
Dynamic distributed systems design : an architectural design
and verification approach

Author:
Liu, Anna

Publication Date:
1998

DOI:
https://doi.org/10.26190/unsworks/8984

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/63739 in https://
unsworks.unsw.edu.au on 2024-04-19

http://dx.doi.org/https://doi.org/10.26190/unsworks/8984
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/63739
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Dynamic Distributed Systems Design:
An Architectural Design and Verification

Approach

by
Anna Liu

Thesis submitted in fulfillment of the requirements for the degree of
Doctor of Philosophy

at the
School of Computer Science and Engineering of the

University of New South Wales
Sydney, NSW 2052, Australia

1998

Dynamic Distributed Systems Design

Abstract

With the availability of fast network technology and powerful desktop computers, there is

an increasing demand for the construction of reliable software that can exploit the parallel

processing power of a network of computers. These typical distributed applications

include those commonly found in telecommunication and banking industries. To support

the simpler development of these complex software systems, robust middleware

technologies such as CORBA, DCE and ActiveX/COM are becoming widely deployed.

Middleware provides a higher level programming interface for distributed software

engineers, as the low-level networking details have been hidden.

However, writing distributed software is still a complex task. Although the low-level

distribution issues can be mostly ignored with the assistance of middleware, fundamental

distributed system issues such as concurrency, synchronisation, dynamic process creation

and deletion and re-configurable communication structures still need to be carefully

considered.

This thesis presents a novel software architecture design and verification methodology.

Architects employ a pragmatic, graphical design method called Dynamic PARSE

(PARSE-D) to design the software architecture. At the same time, they capture the

concurrent and dynamic features of the system. Such dynamic features include the

creation and deletion of processes and re-configurable communication links. Lastly, the

correctness of the design can be verified, and possible design faults may be detected by

using an automatic design analysis and verification tool called PARSE-DAT.

Dynamic Distributed Systems Design

Acknowledgments

Three years is not a short time. There have been many people that made this possible, and

truly deserve my utmost gratitude.

Firstly, my supervisor Dr. Ian Gorton, for his guidance throughout the past three years.

He has encouraged me to explore different avenues, as well as pointing out the way at

confusing times. He has been a great inspiration in many ways, a great mentor and a great

friend.

Secondly, my co-supervisor Dr. John Zic, for his assistance in the area of concurrency

formalisms and his constant encouragement and support.

Thirdly, Dr. Innes Jelly from Sheffield Hallam University, for her guidance and feedback

on my work throughout the duration of my thesis work.

Then-Calculus discussion group at the University of New South Wales and Macquarie

University has been a fruitful experience, thanks to its participants: Dr. John Zic, Dr.

John Potter, Dr. Arcot Sowmya, Dr. Ken Robinson, Dr. Axel Wabenhorst, Ms. Winnie

Qun, Mr. Xiaogang Zhang, and Mr. Partha Roop.

Many other computer scientists also provided useful feedback at various stages of this

work: Dr. Jonathan Gray, Dr. Peter Croll, Dr. Carl Birkinshaw, Dr. Stefano Russo, Mr

Alan Kinnersly, and Mr Patrick Jordan for proofreading the hardcopy.

Many Ph.D. students and research scientists at UNSW shared their valuable personal

research experiences as Ph.D. candidates and provided mutual encouragement. Thanks to

Mr. Swee Yew Choe, Dr. Ricky Chan, Dr. Alvin Chan, Mr. Joseph Kam, Dr. Herbert

Chan, Dr. Jinsong Ouyoung, Mr. Tommy Cheung, Mr. Lei Hu and Mr. Lei Miao.

ii

Dynamic Distributed Systems Design

Also many thanks to Dr. Bjorn Victor for providing the model checking tool Mobility

Workbench.

Lastly, but not the least, thanks to my parents and close friends who provided the vital

support behind the scenes. It is their sacrifices that made this thesis possible.

iii

Dynamic Distributed Systems Design

Contents

ABSTRACT ... 1

ACKNOWLEDGMENTS ... II

CONTENTS .. IV

LIST OF FIGURES .. VI

LIST OF TABLES ... VII

1. INTRODUCTION .. 1

1.1 MOTIVATION AND GoALS .. 1

1.1.1 Why Build Distributed Software .. 1
1.1.2 Difficulties of Writing Distributed Software .. 2
1.1.3 Attempts to Overcome These Difficulties ... 4
1.1.4 Concluding Remark ... 5

1.2 CONTRIBUTION .. 5
1.3 THESIS OUTLINE .. 6

2. REVIEW ... 8

2.1 SOFIW ARE ARCHITECTURE METHODOLOGIES .. 8
2.1. 1 Methodologies for Dynamic Software Architecture .. 11
2.1.2 Formal Description Techniques for Software Architectures ... 12
2.1.3 Architectural Design Using Object-Oriented Methodologies ... 13
2.1.4 Comparison ... 16

2.2 FORMAL METHODS FOR DESIGN VERIFICATION ... 17
2.2.1 Set-theoretic Approaches .. 19
2.2.2 Predicate Logic Based Approaches .. 21
2.2.3 Process Algebraic Approaches ... 22
2.2.4 State Automata Based Approaches ... 24
2.2.5 Discussion ... 28

2.3 DISTRIBUTED COMPUTING ENVIRONMENTS AND LANGUAGE SUPPORT ... 28
2.3.1 Middleware ... 29
2.3.2 Distributed languages ... 32

2.4 CONCLUSION ... 32

3. DYNAMIC PARSE DESIGN METHODOLOGY .. 34

3 .1 THE PARSE METHODOLOGY AND DESIGN NOTATION .. 34
3.2 DYNAMIC PARSE DESIGN NOTATION .. 37
3.3 THE DYNAMIC PARSE DESIGN METHODOLOGY .. 43

