulate the required behaviour of sending and receiving packets. 

Internally, each is decomposed into a number of lower level process objects that 

perform the protocol processing. Both are active process objects with complex 

internal state, and hence are most appropriately represented in a process graph by the 

control process icon. 

Network is categorised as a function server. It is passive, sequential, has no externally 

visible state and encapsulates some well-defined functionality within the system. It 

simply accepts data and synchronisation packets from Transmit, and passes these on 

to Receive after introducing a realistic delay. In a similar manner it relays 

acknowledge packets from Receive to Transmit. 

98 



Case Studies 

ack_t 

RECEIVE 

ack_r 

Figure 6.5. Top Level PARSE Design 

As there is no inherent prioritisation amongst its input paths, Network selects data 

non-determjnistically from one of the three input paths. This is contrasted against 

Receive, which handles its two input paths concurrently. Receive is required to use 

different process objects to accept data packets from each path at a lower level 

abstraction. This implements the semantics of a concurrent path constructor, and is a 

design rule that can be checked and enforced. 

The decomposition of Receive is illustrated in Figure 6.6. Receive consists internally 

of three process objects. DataProc is responsible for processing data packets from 

Network, and SynkProc is responsible for processing incorrung synchronisation 

packets and generating acknowledgments. This satisfies the requirements placed on 

the decomposition of Receive by the concurrent path constructor in the top level 

design diagram. DataProc is modelled as a control process because, in addition to 

processing data packet headers, it maintains state information on successfully received 

data packets. This state information is periodically retrieved by SynkProc over the 

Status path, which provides a synchronised request-reply connection. SynkProc uses 

the status information to produce an output on the Ack path which is relayed via 

Network to Transmit. DataProc imposes no priority over its two input paths , indicated 

by their convergence into a non-deterministic path constructor. 
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data t DATAPROC 

status 

synk_t 

Figure 6.6. RECEIVE Object Decomposition 

When a packet is found to be error-free and in-sequence, DataProc sends the 

corresponding packet address reference to the RecHost process object. RecHost 

represents the operating system interface on the receiving node. It essentially acts as a 

packet sink, extracting messages from the RecData asynchronous communications 

path. 

Moving down to the lowest level of decomposition for Receive, the internal structure 

of DataProc is shown in Figure 6.7. The Header function server non-deterministically 

accepts messages on the Data and Status paths. Packet headers are stored in the 

tempFIFO data server process. A synchronous path connects Header to tempFIFO, 

thus requiring the two processes to rendezvous to exchange data. Synchronous paths 

are generally most suitable for connecting to data servers. Passing data over a buffered 

asynchronous path to a data server which already provides buffering introduces the 

potential for unnecessary copying of data. 
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TEMPFIFO 

store retrieve 

status 

Figure 6.7. DA TAPROC Object Decomposition 

The process object tempFIFO is a data server that simply waits on its two input paths 

and selects one non-deterministically. It essentially provides some post-processing 

(header stripping) and a FIFO buffer between the Header and Output function servers. 

6.3.2 Dynamic PARSE Analysis and Verification 

The corresponding n-calculus model for this partial HTPNET system is as follows: 

agent HEADER(data_r,status,store,st) = 

data_r( d). store <d>.HEADER( data_r,status,store,st) 

+ status( sr). sr <st>. HEADER( data_r,status,store,st) 

agent TEMPFIFO(store,retrieve) = store(d). TEMPFIFO(store,retrieve) 

+ retrieve(req). req <d>. TEMPFIFO(store,retrieve) 

agent OUTPUT(retrieve,req,recdata) = retrieve <req>.req(d). recdata <d> 

. OUTPUT( retrieve, req, recdata) 

agent DATAPROC = HEADER I TEMPFIFO I OUTPUT 

agent SYNKPROC(synk_r,status,ack_r,sr) = synk_r(s). status <sr>. sr(st). ack_ r <st> 

.SYNKPROC( synk_r,status, ack_r,sr) 

agent RECHOST(recdata) = recdata(rd).RECHOST(recdata) 

agent RECEIVE= DATAPROC I SYNKPROC I RECHOST 

agent TRANSMIT( data_t,synk_t,ack_t,d,s) = 

data_t <d>. TRANSMIT(data_t,synk_t,ack_t,d,s) 
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+ synk_t <s>.ack_t(ac).TRANSMIT(data_t,synk_t,ack_t,d,s) 

agent NETWORK(data_t,ack_t,synk_t,data_r,ack_r,synk_r,sr) = 

data_t( d).data_ t <d>.NETWORK( data_t,ack_t,synk_t,data_r,ack_r,synk_r,sr) 

+ synk_t(s).ack_t(ac).NETWORK(data_t,ack_t,synk_t,data_r,ack_r,synk_r,sr) 

+ synk_r <sr>.ack_r(ac).NETWORK(data_t,ack_t,synk_t,data_r,ack_r,synk_r,sr) 

agent SYSTEM = TRANSMIJ1 NETWORK! RECEIVE 

The names such as d and st are data being passed along communication paths. They have 

been included in this model to improve readability. They represent the data being passed 

around and the status information. The 1t-calculus model generated by PARSE-DAT does 

not contain these names in order to reduce search space. This simplication does not affect 

the deadlock analysis. Further, the asynchronous communication channels have been 

simplified to be synchronous communication channels in the corresponding 1t-calculus 

specification, for both presentation and analysis efficiency purposes. Also, the 

hierarchical structuring of design is reflected in the 1t-calculus model. 

Upon analysing these 1t-calculus models for structural deadlocks, the following output 

was obtained from Mobility Workbench: 

MWB>deadlocks TRANSMIT 

No deadlocks found. 

MWB>deadlocks NETWORK 

No deadlocks found. 

MWB>deadlocks RECEIVE 

No deadlocks found. 

MWB>deadlocks SYSTEM 

No deadlocks found. 

Hence, we find there is no structural deadlocks present in this system. Notice that it is 

possible to expand the 1t-calculus model for the NETWORK and TRANSMIT module if 

their graphical design is given. Once again, the advantage of compositional analysis is 

demonstrated here. 
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Appendix A lists the n-calculus model and analysis result of an intermediate HTPNET 

design which exhibits the presence of structural deadlock. 

HTPNET has been implemented in Occam running on a network of transputers. For 

the implementation details of the HTPNET-system (including process graphs and nets 

for the Transmit and Network process objects), please refer to [Chan93]. 

Lastly, this example design illustrates that the analysis performed by the Mobility 

Workbench tool is also applicable to static process architectures. 

6.4 SEP-TOOL 

6.4.1 Dynamic PARSE Design 

This case study is based on a research project described m [Gorton97] and 

[Hawryszkiewycz96] which looks at the application of computer-supported 

collaborative work (CSCW) or groupware technology to a range of software 

engineering activities. Groupware technology provides support for collaboration on 

software development tasks, and is applicable to both co-located and geographically 

distributed software development teams. 