3.3.1 Sample Design - A Lift Controller ... 43
3.4 CONCLUSION ... 49

4. DYNAMIC PARSE ANALYSIS/VERIFICATION METHODOLOGY 50

iv

Dynamic Distributed Systems Design

4.1 INTRODUCTION ... 50
4.2 TRANSLATION SCHEME ... 51

4.2.2 Translating Dynamic PARSE Designs to Petri Nets ... 51

4.2.2 Translating Dynamic PARSE Designs to ~calculus .. 57

4.2.3 Comparison between the ~Calculus and Petri Nets Approach ... 69

4.3 THE DYNAMIC PARSE DESIGN ANALYSIS AND VERIFICATION PROCESS 72
4.4 CONCLUSION ... 74

5. DYNAMIC PARSE DESIGN ANALYSIS TOOL .. 76

5.1 INTRODUCTION ... 76

5.2 THE META-CASE APPROACH ... 78
5.2.1 Meta-Edit+ Overview .. 78
5.2.2 The GOPRR Meta-Model .. 80
5.2.3 Output Specification Tool ... 81

5 .3 PARSE-DAT DESIGN ENVIRONMENT (P ARSE-DT) ... 82
5.3.1 lmplementation .. 82
5.3.2 Using PARSE-DT .. 84

5.4 THE DESIGN ANALYSIS ENVIRONMENT (PARSE-AT) .. 86
5.4.1 lmplementation .. 86
5.4.2 External Design Analysis Tool: Mobility Workbench ... 86
5.4.3 Using PARSE-AT .. 87

5.5 CONCLUSION ... 89

6. CASE STUDIES ... 91

6.1 A CLIENT-SERVER SYSTEM .. 91
6.1.1 Dynamic PARSE Design ... 91
6.1.2 Dynamic PARSE Analysis and Verification .. 93

6.2 PRIMES SIEVE OF ERASTOSTHENES ... 94
6.2.1 Dynamic PARSE Design ... 94
6.2.2 Dynamic PARSE Analysis and Verification .. 97

6.3 HTPNET .. 98
6.3.1 Dynamic PARSE Design ... 98
6.3.2 Dynamic PARSE Analysis and Verification .. 101

6.4 SEP-TOOL ... 103
6.4.1 Dynamic PARSE Design ... 103
6.4.2 Dynamic PARSE Analysis and Verification .. 106

6.5 CONCLUSION ... 107

7. CONCLUSIONS ... 108

APPENDIX ... 111

A. Sample Mobility Workbench Output .. 111

BIBLIOGRAPHY .. 114

V

Dynamic Distributed Systems Design

List of Figures

FIGURE 2.1. READER/WRITER PROBLEM WITH BOUNDED NUMBER OF READERS 25

FIGURE 2.2. SELF-MODIFYING ARC ... 26

FIGURE 2.3. READER/WRITE PROBLEM REVISITED - SELF MODIFYING NET SOLUTION 27

FIGURE 2.4. LAYERS OF SUPPORT FOR DISTRIBUTED SOFfW ARE .. 29

FIGURE 3.1. SUMMARY OF THE PARSE PROCESS GRAPH NOTATION ... 35

FIGURE 3.2. SUMMARY OF EXTENDED-PARSE PROCESS GRAPH NOTATION 38

FIGURE 3.3. IMPLICIT DYNAMIC BEHAVIOUR OF COMMUNICATION PATHS ... 39

FIGURE 3.4. REPLICATION OF DYNAMIC COMMUNICATION PA TH .. 40

FIGURE 3.5. PA TH RESTRICTION IN DYNAMIC PARSE .. 40

FIGURE 3.6. TRANSACTIONAL COMMUNICATION PA TH EXAMPLE ... 41

FIGURE 3.7. DYNAMIC UPDATES TO DATA SERVER REQUIRING NON-DETERMINISTIC CONSTRUCTOR 42

FIGURE 3.10. TOP LEVEL PROCESS GRAPH OF THE LIFT PROBLEM' .. 44

FIGURE 3.11. DECOMPOSITION OF THE LIFTCONTROLLER'PROCESS ... 45

FIGURE 3.12. DECOMPOSITION OF 'OUTSIDE REQUEST FILTER' AND REQUESTS INTERPRETER' 47

FIGURE 4.1. PETRI NETS MODEL: FOUR COMMUNICATION TYPES .. 52

FIGURE 4.2. PETRI NETS MODEL: PATH CONSTRUCTORS .. 53

FIGURE 4.3. SELF-MODIFYING NETS MODEL: CREATING WORKER PROCESSES 54

FIGURE 4.4. SELF-MODIFYING NETS MODEL: SIEVE OF ERASTOSTHENES PROBLEM 55

FIGURE4.5. BI-DIRECTIONAL COMMUNICATION ... 59

FIGURE 4.6. BROADCAST COMMUNICATION .. 59

FIGURE 4. 7. NON-DETERMINISTIC INPUT ORDERING ... 60

FIGURE 4.8. CONCURRENT INPUT ORDERING .. 61

FIGURE 4.9. DETERMINISTIC INPUT HANDLING ... 62

FIGURE 4.10. A SIMPLE HIERARCHICALLY CONSTRUCTED PARSE DESIGN 63

FIGURE 4.11. DYNAMIC PROCESS CREATION .. 64

FIGURE 4.12. DYNAMIC COMMUNICATION STRUCTURE EXAMPLE .. 65

FIGURE 4.13. THE DYNAMIC PARSE DESIGN ANALYSIS/VERIFICATION PROCESS FOR SINGLE DESIGNS73

FIGURE 4.14. THE DYNAMIC PARSE DESIGN ANALYSIS/VERIFICATION PROCESS FOR MULTIPLE

DESIGN ALTERNATIVES ... _ .. 74

FIGURE5.l. DYNAMIC PARSE DESIGN AND VERIFICATION METHODOLOGY 78

FIGURE 5.2. GOPRR MODEL OF DYNAMIC PARSE .. 83

FIGURE 5 .3. P ARSE-DT SCREEN CAPTURE .. 85

FIGURE 5.4. 1t-CALCULUS REPORT GENERATOR ... 86

FIGURE 5.5. PARSE-AT SCREEN CAPTURE .. 88

FIGURE 6.1. TOP LEVEL PROCESS GRAPH OF A CLIENT-SERVER SYSTEM ... 92

FIGURE 6.2. DECOMPOSITION OF THE SERVER PROCESS .. 92

FIGURE 6.3. DYNAMIC PARSE DESIGN OF 'PRIMES SIEVE OFERASTOSTHENES' 94

FIGURE 6.4. PROCESS DISTRIBUTION ON A MULTI-PROCESSOR MACHINE ... 96

FIGURE6.5. TOP LEVEL PARSE DESIGN .. 99

FIGURE 6.6. RECEIVE OBJECT DECOMPOSITION ... 100

FIGURE6.7. DATAPROC OBJECTDECOMPOSITION .. 101

FIGURE 6.8. GWSE ARCHITECTURE [GoRTON97] .. 104

FIGURE 6.9. DYNAMIC PARSE DESIGN FOR SEP-TOOL ... 105

vi

Dynamic Distributed Systems Design

List of Tables

TABLE 4.1. SUMMARY MAPPING OF P ARSE-D COMPONENTS To SELF-MODIFYING NETS 56
TABLE 4.2. SUMMARY MAPPING OF P ARSE-D COMPONENTS TO 1t-CALCULUS EXPRESSIONS 68
TABLE 5 .1. MET AEDIT+ TOOLS .. 79

vii

Introduction

1. Introduction

1.1 Motivation and Goals

1.1.1 Why Build Distributed Software

There are many reasons for developing distributed software.

System entities are often identified as being distributed at the user analysis level (or in the

problem domain). For example, in a banking application, typical entities include

customers, transactions, tellers, and data stores. These entities are usually located at

different places. In this situation, distributed applications model the problem domain

naturally.

Collaborative work environment is an application area where it is natural to model both

the problem domain and solution domain in a distributed manner. In this situation, where

users are located at different places, accessing various resources either locally or

remotely, it is natural to have an implementation that reflects this distributed nature, and

resources such as data stores can be located, duplicated, or migrated closer to the client

application to increase system efficiency. This is only possible with a distributed

implementation.

Hence, and perhaps more importantly, distributed software exploits the power of

networks of computing resources. These distributed applications use spare resources

located at different locations within the network [Gorton95a].

Introduction

Second, with the availability of symmetric multiprocessing machines in the desktop

computer market, applications can be developed to utilise this increased processing

power. Applications built using a multithreaded approach will benefit from improved

performance, lower cost, and higher reliability.

Lastly, distributed teams developing different software components is an effective and

efficient way of developing large systems. As long as the interface between the

distributed components is well-defined, engineers can work independently, possibly at

different physical locations and in different time-zones. Various system components can

be implemented by different experts from different areas, and engineers in different teams

need only to focus on the implementation of their allocated component.

1.1.2 Difficulties of Writing Distributed Software

Despite all the benefits of constructing distributed software, there are many difficulties

involved in this process. In addition to the usual difficulties in writing sequential

programs, other problems must be dealt with.

Implementing distributed systems requires low-level communication support. The inter

process communication across a network is complex. If the programmer has to manage

all the detailed networking operations while programming a high-level application, errors

are likely to be introduced [Kramer94]. This problem is further complicated if the

underlying network is heterogeneous.

It is also essential that large, distributed systems are constructed using sound software

engineering practices that promote scaleability and modularity, maximise reusability and

attempt to guarantee reliability and correctness to some degree. Ideally, such a software

development methodology for distributed systems should be easy for software engineers

to learn and use; it should provide formal verification to validate the software

correctness; and facilitate automatic program generation from the system design

[Gorton97a].

Specifically, one major difficulty relating to the lack of software engineering

methodology for distributed systems is inadequacy of design notations. There is no

2

Introduction

appropriate design notation that caters for evolving systems with dynamic features. Such

features include dynamic process creation and deletion, and communication

reconfiguration. However, the architecture of many existing systems change during

execution - for example, systems built using CORBA and OLE. These dynamic

properties which are prevalent in many distributed systems have a large impact on the

correctness of the software under construction [Liu95].

Secondly, existing design methodologies (e.g. object-oriented design methods) do not

place enough importance on the various concurrency issues [Low96]. Such issues include

synchronization and global controls. Phenomena such as deadlocks, livelocks and race

conditions need to be carefully considered when designing a distributed system.

In close relation to the previous point regarding concurrency issues, there is a lack of

analysis and verification tools for distributed software. The analysis of possible

undesirable properties such as deadlocks, livelocks, and race conditions, the verification

of specification/design conformance, and performance prediction are important issues to

consider. However, these analysis tasks are difficult, and thus the development of support

tools for distributed software analysis is important.

Further on the issue of tool support for design analysis, the state explosion phenomenon

is one problem associated with model checking tools. The state explosion phenomenon

occurs when the search space increases exponentially [Peterson91]. Many heuristics such

as semantic minimization [Elseaidy96], localization reduction [Kurshan94] and the use of

partial order information [Peled96] are promising approaches that alleviate the state

explosion problem.

It is important to bridge the gap between these formal approaches and practicing software

engineers. The incorporation of formal methods into a software engineering process is

just as important as the development of the formal methods and tools.