The basic goals of this GWSE (Global Working in Software Engineering) system 

were to provide the following: 

• software process description tools 

• project management and monitoring facilities 

• workflow management for defined processes 

• transparent document sharing, archiving and management 

Since the requirement was to support both co-located and widely distributed software 

development teams, the system must be able to provide distributed coordination, 

communication and document management between groups of developers at several 

sites. 
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Several commercial-off-the-shelf (COTS) components have been integrated, and 

supplemented with additional functionality to form the GWSE system. The workflow 

management engine is based on Lotus Notes, the document archive database is based 

on Intersolv's PVCS version control system, the process modeling tool SEP-Tool, has 

been implemented in C++ using CORBA as a distribution and synchronisation 

technology, and the modeling tool interfaces with the project management tools and 

capabilities which are provided by Microsoft Project. 
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Figure 6.8. GWSE Architecture [Gorton97] 

This case study focuses on the software process modeling as provided by the SEP

TOOL (Software Engineering frocess-TOOL). This is a graphical process modeling 

environment which enables distributed team members to collaboratively define a 

process model for a project. The tool is a real-time groupware tool, or WYSIWIS 

(What You See Is What I See), and needs to ensure model consistency when faced 

with multiple concurrent updates. 

Applications such as the SEP-TOOL have many complex concurrency requirements. For 

example, the client must be able to accept updates and various messages while the 

graphical user interface is in use. And at the server side, updates to the consistent model 

must be broadcast to all clients, while accepting new requests. Further, new clients 
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need to be initialised while broadcasting outstanding updates. Lastly, an additional 

requirement is the support for editing multiple models simultaneously. 

There are many different server implementation possibilities. These requirements 

naturally lend themselves to multithreaded solutions, such as: thread-per-update-request, 

thread-per-client, thread-per-update-broadcast, and so on. 

In order to minimise risks and cost of failure, an iterative approach should be taken 

such that complex components in the architecture are isolated and demonstrated by 

building 'proof of concept' prototypes. 

PARSE-DAT can be used to analyse the critical components of the architecture. 

Figure 6.9 shows an architectural component of the SEP-Tool that has been analysed 

using PARSE-DAT. 

set DATASTORE 

( 10 ... 100] ,', 
: USER_ : cl ientID 
: lNTERFACE; « ) USER_ 

t--+------1 MANAGER 

: J , .. _________ ., 

cachedata 

cthrdpar 

------------ --: ·nitmodel -, 
10 .. 1001 --+-; ____ , 10 .. 1001 '\ ?u dalte / [0 .. 1001 \ 

CACHE ~ LL) : CLlENT ; ..... , -,f-~---t--\1 UPDATE I 

MODEL \_\._ \ THREAD/ \_ THREAD,/ _____________ get_data ' ........ ____ ....... .. ..... ____ ... -" 

Figure 6.9. Dynamic PARSE Design for SEP-Tool 
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6.4.2 Dynamic PARSE Analysis and Verification 

The following is the generated 1t-Calculus model for the SEP-TOOL architecture in 

Figure 6.9. Notice the peripheral objects such as datastore and usertable are not captured 

in this 1t-Calculus model. Since these passive data servers communicate only with the 

server and usermanager process objects, their dependency relationship does not need to 

be analysed for deadlock. The advantage of this is that the search space is reduced. 

agent SERVER( regclient,set, unregclient,bind,cthrdparam, init, workreq, req, update) = 

regclient.set.unregclient.update.init. 'cthrdparam. 'workreq. 'req 

. SERVER( regclient,set, unregclient, bind, cthrdparam, init, workreq, req, update) 

agent USERMAN(getclient, workreq,userinfo,regupdatethrd) = 

getclient.regupdatethrd. workreq. 'userinfo 

. USERMAN( getclient, workreq, userinfo, regupdatethrd) 

agent USERTABLE(userinfo) = userinfo.USERTABLE(userinfo) 

agent DATASTORE(req) = req.DATASTORE(req) 

agent CLIENTMAN( clientid,set, unregclient, cclienthrdpara,bind, update) = 

'set. 'unregclient. 'cclienthrdpara. 'update. 'clientid 

. CLIENTMAN( clientid, set, unregclient, cclienthrdpara, bind, update) 

agent Ul( clientid, clientinfo, cachtodisplay, cache4display) = 

clientinfo. cachtodisplay. clientid. 'cache4display 

. Ul( clientid, clientinfo, cachtodisplay, cache4display) 

agent UP DATETHRD( getclient, update, cthrdparam, regupdatethrd) = 

cthrdparam. 'getclient. 'update. 'regupdatethrd 

. UPDATETHRD( getclient, update, cthrdparam, regupdatethrd) 

agent CLIENTTHRD( regclient, initmodel,getcacheddata, cclienthrdpara, update, 

cachtodisplay,init) = cclienthrdpara.update. 'regclient. 'initmodel. 

'cachtodisplay. 'getcacheddata. 'init. CLIENTTHRD( reg client, initmodel, 

getcacheddata, cclienthrdpara, update, cachtodisplay, init) 

agent CACHEMODEL(initmodel,getcacheddata) = 

initmodel.getcacheddata.CACHEMODEL(initmodel,getcacheddata) 

agent TOOL= USERTABLE I DATASTORE I SERVER I USERMAN I CLIENTMAN I 
U/ I CACHEMODEL I UPDATETHRD I CLIENTTHRD 
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The Mobility Workbench analysis result: 

MWB>deadlocks TOOL 

No deadlocks found. 

6.5 Conclusion 

Case Studies 

In this chapter, we have examined the use of the Dynamic PARSE Design and Analysis 

methodology. The PARSE-DAT tool has also been evaluated through four case studies. 

These case studies are of different architecture types, and vary in complexity. We have 

shown the expressiveness of the Dynamic PARSE process graph design notation, 

demonstrated the typical Dynamic PARSE design and analysis processes, as well as the 

value of the PARSE-DAT design analysis tool. 
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7. Conclusions 

This thesis has presented a novel software architecture design and verification 

methodology for dynamic distributed systems. Architects employ a pragmatic, graphical 

design method called Dynamic PARSE (PARSE-D) to design the software architecture, 

which provides an explicit representation of the parallelism and distribution in a system 

via a well defined set of model elements. The architects thereby capture the concurrent 

and dynamic features of the system. Such dynamic features include the creation and 

deletion of processes and re-configurable communication links. Lastly, the correctness of 

the design can be verified, and possible design faults may be detected by using an 

automatic design analysis and verification tool called PARSE-DAT. This integrated rapid 

prototyping environment with an automated analysis facility enables the designer to 

verify their design at an early stage of the engineering process, hence reducing resource 

overheads incurred in discovering deadlock at the later testing stage. 

Specifically, the following has been presented in this thesis: 

• Dynamic PARSE Process Graph Design Notation: which is an extension to the 

architecture description language PARSE. This resultant set of notations can describe 

dynamic features such as the creation and deletion of process components, and 

dynamic communication reconfiguration. 

• Translations of Dynamic PARSE Process Graph Design Notation to two formalisms: 

n-Calculus and Self-Modifying Nets. 

• A distributed software engineering methodology (PARSE-D) supporting design using 

Dynamic PARSE Process Graph Notation and design analysis/verification utilising n

Calculus. 

• An integrated tool-set environment called PARSE-DAT for supporting the PARSE-D 

software engineering methodology. The two major components are the CASE tool 
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PARSE-OT that enables the construction of Dynamic PARSE designs; and an 

automated analysis/verification tool called PARSE-AT. 