3

Introduction

1.1.3 Attempts to Overcome These Difficulties

The various attempts to overcome the above mentioned difficulties are discussed here.

There are various distributed operating systems that aim to manage distributed resources

at the operating systems level. Such distributed operating systems include Mach

[Rashid89] and Chorus [Rozier90]. Common desktop operating systems such as

Windows NT [Richter94] [Custer93] and Solaris [Sun98] provide a rich set of facilities to

enable applications to exploit multiple processors. However, the application

programming interface support for inter-process communication across a network is

minimal and low-level (and hence error prone).

The emergmg middleware technology provides an abstraction for the underlying

communication required by distributed components, simplifying the implementation

process. Middleware has thus created a strong interest in the software community in

building distributed systems. Available middleware products include the Object

Management Group's CORBA [OMG95], and Microsoft's DCOM [Microsoft98]. These

systems enable the construction of extensible software with reusable, distributed

components.

The field of software architecture aims to provide support for the design of the

architecture of large systems, and advocates the importance of not only data structures

and functionality, but also inter-component communication synchronisation issues.

Recent work in this area has demonstrated some of the failings of widely used

development methodologies for distributed systems [Shaw96]. For example, problems

have been highlighted with object-oriented design methods for distributed system design,

despite the fact that the distributed software engineer faces various complex issues

relating to the partitioning and distribution of software components [Magee95], existing

object-oriented approaches do not have provisions for architectural issues. There is still

much work to be done in the software architecture area, especially in the area of dynamic

architectures.

4

Introduction

A well established research community exists in the area of concurrency formalism. Such

work include CSP [Hoare85], CCS [Milner89], n-Calculus [Milner91] and Petri Nets

[Peterson81]. These formalisms were designed to assist in the mode ling of concurrent

systems, and through using mathematically sound foundations, can be used to perform

system analysis and verification against some particular properties/criteria. Some

examples here include observational equivalence check using CCS [Milner80] and

reachability analysis using Petri Nets [Peterson81]. However, these formalisms are

complex and difficult for software engineers to learn and use [Saiedian96]. In addition,

the use of such formalisms for a large-scale software system is expensive, yet at the same

time, does not guarantee any extra correctness/performance benefits, over conventional

testing methods, largely due to the lack of tool support and non-scaleable techniques

[Holloway96].

1.1.4 Concluding Remark

What is lacking in the field of distributed software engineering is an overall software

engineering method that supports the modeling of dynamic software architecture at both

the analysis and design level, and also aids the effective employment of formalisms for

certain critical sections of the system. This methodology should be supported by a user

friendly CASE tool which facilitates the editing of the software architecture model,

allows multiple views of the system model, supports navigation, and automates design

analysis and verification.

1.2 Contribution

This thesis presents a software architecture design methodology for dynamic distributed

systems called Dynamic PARSE (PARSE-D). PARSE-D provides an explicit

representation of the parallelism and distribution in a system via a well defined set of

model elements. It also enables the designer to verify their design at an early stage of the

engineering process, hence reducing resource overheads incurred in discovering

deadlocks at the later testing stage. There is also a supporting tool-set called PARSE

DAT that aids design construction and automates formal analysis and verification.

5

Introduction

The PARSE-D work extends the PARSE project [Gorton95] to cater for the design of

loosely coupled distributed applications. So far, the focus of the work with PARSE has

been upon tightly coupled, high-performance parallel software systems which are

implemented in parallel programming languages such as Occam, Ada or Parallel C.

PARSE-D deals with more coarse grain distributed systems typically implemented with

conventional programming languages such as C, C++, or Java, with concurrency and

inter-process communication facilities provided either by an underlying distributed

operating system, such as Windows NT or UNIX, or middleware such as CORBA, Active

X/DCOM, and DCE.

The following is a summary of the contributions made by this thesis.

• The extension to an architecture description language called PARSE, in order to

incorporate dynamic features. The resultant set of notations is known as the Dynamic

PARSE Process Graph Design Notation, which has the extra features of creation and

deletion of process components, and dynamic communication reconfiguration.

• The definition of formal semantics of the Dynamic PARSE Process Graph Design

Notation. The two chosen formalisms are 1t-Calculus [Milner91] and a variant of

Petri-Net [Peterson81] called Self-Modifying Nets [Valk77].

• A distributed software engineering methodology (PARSE-D) supporting design using

Dynamic PARSE Process Graph Notation and design analysis/verification utilising 7t

Calculus.

• An integrated tool-set environment called PARSE-DAT for supporting the PARSE-D

software engineering methodology. The two major components are the CASE tool

PARSE-OT which enables the construction of Dynamic PARSE designs; and an

automated analysis/verification tool called PARSE-AT.

1.3 Thesis outline

• Chapter 2 presents a literature review. This focuses on existing software architecture

design methods, and also discusses current distributed computing environments and

concurrency formalisms.

• Chapter 3 presents the Dynamic PARSE Design methodology.

• Chapter 4 presents the Dynamic PARSE Verification Methodology.

6

Introduction

• Chapter 5 discusses the implementation of the graphical editing environment PARSE

DT, and the automated analysis/verification environment PARSE-AT.

• Chapter 6 presents a number of case studies. These case studies range from the

simple client-server architecture, pipeline architecture, to more complex applications

of a communication protocol and a collaborative work environment.

• Chapter 7 concludes this thesis, and presents possible directions for further work.

7

Review

2. Review

This chapter presents a literature review of existing work on supports for the engineering

of distributed systems. The three major areas of work to be covered are:

• software architecture methodologies

• formal methods for architectural design verification

• distributed computing environments

Each of the above research areas will be examined in tum, and major projects in each

area identified and evaluated.

2.1 Software Architecture Methodologies

Research in the area of software architecture aims to provide support for the design of the

architecture of large systems [Shaw96]. Typically, these systems consist of various

software components, and span a network of computing resources. The design of

software architecture is thus a level of design concerned with the specification of the

overall system structure, where these structural issues include:

• general component organization,

• global control structure,

• protocols for communication,

• synchronization,

• data access,

• assignment of functionality to design elements,

• physical distribution,

• composition of design elements,

• scaling and performance,

• selection among design alternatives.

8

Review

The low level implementation issues such as algorithms and data structures are not

considered in the software architecture design, and are delayed till a later stage of the

engineering process [Shaw96].

At the centre of software architecture research is the development of architectural

definition languages (ADLs). These are well-defined languages that facilitate the

description of an architecture's components and connections. The languages are usually

graphical, and provide some form of box and line syntax for specifying components and

hooking them together. These ADLs also have been formerly known as Module

Interconnection Languages MILs [Rice94].

There are a number of software architecture methodologies, each at varying degrees of

maturity. Most of these software architecture methodologies have a basis in graphical

ADLs: Darwin [Magee95], LOTOS [Leduc94], SDL [Faergemand91] and PARSE

[Gorton95], while others provide textual ADLs: C2 [Taylor96] and Rapide [Luckham95],

and some also have formal foundations based on well defined mathematical constructs:

SDL, LOTOS and Estelle [Diaz89]. Similarly, the development processes associated with

the methodologies are at varying levels of detail, some are rather primitive and cover no

more than a simple instruction on how to use the corresponding ADLs; while others are

much more refined and powerful, and may incorporate external formal analysis methods

(e.g. UniCon [Shaw96], PARSE). Various supporting tools have also been built, such as

the Software Architect's Assistant [Ng95] for Darwin and Aesop [Garland94] [Monroe96]

for the ABLE project. These tools typically provide a visual rapid prototyping and

modeling environment. Some provide simulation of events: C2, some provide code

generation: Occam generator for PARSE [Gorton96b], and some allow for external

design analysis: UniCon or performance evaluation: HL for PARSE [Hu97].

ABLE

Carnegie Mellon University's ABLE project is concerned with exploring and developing

the concept of Architectural Style, and building tools that practicing software architects

might find useful [Monroe96][Garland94]. The tool development effort has focused on

the Aesop system, a toolkit for rapidly producing software architecture design and

analysis environments that are customized to support various specific architectural styles.

Aesop has three main features:

9

Review

• a generic object model for representing architectural designs.

• the characterisation of architectural styles as specialisation of this object model

(through sub-typing).

• a toolkit for creating an open architectural design environment from a description of a

specific architectural style.

The architectural styles mentioned here include the commonly found architectural

patterns and idioms such as client-server, pipeline and filter, layered systems, and

blackboards. Additional examples include localised ones such as model-view-controller

and various object-oriented patterns [Gamma95], as well as various reference models for

communication such as CORBA [OMG95] and OSI [Spragins92], and user-interface

frameworks.

UniCon

UniCon (Universal Connector Language) is an ADL providing representations for

components and connectors, abstractions and encapsulation, types and type checking. It

can also describe a system which involves coordinating real-time tasks. An example is a

system with two 'schedulable' tasks that interact through remote procedure calls. UniCon

researchers employ rate-monotonic analysis (RMA) techniques to analyse the real-time

properties of the system. RMA originates from research in scheduling algorithms for real

time systems by Liu and Layland [Liu73] and has been extended and documented by the

Software Engineering Institute at Carnegie Mellon [Klein93]. Systems scheduled with

rate-monotonic scheduling (RMS) algorithm could be formally analysed to determine

whether meeting real-time deadlines could be guaranteed.

Rapide

The Rapide project from Stanford Univerisity focuses on building large-scale, distributed

multi-language systems. It is a concurrent event-based simulation language for defining

and simulating the behaviour of system architectures [Luckham95]. The system is based

on an executable ADL (EADL), and a toolset is available for supporting the use of this

EADL, thus providing for the analysis of system architectures. Rapide adopts an event

based execution model of a distributed, time-sensitive system: "the timed Poset model".

Partially Ordered Sets of Events (Posets) provide a formal basis for constructing early life

10

Review

cycle prototyping tools, and later life cycle tools for correctness and performance analysis

of distributed systems.

PARSE

The aim of PARSE (P ARallel Software Engineering) is the development of

techniques and tools to support the production of closely coupled parallel systems

[Gorton94][Gorton95]. It is a multi-stage software engineering methodology, and all

of the various software engineering stages are based on the PARSE process graph

design notations [Gorton96].

The PARSE process graph notation is an object-based design notation, where system

components are decomposed into different types of process objects

[Gray94][Gorton93]. The interactions between these objects are based on message

passing, and the various modes of communication can be specified via the notations

available.

This methodology has the following features:

• Systems are composed using a graphical design notation, which enables process

structures and their precise interactions to be hierarchically constructed.

• PARSE designs are language and architecture independent.

• PARSE designs can be transformed into formalisms such as Petri nets or CSP to

provide for design verification [Gorton96a] [Jelly95].

2.1.1 Methodologies for Dynamic Software Architecture

The primary work of the various software architecture research groups presented so far

has revolved around Architecture Description Languages (ADLs). However, most of

these approaches are limited to the specification of static systems. These ADLs cannot

adequately handle the design of concurrent systems which incorporate the dynamic

creation and deletion of processes and of communication paths [Liu98]. Similarly, the

dynamic reconfiguration of systems can not easily be captured in the design. In many

distributed systems such as retail banking systems, factory automation, and

telecommunication, the provision of these facilities is important.