An empirical study of the 'influence of formal methods' [Pfleeger97] has shown that 

formal design, combined with other techniques, yields highly reliable code. Further, in a 

formal methods roundtable presented in the April 1996 IEEE Computer, it was pointed 

out that: " ... the purpose of formalisation is to reduce the risk of serious errors in 

specification and design. Analysis can expose such errors while they are still cheap to 

fix". 

PARSE-Dis precisely a software engineering methodology in this direction. 

Future Directions 

There are several areas of possible future work to extend the capability of the Dynamic 

PARSE design and analysis methodology as well as the PARSE-DAT environment. 

Machine aided design refinement: regarding the formal design analysis method, there is 

the possibility of providing support for machine aided design refinement, in order to 

bridge the gap between the design stage and the implementation stage. There is much 

sound theoretical rt-Calculus work in the areas of equivalence. The work in exploring the 

possibilities of refining Dynamic PARSE designs through rt-Calculus would be 

interesting and valuable. 

Incorporating a Performance Prediction Tool: on the issue of CASE tool support, 

there is currently independent work done in the area of performance evaluation and 

prediction [Hu97]. Work in incorporating the performance prediction tool into PARSE

DAT should be fruitful. 

Integration with object-oriented design methods: In this thesis, we have described 

Dynamic PARSE as an architecture design methodology. Once software architecture has 

been devised and validated, detailed design is the next development stage. Object

oriented methodologies provide a seamless transition from the analysis stage to the 

design stage. It is anticipated that integrating the Dynamic PARSE methodology with an 
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object-oriented approach at the detailed design stage would be an effective way of 

developing software. This integration work could take place on two levels. Firstly on the 

methodology level, mechanisms need to be worked out to support the transition from 

architecture design in Dynamic PARSE onto detailed object-oriented designs. Secondly, 

tool support can be carried out by integrating an existing object-oriented CASE tool (such 

as Rational Rose) into PARSE-DAT. 

Detailed design analysis: PARSE-DAT enables automated design analysis and 

verification on an architectural level. Automated analysis on an implementation/ 

algorithmic/ code level is worth exploring in the future. 
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Appendix 

A. Sample Mobility Workbench Output 

The following is the n-Calculus model of an intermediate HTPNet design that exhibits 

presence of structural deadlock. The Mobility workbench analysis output is also included. 

HEADER(data,status,store,st) = data(d). 'store<d>.HEADER(data,status,store,st) 

+ status(sr). 'sr<st>.HEADER(data,status,store,st) 

TEMPFIFO(store,retrieve) 

store(d).retrieve(req). 'req<d>.TEMPFIFO(store,retrieve) 

OUTPUT(retrieve,req,recdata) = 'retrieve<req>.req(d). 'recdata<d> 

.OUTPUT(retrieve,req,recdata) 

DATAPROC(data,status,recdata) = (Astore,retrieve,st,req) 

(HEADER(data,status,store,st) 

TEMPFIFO(store,retrieve) 

OUTPUT(retrieve,req,recdata)) 

SYNKPROC(synk,status,ack,sr) = synk(s). 'status<sr>.sr(st). 'ack<st> 

.SYNKPROC(synk,status,ack,sr) 

RECHOST(recdata) = recdata(rd).RECHOST(recdata) 

RECEIVE(data,synk,ack) = (Astatus,recdata,sr) 

TRANSMIT(data,synk,ack,d,s) 

(DATAPROC(data,status,recdata) 

SYNKPROC(synk,status,ack,sr) 

RECHOST(recdata)) 

'data<d>.TRANSMIT(data,synk,ack,d,s) 

+ 'synk<s>.ack(ac) .TRANSMIT(data,synk,ack,d,s) 

NETWORK(data_t,ack_t,synk_t,data_r,ack_r,synk_r,sr) = 

data_t(d). 'data_r<d>.NETWORK(data_t,ack_t,synk_t,data_r,ack_r,synk_r,sr) 

+ synk_t(s) .ack_t(ac) .NETWORK(data_t,ack_t,synk_t,data_r,ack_r,synk_r,sr) 

+'synk_r<sr>.ack_r(ac).NETWORK(data_t,ack_t,synk_t,data_r,ack_r,synk_r,sr 

SYSTEM= (Aack_t,data_t,synk_t,ack_r,data_r,synk_r,sr_t,sr_n,d) 

(TRANSMIT(data_t,synk_t,ack_t,d,sr_t) 

NETWORK(data_t,ack_t,synk_t,data_r,ack_r,synk_r,sr_n) 

RECEIVE(data_r,synk_r,ack_r)) 
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MWB>deadlocks RECEIVE 

No deadlocks found. 

MWB>deadlocks TRANSMIT 

No deadlocks found. 

MWB>deadlocks NETWORK 

No deadlocks found. 

MWB>time deadlocks SYSTEM 

Deadlock found in 

Appendix 

(A~v,-v2,-v3,-v4,-v5,-v6,-v7,-v8,-v9) (~v. (\ac)TRANSMIT<-v2,-v3,-v,-v9,-v7> 

(A~vlO) (-v. (\ac)N<-v2,-v,-v3,-v5,-v4,-v6,-v8> / 

(A~vll,-v12,-v13) ((A~v14,-v15,-v16) ((-v5. (\d) '~v14. [d]HEADER<~v5,-vll,-v14,-v10> 

+ ~vll. (\sr) 'sr. [~v10]HEADER<~v5,~vll,-v14,-v10>) 

-v14. (\d)-v15. (\req) 'req. [d]TEMPFIFO<~v14,-v15> / 

'~v15. [~v16]-v16. (\d) '~v12. [d]OUTPUT<~v15,~v16,-v12>) 

-v6. (\s) '~vll. [-v13]-v13. (\st) '~v4. [st]SYNKPROC<~v6,-vll,-v4,-v13> 

-v12. (\rd)RECHOST<~vl2>))) 

reachable by 5 commitments 

Deadlock found in 

(A~v,-v2,-v3,-v4,-v5,-v6,~v7,-v8,-v9) (~v. (\ac)TRANSMIT<~v2,-v3,-v,-v9,-v7> 

(A~vlO) (-v. (\ac)N<~v2,-v,-v3,-v5,-v4,-v6,-v8> / 

(A~vll,-vl2,~vl3) ((A~v14,-vl5,-vl6) ((~v5. (\d) '~v14. [d]HEADER<~v5,~vll,~v14,~v10> 

+ ~vll. (\sr) 'sr. [-v10]HEADER<-v5,-vll,-vl4,-vl0>) 

-v14. (\d)-v15. (\req) 'req. [d]TEMPFIFO<-v14,-v15> / 

'~v15. [~v16J~v16. (\d) '~v12. [d]OUTPUT<~v15,~v16,~v12>) 

-v6. (\s) '~vll. [-v13]-v13. (\st) '~v4. [st]SYNKPROC<-v6,-vll,-v4,-vl3> 

-v12. (\rd)RECHOST<-v12>))) 

reachable by 11 commitments 

Deadlock found in 

(A~v,-v2,-v3,-v4,-v5,-v6,-v7,-v8,-v9) (-v. (\ac)TRANSMIT<~v2,-v3,-v,-v9,-v7> 

-v. (\ac)N<-v2,-v,-v3,-v5,-v4,-v6,-v8> / 

(Astatus,recdata,sr) ((Astore,retrieve,st,req) ((-v5. (\d) 'store. [d]HEADER<-v5,stat 

us,store,st> + status. (\sr17) 'sr17. [st]HEADER<~v5,status,store,st>) 

store. (\d)retrieve. (\req18) 'req18. [d]TEMPFIFO<store,retrieve> / 

'retrieve. [req]req. (\d) 'recdata. [d]OUTPUT<retrieve,req,recdata>) 

-v6. (\s) 'status. [sr]sr. (\st) '~v4. [st]SYNKPROC<-v6,status,-v4,sr> 

recdata. (\rd)RECHOST<recdata>)) 

reachable by 1 commitments 

Deadlock found in 

(A~v,-v2,-v3,-v4,~v5,~v6,-v7,-v8,~v9) (~v. (\ac)TRANSMIT<~v2,-v3,-v,-v9,-v7> 

-v. (\ac)N<-v2,-v,-v3,~v5,~v4,-v6,-v8> / 

(A~v10,-vll,~v12) ((A~v13,-v14,-v15,-vl6) ((~v5. (\d) '~v13. [d]HEADER<-v5,-v10,-v13, 

-v15> + -vlO. (\sr) 'sr. [~v15]HEADER<-v5,-v10,-v13,-v15>) 

-v13. (\d)-v14. (\req) 'req. [d]TEMPFIFO<-vl3,-v14> / 

'~v14. [-v16]-v16. (\d) '~vll. [d]OUTPUT<~v14,~v16,-vll>) 

-v6. (\s) '~vlO. [-v12]-v12. (\st) '~v4. [st]SYNKPROC<~v6,-v10,~v4,-v12> 

~vll. (\rd)RECHOST<~vll>)) 

reachable by 7 commitments 
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User CPU time elapsed: 18.008499 

System CPU time: 2.503421 

GC time: 7.274832 

Real time elapsed: 71.444265 

Overhead: 43.657513 

Appendix 

113 



Bibliography 

Bibliography 

[Andersen94] 

[Ansart89] 

[Aonix98] 

[AST98] 

[BBN98] 

[B-Core96] 

[Belina91] 

[Bhat95] 

H.R.Andersen (1994) Model Checking and Boolean Graphs, TCS, 

vol.126, no. I. 

J.P.Ansart, V.Chari (1989) General Survey on the Estelle Results, 

in the book: The Formal Description Technique Estelle, North

Holland, pp.17-34. 

Aonix (1998) Software Modeling Solutions - Software Through 

Pictures, http://www.methods-tools.corn/tools/ 

frames_analdes.html 

Advanced Software Technologies Inc. (1998) GDPro: Product 

Overview, http://www.advancedsw .corn/overview .html 

BBN (1998) Distributed Planning & Operations Management -

Corbus, http://www.bbn.com/products/dpom/corbus.htm. 

B-Core UK Limited (1996) The B Toolkit, user manual, March 6, 

1996. 

F.Belina, D.Hogrefe, A.Sarma (1991) SDL With Applications From 

Protocol Specification, Prentice Hall. 

G.Bhat, R.Cleaveland, O.Grumberg (1995) Efficient On-The-Fly 

Model Checking for CTL *, Proceedings 10th Annual Symposium on 

Logic in Computer Science (LICS'95), San Diego, July, Computer 

Science Press, pp.388-97. 

114 



[Birkinshaw95] 

[Booch94] 

[Bowen95] 

[Butler96] 

[Cardelli98] 

[ Carrington94] 

[Carter96] 

[Cayenne98] 

[Chan93] 

Bibliography 

C.I.Birkinshaw, P.R.Croll (1995) Modelling the Client-Server 

Behaviour of Parallel Real-Time Systems Using Petri Nets, Proc. 

28th Ann. Hawaii Int'l Conf. System Sciences, Parallel Software 

Engineering Minitrack, Vol.2: Software Technology, IEEE 

Computer Society Press, Calif., 339-48. 

G. Booch (1994) Object-Oriented Analysis and Design with 

Applications, Redwood City CA: Benjamin Cummings. 

J.P.Bowen and M.G.Hinchey (1995) Seven More Myths of Formal 

Methods, IEEE Software July 1995 vol.12 no.3, pp.34-41. 

M.Butler, M.Walden (1996) Distributed System Development in B, 

Proceedings 1 st Conference on the B Method, November 24-26, 

Nantes, France, pp.155-90. 

L.Cardelli, AD.Gordon (1998) Mobile Ambients, ETAPS'98, also 

available at http://www.luca.demon.co.uk/ 

D.Carrington, I.Hayes, R.Nickson, G,Watson, J.Welsh, A Review of 

Existing Refinement Tools, Technical Report UQ-SVRC-94-8, 

Software Verification Research Centre, University of Queensland. 

F.Carter, A.Fekete (1996) Cerberus - A Tool For Debugging 

Distributed Algorithms, Procedings 1st JFIP TClO International 

Workshop on Parallel and Distributed Software Engineering, 

Chapman and Hall, pp.110-21. 

Cayenne Software (1998) Class Designer: New, User-Friendly 

Tool for Designing Java and C++ Objects, http:// 

www .cayennesoft.com/classdesigner/ 

T.S.Chan, I.Gorton (1993) A Transputer-based Implementation of 

HTPNET: a Transport Protocol for Broadband Networks, in 

115 



[Chan94] 

[Chappell96] 

[Cheung94] 

[Cheung94a] 

[Ciardo94] 

[Coad91] 

[Coad9la] 

[Coleman94] 

[ Comerf ord94] 

Bibliography 

Transputer Applications and Systems Vol. 2, Proceedings of the 

1993 World Transputer Congress, Aachen, Germany, pp 899-910, 

IOS Press, September. 

T.S.Chan and I.Gorton (1994) A parallel approach to high-speed 

protocol processing, in Transputer Applications and Systems 94, 

Proceedings of the 2nd World Transputer Congress, Como, Italy, 

September, pp 209-22, IOS Press 

D.Chappell (1996) Understanding ActiveX and OLE, Redmond, 

WA: Microsoft Press, 1996. 

S.C.Cheung, J.Kramer (1994) Tractable Dataflow Analysis for 

Distributed Systems, IEEE Transactions on Software Engineering, 

vol.20, no.8, August, pp.579-93. 

S.C.Cheung, J.Kramer (1994) An Integrated Method for Effective 

Behaviour Analysis of Distributed Systems, Proceedings of 16th 

IEEE International Conference on Software Engineering, Sorrento, 

Italy, May. 

G.Ciardo, R.German, C.Lindemann (1994) A Characterization of 

the Stochastic Process Underlying a Stochastic Petri Net, 

Transactions on Software Engineering, vol.20, pp.506-15. 

P.Coad, E. Y ourdon ( 1991) Object-Oriented Analysis. Prentice Hall. 

P.Coad, E. Y ourdon ( 1991) Object-Oriented Design. Prentice Hall. 

D.Coleman, P.Amold, S.Bodoff, C.Dollin, H.Gilchrist, F.Hayes, 

P.Jeremes (1994) Object-Oriented Development: The Fusion 

Method, Upper Saddle River, NJ: Prentice-Hall. 

R.Comerford (1994) Engineering Workstations and PCs, IEEE 

Spectrum, April, pp 45-46. 