11

Review

One exception is Darwin [Magee95] which allows the specification of runtime

architectural changes. The Imperial College's work on Darwin focuses on the separation

of program structure and algorithm behaviour. Darwin is also a configuration language

for the Regis [Magee94] distributed programming environment. This group is also

currently investigating the use of labeled transition systems for reasoning about the

behaviour of Darwin-structured programs [Cheung94]. The Software Architect's

Assistant [Ng95] is a CASE tool for the Regis programming environment which does not

yet support automated formal analysis and verification of design.

Another research group that examines dynamic systems issues is the University of

California, Irvine. This project experiments with dynamic architectures by building a

prototype tool that supports the construction and run-time modification of software

architectures in an event-based style called C2 [Taylor96] where components

communicate via connectors. This approach provides an imperative language for

modifying architectures [Oreizy98] and the prototype of the supporting tool ArchStudio

provides interactive tools for software architects to describe architecture and architectural

modifications. Then, an 'Extension wizard' enacts the runtime modifications. This tool

does not provide for the complete analysis and verification of the dynamic software

architecture using an explicit formalism, and is only limited to checking invariants from

the C2-style rules. This tool also restricts architects to using a specific language: the

J ava-C2 class framework.

2.1.2 Formal Description Techniques for Software Architectures

Estelle [Diaz89], LOTOS [Leduc94] [Pecheur92] and SDL [Faergemand91] are three

formal description techniques (FDTs) that first came out in the late 80's and conform to

ISO standards. Both Estelle and LOTOS were developed within ISO for the specification

of OSI protocols and services [Ansart89]. However, the typical modeling elements such

as modules and interaction points of Estelle and LOTOS means they are typical ADLs

and can be used in all software architecture modeling. Estelle supports hierarchical

structuring of system components, and has supporting tools which include a syntax

directed editor, symbolic debugger and code generators for C and ML. There are also

12

Review

attempts at LOTOS tools including the European/Canadian LOTOS Protocol Tool Set

(Eucalyptus) project [Eucalyptus97].

SDL (Specification and Description Language), recommended by CCITT for describing

functions of telecommunications systems, is based on experience of describing systems as

communicating state machines. Since 1976, SDL has evolved from an informal drawing

technique to a formal description technique, and several commercial tools exist [e.g.

Faergemand91] which generate code directly from SDL descriptions. SDL has hence

received wide use especially in the telecommunication sector [Belina91] [Saracco89].

Looking very similar to a flow chart, SDL has provision for the specification of input and

output between different processes. Recently, SDL has also been extended to incorporate

object-oriented features [Faergemand94] [Faergemand93] such as process typing, process

instance sets, and inheritance. The consideration for dynamic process creation and

termination is limited to the description only, no validation process has yet been

supported.

Rice and Seidman presented a formal model for Module Interconnection Languages

(MILs) [Rice94]. This model formalises the design of hierarchical module structures. The

model is specified by a collection of Z schema type definitions that is invariant across all

applications. Any particular application then is described by specifying the values of

generic parameters and adding application-specific declarations and constraints to the

schema definitions. Rice and Seidman have applied their technique to describe the ADLs

CONIC [Magee89] and STILE [Stovsky88], where in these ADLs (or MILs), a module

interface is described by a collection of named and typed channels. To describe these two

ADLs, appropriate values for the general parameters of the formal model is provided,

such as those representing notions of interface ports and the types of ports.

2.1.3 Architectural Design Using Object-Oriented Methodologies

In additions to the architectural description languages, distributed software architectures

are also commonly specified using various object-oriented methodologies [Low96]. Each

of these methods has its own notation (symbols for communicating object-oriented

13

Review

models), process (describing activities to perform in different stages of the development),

and tools (the CASE tools that support the notation and the process).

However, there are shortcomings in employing existing object-oriented modeling

notations for architectural descriptions of distributed systems [Rasmussen96]. Primarily,

existing object-oriented modeling elements are not rich enough to express various

architectural features such as synchronisation, inter-module communication types, global

control structures and system component reconfiguration [Kramer94]. Further, there has

been little formal semantics work carried out in the area of object-oriented modeling.

These object-oriented modeling elements are largely informal graphical modeling

components, and as a result, there is little support in the formal design analysis and

verification area [Harel97].

The Booch Method

Booch [Booch94] defined the notion that a system is analysed as a number of views,

where each view is described by a number of model diagrams. The Booch notation is

very extensive, and some symbols (such as the cloud for object) are hard to draw. The

method also contained a process by which the system was analysed from both a macro

and micro development view, and was based on a highly incremental and iterative

process.

OMT

The Object Modeling Technique (OMT) is a method developed by James Rumbaugh

[Rumbaugh91]. A system is described by a number of models: the object model, the

dynamic model, the functional model, and the use-case model, which complement each

other to give the complete description of the system. The OMT method also contained a

lot of practical description on how to create a system design, taking into account

concurrency and mapping to relational database.

OOSE/Objectory

The OOSE and Objectory methods both build on the views of Ivar Jacobson

[Jacobson92]. The OOSE method is Jacobson's version of an object-oriented method,

and the Objectory method is used for building a number of systems, as diverse as

telecommunication systems for Ericsson and financial systems for Wall street companies.

14

Review

Both methods are based on use cases, which define the initial requirements on the system

as seen by an external actor. The use cases are then implemented in all phases of the

development, all the way through to system testing, where they are used to verify the

system [Jacobson92a]. Objectory has also been adapted for business engineering, where

the ideas are used to model and improve business processes.

Fusion

The Fusion method from Hewlett-Packard is a second generation method because it is

based on the experiences of many of the initial methods [Coleman94]. Fusion has

enhanced a number of important previous ideas, including techniques for the

specification of operations and interaction between objects. The method has a large

number of model diagrams.

OOA/00D

The Coad/Yourdon method also known as OOA/OOD [Coad91] [Coad9la] was one of

the first methods for object-oriented analysis and design. The method was rather simple

and easy to learn, and as such, it worked well to introduce object-oriented concepts to

novices.