116 



[Custer93] 

[Dehbonei95] 

[Diaz89] 

[Durr95] 

[Elseaidy96] 

[Eriksson98] 

[Eucalyptus97] 

[Faergemand91] 

[Faergemand93] 

[Faergemand94] 

Bibliography 

H.Custer (1993) Inside Windows NT, Microsoft Press. 

B.Dehbonei, F.Mejia (1995) Formal Development of Safety

Critical Software Systems in Railway Signalling, in Applications of 

Formal Methods, edited by Michael G. Hinchey and Jonathan 

P.Bowen, Prentice-Hall, pp.227-52. 

M.Diaz, J-P.Ansart, P.Azema, V.Chari (1989) The Formal 

Description Technique Estelle, North-Holland. 

E.H.Durr, N.Plat and M.de Boer (1995) CombiCom: Tracking and 

Tracing Rail Traffic using VDM++, in Applications of Formal 

Methods, edited by Michael G. Hinchey and Jonathan P.Bowen, 

Prentice-Hall, pp.203-26. 

W.Elseaidy, R.Cleaveland, J.Baugh (1996) Modeling and Verifying 

Active Structural Control Systems, Science of Computer 

Programming. To appear. A preliminary version of this paper 

appears in the Proceedings of the 1994 Real-Time Systems 

Symposium. 

H-E.Eriksson, M.Penker (1998) UML Toolkit, Wiley. 

http://www-run.montefiore.ulg.ac.be/projects/ 

EUCALYPTUS.html (Jan 1997). 

O.Faergemand, R.Reed (1991) SDL'91 Evolving Methods, Proc. 

SOL Forum '91, North-Holland, Amsterdam. 

O.Faergemand, A.Olsen (1993) Tutorial on New Features in SDL-

92, TFL, Telelcommunications Research Laboratory, Lyngso Alle 

2, DK-2970 Horsholm Denmark. 

O.Faergemand, A.Olsen (1994) Introduction to SDL-92, Computer 

Networks and ISDN Systems vol.26, pp.1129-42. 

117 



[Fields92] 

[FME98] 

[Gamma95] 

[Garland94] 

[Garland95] 

[Gorton93] 

[Gorton94] 

[Gorton95] 

[Gorton95a] 

Bibliography 

R.Fields, M.Elvang-Goransson (1992) A VDM Case Study in 

Mural, IEEE Transactions on Software Engineering, vol.18, no.4, 

April, pp.279-95. 

Formal Methods Europe (1998) FME Tools Database - Name of 

Tool: ProofPower, http://www.csr.ncl.ac. uk/projects/FME/ 

InfRes/tools/fmtdb027 .html 

E.Gamma, R.Helm, R.Johnson, J.Vlissides (1995) Design Patterns: 

Elements of Reusable Object-Oriented Design, Addison-Wesley. 

D.Garlan, R.Allen, J.Ockerbloom (1994) Exploiting Style in 

Architectural Design Environments, Proceedings of SIGSOFT '94 

Symposium on the Foundations of Software Engineemg, December. 

D.Garlan, D.Perry (1995) Introduction to the Special Issue on 

Software Architecture, IEEE Transactions on Software 

Engineering, April. 

I.Gorton, I.E.Jelly, J.Gray (1993) Parallel Software Engineering 

with PARSE, in Proceedings of COMPSAC-17, IEEE Int. Computer 

Software and Applications Conference, November, Phoenix, 

Arizona, USA, IEEE. 

I.Gorton, T.S.Chan, I.E.Jelly (1994) Engineering High Quality 

Parallel Software Using PARSE, Parallel Processing: CONPAR 94 

- V APP VI, pp.381-92. 

I.Gorton, J.Gray, I.E.Jelly (1995) Object-based Modelling Of 

Parallel Programs, IEEE Parallel and Distributed Technology, 

Summer edition, pp.52-63. 

I.Gorton, I.E.Jelly, P.Croll, P.Nixon (1995) Directions in Software 

Engineering for Parallel Systems, Proceedings of 28th Hawaii 

118 



[Gorton96] 

[Gorton96a] 

[ Gorton96b] 

[Gorton97] 

[Gorton97a] 

[Gray94] 

[Gray97] 

[Harel88] 

[Harel90] 

Bibliography 

International Conference on System Sciences, Software Technology 

Track, Jan 3-6, IEEE. 

I.Gorton, I.E.Jelly, J.Gray, T.S.Chan (1996) Reliable Parallel 

Software Construction Using PARSE, Concurrency: Practice and 

Experience, vol.8(2), pp125-46, March. 

I.Gorton, J.Zic, I.E.Jelly (1996) Supporting Multiple Fonnal 

Methods in PARSE, University of New South Wales, internal 

report. 

I.Gorton, Y.H.Ng, A.Liu (1996) Generating Occam From PARSE 

Process Graphs, Transputer Communications, vol.3, no.1, pp.51-9 

I.Gorton, I.T.Hawryszkiewycz, C.Chung, S.Lu, K.Ragoonaden 

(1997) Groupware Support Tools for Collaborative Software 

Engineering, 30th Hawaii International Conference on System 

Sciences, Informations Systems Track, IEEE, Hawaii January. 

I.Gorton, I.Jelly (1997) Software Engineering for Parallel and 

Distributed Systems: Challenges and Opportunities, IEEE 

Concurrency, vol.5, no.3, pp.12-15. 

J.Gray (1994) Definition of the PARSE Process Graph Notation, 

version 2 (PGN/2), Technical Report PARSE-TR-2b, March 1994. 

J.P.Gray, B.Ryan (1997) Applying the CDIF standard in the 

Constructing of CASE Design Tools, In Proceedings of Australian 

Software Engineering Conference (ASWEC97), Sydney Australia, 

28 Sept - 3rd Oct, IEEE Computer Society Press. 

D.A.Harel (1988) On visualfonnalisms, Communications of ACM, 

vol.31, no.5. 

D.Harel, H.Lachover, A.Naamad, A.Pnueli, M.Politi, R.Sherman, 

119 



[Harel97] 

[Harel-E90] 

[Hawryszkiewycz96] 

[Hayes91] 

[Hayes91a] 

[Hayes91b] 

[Henderson92] 

[Hoare69] 

[Hoare85] 

Bibliography 

A.Shtull-Trauring, M.Trakhtenbrot (1990) Statemate: A Working 

Environment for the Development of Complex Reactive Systems, 

Transactions on Software Engineering, vol.16, no.4, pp.403-414. 

D.Harel, E.Gery (1997) Executable Object Modeling with 

Statecharts, IEEE Computer, July, pp.31-42. 

E.Harel, O.Lichtenstein, A.Pnueli (1990) Explicit Clock Temporal 

Logic, Proceedings of 5th Annual Symposium on Logic in 

Computer Science, June, pp.402-13. 

I.T.Hawryszkiewycz, I.Gorton (1996) Distributing the Software 

Process, Australian Software Engineering Conference, Melbourne, 

Australia, pp.176-82. 
I 

I.Hayes (1991) Applying Fonnal Specification to Software 

Development in Industry, in Specification Case Studies, Prentice

Hall, pp.285-310. 

I.Hayes (1991) C/CS Temporary Storage, in Specification Case 

Studies, Prentice-Hall, pp.311-24. 

I.Hayes (1991) CICS Message System, in Specification Case 

Studies, Prentice-Hall, pp.325-32. 

B.Henderson-Sellers (1992) A Book of Object-Oriented Knowledge, 

Prentice Hall. 

C.A.R.Hoare (1969) An Axiomatic Basis for Computer 

Programming, Communications of the ACM, vol.12, no.10, 

October. 

C.A.R.Hoare (1985) Communicating Sequential Processes, Prentice 

Hall. 

120 



[Hoare-JP95] 

[Holloway96] 

[Hoornan89] 

[Horstrnann98] 

[Howland-Rose94] 

[HP96] 

[Hu97] 

[Iona95] 

[Jacobson92] 

Bibliography 

J.P.Hoare (1995) Application of the B-Method to CICS, in 

Applications of Formal Methods, edited by M.G.Hinchey and 

J.P.Bowen, Prentice-Hall, pp.97-124. 

C.M.Holloway, R.W.Butler (1996) Impediments to Industrial Use 

of Formal Methods, Formal Methods Roundtable, IEEE Computer, 

April, pp.25-6. 

J.Hooman, W-P.deRoever (1989) Design and Verification in Real

Time Distributed Computing: An Introduction to Compositional 

Methods, Proceedings of 9th International Symposium on Protocol 

Specification, Testing and Verification, North-Holland. 

C.S.Horstrnann, G.Cornell (1998) Core Java 1.1 Volume 1 -

Fundamentals, Sun Microsystems Press. 

K.Howland-Rose, U.Szewcow (1994) Exposing Concurrency, an 

Object Oriented Approach - Objects to Occam, IOS TCAS 

Conference. 

Hewlett-Packard (1996) HP ORB Plus 2.0 For HP-UX, SunSoft 

Solaris, and Microsoft Windows NT - Product Brief, 

http://www.hp.com/gsy/orbplus.html, updated May 22. 

L.Hu, I.Gorton (1997) A Performance prototyping Approach to 

Designing Concurrent Systems, Proceedings of 2nd International 

Workshop on Software Engineering for Parallel and Distributed 

Systems, IEEE Computer Society Press, California, pp.270-6. 

Iona Technologies Ltd. (1995) Orbix 2 - Distributed Object 

technology, Programming and Reference Guide, Release 2.0, Iona 

Technologies Ltd. 

I.Jacobson, M.Chriterson, P.Jonsson, G.Overgaard (1992) Object

Oriented Software Engineering, Reading NY: Addison-Wesley, 

121 



[Jacobson92a] 

[Jahanian88] 

[Jelly95] 

[Jelly96] 

[Jelly96a] 

[Jensen92] 

[Jones89] 

[Jones91] 

[Klein93] 

[Koyrnans90] 

Bibliography 

1992. 

I.Jacobson (1992) Object-Oriented Software Engineering: A Use 

Case Driven Approach, Addison-Wesley, 1992. 

F.Jahanian, D.Stuart (1988) A Method for Verifying Properties of 

Modechart Specifications, Proceedings 9th Real-Time Systems 

Symposium. IEEE Computer Society, December, pp.12-21. 

I.Jelly, S.Russo, CSavy (1995) From Textual Representation of 

PARSE Designs to Petri Nets, Research Note - Draft version, April 

1995, through personal communication. 

I.Jelly, I.Gorton (1996) Current Research Directions in Software 

Engineering for Parallel and Distributed Systems, Software 

Engineering Notes, through personal communication. 

LE.Jelly, I.Gorton (1996) Case Tools For Parallel Systems, 

Transputer Communicatioins, 1996, vol.3, no.1, pp.3-6. 

K.Jensen (1992) Coloured Petri Nets. Basic Concepts, Analysis 

Methods and Practical Use. Volume 1, Basic Concepts, 

Monographs in Theoretical Computer Science, Springer-Verlag. 

CB.Jones (1989) Systematic Software Development Using VDM, 

2nd Edition, Englewood Cliffs, Prentice Hall. 

CB.Jones, K.D.Jones, P.A.Lindsay, R.Moore (1991) MuRAL: A 

Formal Development Support System, Springer-Verlag. 

M.H.Klein, T.Ralya, B.Pollak, R.Obenza, M.G.Harobur (1993) A 

Practitioner's Handbook for Real-Time Analysis: Guide to Rate 

Monotonic Analysis for Real-Time Systems, Kluwer Academic. 

R.Koyrnans (1990) Specifying Real-Time Properties with Metric 

122 



[Kramer85] 

[Kramer94] 

[Kurshan94] 

[Lakos91] 

[Lano96] 

[Larocque94] 

[Lea93] 

[Leduc94] 

[Liu73] 

Bibliography 

Temporal Logic, Real-Time Systems, vol.2, no.4, November, 

pp.255-99. 

J.Kramer, J.Magee (1985) Dynamic Configuration for Distributed 

Systems, IEEE Transactions on Software Engineering, vol.SE-11, 

no.4, April 1985, pp.424-35. 

J.Kramer (1994) Distributed Software Engineering, Proceedings 

16th International Conference on Software Engineering, IEEE 

Computer Society Press, California, pp.253-63. 

R.P.Kurshan (1994) Computer-Aided Verification of Coordinating 

Processes, Princeton University Press. 

C.Lakos (1991) Simulation with Object-Oriented Petri Nets, 

Proceedings Australian Software Engineering Conference, Sydney, 

Australia, July. 

K.Lano (1996) The B La,nguage and Method: A Guide To Practical 

Formal Development, Springer-Verlag London. 

J.Larocque (1994) Client-Server Trend, IEEE Spectrum, April, 

pp.48-50. 

R.Lea, C.Jacquemot, E.Pillevesse (1993) COOL: System Support 

for Distributed Object-Oriented Programming, Chorus Systems, 

September. 

G.Leduc (1994) A Method for Applying LOTOS at an Early Design 

Stage and its Application to the ISO Transport Protocol, The OSI95 

Transport Service with Multimedia Support, Springer-Verlag, 

Berlin, 151-80. 

C.L.Liu, J.W.Layland (1973) Scheduling Algorithm for 

Multiprogramming in a Hard Real-Time Environment, Journal of 

123 



[Liu96] 

[Liu96a] 

[Liu97] 

[Liu97a] 

[Liu98] 

[Low96] 

[Luckham95] 

Bibliography 

the ACM, vol.20, no.I, January, pp.46-61. 

A.Liu, I.Gorton (1996) Modelling Dynamic Distributed System 

Structures in PARSE, Proceedings of 4th Euromicro Workshop on 

Parallel and Distributed Processing, IEEE Computer Society Press, 

California, 352-9. 

A.Liu, T.S.Chan, I.Gorton (1996) Designing Distributed 

Multimedia Systems Using PARSE, First IFIP Workshop on 

Software Engineering for Parallel and Distributed Systems, 

Chapman and Hall, Berlin, Germany, 25-26 March, pp.50-61. 

A.Liu, I.Gorton, (1997) Designing Distributed Object Systems with 

PARSE, Proceedings of 5th Euromicro Workshop on Parallel and 

Distributed Processing, IEEE Computer Society Press, California, 

pp.335-42. 