UML

The Unified Modeling Language (UML) is a joint effort from Booch, Rumbaugh and

Jacobson. Aiming to be a standard object-oriented notation and process, it is based

primarily on the Booch, OMT and OOSE methods. It also includes concepts from several

other methods. For example, the work of Harel on Statecharts [Harel88] has been adopted

in the UML state diagrams; parts of the Fusion notation for numbering operations has

been included in the collaboration diagrams; the work of Gamma-Helm-Johnson

Vlissides on patterns [Gamma95] and how to document them has inspired details of class

diagrams; the concept of Responsibilities came from Wirfs-Brock [Wirfs90]; and Object

life cycles from Shlaer-Mellor [Shlaer93].

UML provides model elements from which various diagrams are built from. These

different diagrams then present various different views of the system, not unlike the

Booch approach. The modeling elements include classes, objects, stereotypes,

adornments, and so on. The various diagrams available for modeling are:

15

Review

• use case diagrams (functionality of system as perceived by external actor);

• class diagrams (software structuring);

• collaboration diagrams and sequence diagrams (class interactions);

• component diagrams,

• deployment diagrams.

The combination of these diagrams thus presents the system in use case, functional,

logical, component and deployment views.

Despite the multiple views UML supports, no one single diagram can describe software

architecture. To describe software architecture fully, model elements from both class

diagrams, deployment diagrams and often more must be employed. For example, many

concurrency and synchronization features are not explicitly expressed in any of the UML

diagrams.

Various tool supports are available for these object-oriented approaches. Some sample

object-oriented CASE tools include Rational Rose [Quatrani98], GDPro [AST98],

Software Through Pictures from Aonix [Aonix98], Class Designer from Cayenne

Software [Cayenne98] and many more. These CASE tools, depending on complexity

(level of sophistication) may support the following:

• visual editor for models

• provide navigation between different views/diagrams

• model syntax checking (consistency checks between different diagrams)

• code generation

• reverse engineering

However, since most of these graphical notations are informal, there has been no

adequate support for automated design analysis nor formal model validation.

2.1.4 Comparison

It should be noted that the distinction between methods and tools is an important one.

Tools should support methods, and tools should not be built without any real method to

16

Review

support. The accompanying methodology describing the process of how to use design

notations and associated tools, is just as important as the notation and tools [Jelly96a].

Architecture definition languages should provide more ways of describing software

architecture than just the simple box and line drawings. Several important issues such as:

the inter-component communication type and protocol, component interfaces,

concurrency handling and dynamic communication structures and components are just as

important as getting the functional aspects of the components (algorithms and data

structures) correct. A well-defined architectural definition language can then be used as a

solid basis for developing better tools for designing software architectures and reasoning

about the properties of the architecture.

The various object-oriented approaches currently do not address the issues of

concurrency handling well. Most current efforts on architectural description languages do

not have provisions for dynamic features. Hence there is room for important research

advances in these areas.

2.2 Formal Methods for design verification

Many formal methods exist for the specification and verification of concurrent systems.

Specification is the process of describing a system and its desired properties. Formal

specification uses a language that has a mathematically defined syntax and semantics.

Once specified, the resultant formal model of a system can be subjected to formal

analysis, e.g. checked to be internally consistent or used to derive other properties of the

specified system.

Two well established approaches to verification are model checking and theorem

proving.

Model checking is a technique that relies on building a finite model of a system and

checking that a desired property holds in that model. The check is basically an exhaustive

state space search. In contrast to theorem proving, model checking is completely

automatic and fast. Model checking can be used to check partial specifications, and so it

17

Review

can provide useful information about a system's correctness even if the system has not

been completely specified. The main problem with model checking is the state explosion

problem. However, there have been numerous promising approaches that alleviate this

problem [Peled96] [Kurshan94] [Elseaidy96].

Theorem proving is a technique where the system and its desired properties are expressed

in some mathematical logic. This logic is given by a formal system which defines a set of

axioms and a set of inference rules. Theorem proving is then the process of finding a

proof of a property from the axioms of the system. Most theorem proving tools are

interactive. The B tool [Wordworth96] is an example of interactive theorem prover.

For the design of dynamic systems, it is important to use formal methods to check for the

validity of system configuration. For example, in distributed object systems that are

typically built on middleware such as CORBA, software components are often

dynamically bound and released. It is important to design the software architecture in

such a way as to eliminate undesirable properties such as structural deadlock resulting

from these dynamic component reconfigurations. Both the model checking and theorem

proving approaches are applicable here.

It is not the intention of this survey to include all existing formalisms, but to present those

with the capability to describe concurrency and dynamism. These selected formalisms

will be presented in the following categories:

• set-theoretic approaches

• logic based approaches

• process algebraic approaches

• state automata approaches.

An assessment of the expressiveness of formalisms for describing dynamic systems with

component reconfiguration features will be presented, as well as the availability of the

corresponding support tools.

18

Review

2.2.1 Set-theoretic Approaches

Formal methods such as VDM [Jones89], Z [Spivey92] and B [Wordsworth96] have

foundations in set theory. These methods encourage the construction of a model of a

system or problem in terms of sets, maps, sequences and predicates.

VDM

The Vienna Description Method (VDM) is one of the more mature formal methods. It has

received industry attention: example projects include [Durr95] which employed an

object-oriented extension to VDM known as VDM++. The Mural system [Jones91]

[Fields92] developed at the University of Manchester supports the construction of VDM

specifications and refinements. Users can generate proof obligations to verify internal

consistency of specifications. VDM is commonly seen as the predecessor of methods like

Zand B.

z
Z is also based on set theory. Further, to the basic notion of set theory, Z adds the idea

that objects in its universe may be categorised into different kinds, and that there is no

overlap between distinct kinds. An important device in Z known as the schema allows

descriptions of objects to be grouped into units, which can be referred to throughout the

specification [Potter91] [Spivey88].