A.Liu, I.Gorton, J.Zic (1997) Formalising PARSE Design Notations 

with n-Calculus, internal report, Dept. of Computer Systems, 

School of Computer Science and Engineering, University of New 

South Wales. 

A.Liu, I.Gorton (1998) PARSE-DAT: An Integrated Environment 

for the Design and Analysis of Dynamic Software Architectures, 

Proceedings International Symposium on Software Engineering for 

Parallel and Distributed Systems, IEEE Computer Society Press, 

California, pp.146-55. 

G.C.Low, G.Rasmussen, B.Henderson-Sellers (1996) Incorporation 

of Distributed Computing Concern into Object-Oriented 

Methodologies, Journal of Object-Oriented Programming, June, 

pp.12-20. 

D.C.Luckham, J.Vera (1995) An Event-Based Architecture 

Definition Language, IEEE Transactions on Software Engineering, 

124 



[Luckham95a] 

[Magee89] 

[Magee94] 

[Magee95] 

[MetaCase96] 

[MetaCase96a] 

[MetaCase96b] 

[MetaCase96c] 

[MetaCase96d] 

Bibliography 

vol.21, no.9, pp.717-34, September. 

D.Luckham, J.J.Kennedy, L.M.Augustin, J.Vera, D.Bryan, W.Mann 

(1995) Specification and Analysis of System Architecture Using 

Rapide, IEEE Transactions on Software Engineering, special issue 

on Software Architecture, vol.24, no.4, pp.336-55, April. 

J.Magee, J.Kramer, and S.Sloman, (1989) Constructing Distributed 

Systems in Conic, IEEE Transaction on Software Engineering, 

vol.15, pp.663-75. 

J.Magee, N.Dulay, J.Kramer (1994) Regis: A Constructive 

Development Environment for Distributed Programs. In 

IEF/IOP/BCS Distributed Systems Engineering, vol.1, no.5, 

pp.304-12, September. 

J.Magee, N.Dulay, S.Eisenbach, J.Kramer (1995) Specifying 

Distributed Software Architectures, Proceedings of 5th European 

Software Engineering Conference (ESEC 95), Sitges, Spain, 

September. 

MetaCase Consulting (1996) MetaEdit+ version 2.5, User's Guide, 

MicroWorks, Finland. 

MetaCase Consulting (1996) MetaEdit+ version 2.5, Method 

Workbench User's Guide, MicroWorks, Finland. 

MetaCase Consulting (1996) MetaEdit+ version 2.5, System 

Administrator's Guide, MicroWorks, Finland. 

MetaCase Consulting (1996) MetaEdit+: A Fully Configurable 

Multi-User and Multi-Tool CASE and CAME Environment, White 

paper, February, Finland. 

MetaCase Consulting (1996) Developing New Methods with the 

125 



[Microsoft98] 

[Milner89] 

[Milner91] 

[Milner92] 

[Milner92a] 

[Mok91] 

[Monroe96] 

[Monroe97] 

[Morgan90] 

[Naim96] 

Bibliography 

MetaEdit Personal Environment, White paper, February, Finland. 

Microsoft ( 1998) Microsoft COM Home - Component Object 

Model, last updated July 2, http://www.rnicrosoft.com/com/ 

RMilner (1989) Communication and Concurrency, Prentice Hall. 

RMilner (1991) The Polyadic tr-Calculus: a Tutorial, Laboratory 

for foundations of Computer Science, Computer Science 

Department, University of Edinburgh. 

RMilner, J.Parrow, D.Walker (1992) A Calculus of Mobile 

Processes - Part I, Information and Computation, Vol.100, pp.1-40. 

RMilner, J.Parrow, D.Walker (1992) A Calculus of Mobile 

Processes - Part II, Information and Computation, Vol.100, pp.41-

77. 

AK.Mok (1991) Towards Mechanisation of Real-Time System 

Design, In Foundations of Real-Time Computing: Formal 

Specifications and Methods, Kluwer Press. 

RT.Monroe (1996) Capturing Design Expertise in Customized 

Software Architecture Design Environments, Proceedings of the 

Second International Software Architecture Workshop, October. 

RT.Monroe, A.Kompanek, RMelton, D.Garlan (1997) 

Architectural Styles, Design Patterns, and Objects, IEEE Software 

January, pp.43-52. 

CC.Morgan (1990) Programming from Specifications, Prentice

Hall. 

G.Naim (1996) Complexity Drives Search for Simple, Fail-safe 

Software, in The Australian Newspaper, Tuesday January 16. 

126 



[Ng95] 

[Nierstrasz92] 

[OMG95] 

[Oreizy98] 

[Ostroff85] 

[Pateman95] 

[Pecheur92] 

[Peled96] 

[Peterson8 l] 

Bibliography 

K.Ng, J.Kramer (1995) Automated Support for Distributed 

Software Design, Proceedings of 7th International Workshop on 

Computer-aided Software Engineering (CASE 95), Toronto, 

Canada, July. 

O.Nierstrasz, S.Gibbs, D.Tsichritzis (1992) Component-Oriented 

Software Development, Communication of ACM, vol.35, no.9. 

Object Management Group ( 1995) The Common Object Request 

Broker: Architecture and Specification, Revision 2.0, OMG. 

P.Oreizy, N.Medvidovic, RN.Taylor (1998) Architecture-Based 

Runtime Software Evolution, Proceedings of the International 

Conference on Software Engineering (ICSE'98). Kyoto, Japan, 

April 19-25. 

J.S.Ostroff, W.M.Wonham (1985) A Temporal Logic Approach to 

Real Time Control, Proceedings of 24th IEEE Conference on 

Decision and Control, Florida, December, pp.656-7. 

S.Pateman (1995) An Investigation of PARSE and DISC 

Integration, Computing Research Centre, Sheffield Hallam 

University, Technical Report Series CRC-95-6. 

C.Pecheur (1992) Using LOTOS for specifying the CHORUS 

distributed operating system kernel, Computer Communications, 

vol.15, no.2, March, pp.93-102. 

D.Peled (1996) Combining Partial Order Reductions With On-The

Fly Model-Checking, Journal of Formal Methods in Systems 

Design, vol.8, no.l, pp.39-64. 

J.L.Peterson (1981) Petri net Theory and the Modeling of Systems, 

Englewood Cliffs, N.J., Prentice-Hall. 

127 



[Petri62] 

[Pfleeger97] 

[Pnueli77] 

[Potter91] 

[Quatrani98] 

[Rashid89] 

[Rasmussen96] 

[Renesse89] 

[Rice94] 

Bibliography 

C.A.Petri (1962) Kommunikation mit Automaten, Schriften des Iim 

2, Institut fur lnstrumentelle Mathematik, Bonn. English translation 

available as Communication with Automata, Technical Report 

RADC-TR-65-377, vol.1 supplement.I, Applied Data Research, 

Princeton, NJ, 1966. 

S.L.Pfleeger, L.Hatton (1997) Investigating the Influence of Formal 

Methods, IEEE Computer, February, pp.33-43. 

A.Pnueli (1977) The Temporal Logic of Programs, Proceedings 18th 

IEEE Symposium on Foundations of Computer Science, Computer 

Society Press, pp.46-57. 

B.Potter, J.Sinclair, D.Till (1991) An Introduction to Formal 

Specification and Z, Prentice-Hall, C.A.R. Hoare Series Editor. 

T.Quatrani (1998) Visual Modeling with Rational Rose and UML, 

Addison-Wesley. 

R.Rashid, R.Baron, A.Forin, D.Golub, M.Jones, D.Julin, D.Orr, 

R.Sanzi (1989) Mach -A Foundation to Open Systems, Proceedings 

of the 2nd Workshop on Workstation Operating Systems, 

September. 

G.Rasmussen, B.Henderson-Sellers, G.C.Low (1996) Extending the 

MOSES Methodology to Distributed Systems, Journal of Object

Oriented Programming, July-August, pp.39-46. 

R.vanRenesse, H.vanStaveren, AS.Tanenbaum (1989) The 

Performance of the Amoeba Distributed Operating System, 

Software - Practice and Experience, vol.19, March, pp.223-34. 

M.D.Rice, S.B.Seidman (1994) A Formal Model for Module 

Interconnection Languages, IEEE Transactions on Software 

128 



[Richter94] 

[Roscoe97] 

[Rozier90] 

[Rumbaugh91] 

[Saiedian96] 

[Sangiorgi96] 

[Saracco89] 

[Shan95] 

[Shaw96] 

[Shlaer93] 

Bibliography 

Engineering, vol.20, no.I, January, pp.88-101. 

J.Richter (1994) Advanced Windows NT, The Developer's Guide to 

the Win32 Application Programming Interface, Microsoft Press. 

AW.Roscoe (1997) The Theory and Practice of Concurrency, 

Prentice-Hall International Series in Computer Science. 

M.Rozier, V.Abrossimov, F.Armand, J.Boule, M.Gien, 

M.Guillemont, F.Herrmann, C.Kaiser, S.Langlois, P.Leonard, 

W.Neuhauser (1990) Overview of the CHORUS Distributed 

Operating System, Chorus Systems. 

J.Rumbaugh, M.Blaha, W.Premerlani, F.Eddy, F.Lorensen (1991) 

Object-Oriented Modeling and Design, Englewood Cliffs NJ: 

Prentice-Hall. 

H.Saiedian (1996) An Invitation to Formal Methods, IEEE 

Computer, April, pp.16-30 

D.Sangiorgi (1996) Bisimulation in Higher-Order Process Calculi, 

Journal of Information and Computation, vo.131, pp.141-78. 

R.Saracco, R.Reed, J,Smith (1989) Telecommunications Systems 

Engineering, North-Holland Elsevier. 

Y-P.Shan, R.Earle, S.McGaughey (1995) Distributed Objects -

Rounding Out the Picture: Objects Across the Client-Server 

Spectrum, Object Technology - A Virtual Roundtable, IEEE 

Computer, October, pp.60. 

M.Shaw, D.Garland (1996) Software Architecture: Perspective on 

an Emerging Discipline, Prentice-Hall, New Jersey. 

S.Shlaer, S.J.Mellor (1993) A deeper look at the transition from 

129 



[Siemen97] 

[Silberchatz91] 

[Spivey88] 

[Spivey92] 

[Spragins92] 

[Stevens98] 

[Stovsky88] 

[Sun98] 

[Taylor96] 

Bibliography 

analysis to design, Journal of Object-Oriented Programming, 

February. 

N.Richter (1997) DCE - Product Families, Siemens Nixdorf 

Informations systeme AG, Last Update: August 12, 1997, 

http://www.sni.de/servers/dce/dce_us/dceprod.htm 

Silberchatz, J.Peterson, P.Galvin (1991) Operating System 

Concepts, 3rd ed., Addison-Wesley. 

J.M.Spivey (1988) Understanding Z, A Specification La,nguage and 

Its Fonnal Semantics, Cambridge UK: Cambridge University Press. 

J.M.Spivey (1992) The Z Notation: A Reference Manual, 2nd 

Edition, Prentice Hall, New York. 

J .D.Spragins, J.L.Hammond, KPawlikowski (1992) 

Telecommunications - Protocols and Design, Addison-Wesley. 

P.Stevens (1998) The Edinburgh Concurrency Workbench, 

http://www.dcs.ed.ac. uk/home/cwb/ 

M.P.Stovsky, B.W.Weide (1988) Building Interprocess 

Communication Models Using STILE, Proceedings 21st Annual 

Hawaii International Conference On Systems Sciences, vol.2, 

pp.639-47. 

Sun Microsystems (1998) Software & Networking - Solaris 

Products, http://www.sun.com/solaris/datasheets/ 

ds-solaris-os.html 

RN.Taylor, N.Medvidovic, KM.Anderson, E.J.Whitehead Jr., 

J.E.Robbins, KA.Nies, P.Oreizy, D.L.Dubrow (1996) A 

Component- and Message-Based Architectural Style for GUI 

Software, IEEE Transactions on Software Engineering, June. 

130 



[Transarc98] 

[Valk77] 

[Valk77a] 

[Valk78] 

[Valk93] 

[Valmari96] 

[Victor94] 

[Wirfs90] 

[Wordsworth96] 

Bibliography 

Transarc (1998) DCE Product Overview - Building Effective 

Distributed Computing Solutions, http://www.transarc.com/dfs/ 

public/www/htdocs/.hosts/externaVProduct/Txseries/DCE/DCEOve 

rview/dceoverview.html 

R.Valk (1977) Self-modifying Nets, Technical report no.34, 

University of Hamburg, Germany, July. 

R.Valk (1997) Generalizations of Petri Nets. 

R.Valk (1978) On The Computational Power Of Extended Petri 

Nets, Proceedings of the 7th Symposium on Mathematical 

Foundations of Computer Science, LNCS, vol.64, Berlin: Springer

Verlag, September, pp.526-35. 

R.Valk (1993) Extending S-invariants for Coloured and 

Selfmodifying Nets, Technical report no.165, University of 

Hamburg, Germany, December. 

A.Valmari (1996) Verification Algorithm Research Group at 

Tampere University of Technology, Tietojenkasittelytiede, no.8, pp. 

25-38. Also available at http://www.cs.tut.fi/ohjN ARG 

NARG.html 

B.Victor (1994) A Verification Tool for the Polyadic n-Calculus, 

Licentiate Thesis, Technical report DoCS 94/50, Dept. of Computer 

Systems, Uppsala University. May be obtained via 

ftp://ftp.docs.uu.se/pub/mwb/ 

R.J.Wirfs-Brock, B.Wilkerson, L.Wiener (1990) Designing Object

Oriented Software, Prentice Hall. 

J.B.Wordsworth (1996) Software Engineering with B: An 

Introduction, Addison-Wesley. 

131 



Bibliography 

[Y ourdon79] E.Yourdon, L.Constantine (1979) Structured Design, Prentice Hall. 

[Y ourdon89] E. Yourdon (1989) Modem Structured Analysis, Prentice Hall. 

132 


	Title Page : Dynamic Distributed Systems Design: An Architectural Design and Verification Approach
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables

	1. Introduction
	2. Review
	3. Dynamic PARSE Design Methodology
	4. Dynamic PARSE Analysis/Verification Methodology
	5. Dynamic PARSE Design Analysis Tool
	6. Case Studies
	7. Conclusions
	Appendix
	Bibliography