Z is supported by ZTC, a PC or Sun based type-checking system available for non

commercial purposes, and Fuzz, a commercial type-checker running under Unix and

DOS. There are also some more integrated packages that support typesetting and

specification integrity checks including Logica Cambridge's Formaliser, Imperial

Software Technology's Zola, which includes a tactical proof system, and York Software

Engineering's Cadiz (a tool suite for Z that supports refinement to Ada code). ICL's

ProofPower uses Higher Order Logic [FME98] to support specification and verification

in Z [Bowen95]. The wide choice of Z support tools reflects the popularity of the Z

formalism.

19

Review

B

Devised by Abrial, like Z and VDM, B is a model-oriented method based on set theory

and refinement theory [Lano96]. B has been designed to cover all the development

phases of the software life-cycle, from specification to implementation, with emphasis on

modularity and data encapsulation. The formal specification, as well as the design and

implementation, are expressed in an abstract machine notation.

The B tool from B-Core supports the B method [B-Core96]. The tool supports the

construction of specifications called machines. The method advocates specification reuse,

and the tool supports this by providing a library of base machines from which other

machine specifications can be extended. Specifications can also be checked for

consistency between subsequent refinements via proof obligations and generated into

skeleton C code.

The French company Matra Transport is using the B method to design safety-critical

software for the driverless trains on the new Meteor line in the Paris Metro [Naim96]

[Dehbonei95].

Discussion

These methods and associated tools model data structures and algorithms well, and have

received usage in various applications such as the specification of the IBM Customer

Information Control System (CICS) using Z [Hayes91] and using B [Hoare-JP95].

(Although only about one-tenth of the entire system was actually subjected to formal

techniques [Bowen95]).

However, these set-theoretic approaches cannot easily verify concurrent systems. In

dealing with concurrent and distributed systems, care must be taken to define the notion

of correctness. Traditional (deterministic) sequential programs may be viewed as partial

functions from inputs to outputs, specification may be given as a pair consisting of a

precondition describing the allowed input and a postcondition describing the desired

output for these inputs (e.g. models described in Z and B). However, for reactive and

non-deterministic concurrent systems, this approach is too limited.

20

Review

There have been attempts at specifying distributed systems using the B method, however,

the resultant models are often awkward [Butler96].

2.2.2 Logic Based Approaches

Temporal Logic

This category emphasizes the use of logical formulas to encode properties of interest in a

concurrent system. In the seminal paper [Lamport77], Lamport argues that the

requirements that designers wish to impose on reactive systems fall into two categories.

Safety properties state that "something bad never happens"; Liveness properties, on the

other hand state that "something good eventually happens". Much work has been

produced in developing logics that formalise these informal yet useful notions. The most

widely studied is Temporal Logic [Pnueli77] which supports the formulation of

properties of system behaviour over time.

There are different types of temporal semantics: interval, point, linear, branching and

partial order. Correspondingly, there are variants of Temporal Logic that uses different

semantics. The variants include: the TTM/RTTL framework - explicit clock linear logics

[Ostroff85], Metric Temporal Logic (MTL) - hidden clock linear logics [Koymans90],

and XCTL - discrete time propositional explicit clock logic [Harel-E90]. The various

temporal logics can be used to reason about qualitative temporal properties. Safety

properties that can be specified include mutual exclusion and absence of deadlock.

Liveness properties include termination and responsiveness. Fairness properties include

scheduling a given process infinitely often, or requiring that a continuously enabled

transition ultimately fires.

Real-Time Logic

Real-Time Logic (RTL) is another logic based formal language for reasoning about

events and their times of occurrence [Mok91]. In [Jahanian88], a visual formalism called

Modecharts is introduced. Modecharts specify a decidable fragment of RTL, in a state

based fashion. A method is provided for translating Modecharts into computational

graphs, from which the verification can be performed. RTL's event occurrence function

allows for a rich expression of periodic and non-periodic real-time properties. However,

unrestricted RTL is undecidable. It does not treat infinite state systems, nor dynamically

21

Review

reconfigurable systems. RTL formulas impose a partial order on computational actions

which is useful for representing high level timing requirements.

Assertional Logic

There are various other assertional logic approaches such as the Real-Time Hoare Logic

[Hooman89] which is based on the classical Hoare triples: { q} P { r}, where P is a

program, q and r are first order predicates [Hoare69]. Hoare triples can only express

partial correctness (properties that hold if the program terminates). This is hence not

suitable for distributed systems which must deal with non-terminating programs, and

interactions with the environment.

2.2.3 Process Algebraic Approaches

The set theoretic models and logic models discussed in previous sections encourage the

construction of a model of a system in terms of mathematical data structures and of the

static and dynamic constraints on them. By contrast, the process algebraic approaches

exemplified by CSP [Hoare85] and CCS [Milner89] allow a system to be modeled by a

collection of processes which communicate with one another.

CSP

Communicating Sequential Processes (CSP) devised by C.A.R. Hoare presents a process

as a mathematical abstraction of the interactions between a system and its environment.

Events, communication between processes, and non-determinism inherent in concurrent

systems can be modeled in CSP. Further, in addition to the usual logic, functions and set

operators, there are various other operators for describing processes and their interactions

such as: sets of messages, event ordering, choice, parallelism, interleaving, chained to,

subordinate to, interrupted by, restartable, repeat, satisfies, assignable and accessible. The

primary reasoning mechanism of CSP is the concept of execution traces, where the sets of

all sequences of events in which a process can participate can be analysed, and checked

for certain properties such as deadlock.

FDR [Roscoe97] from Formal Systems Europe is a model and refinement checker for

CSP.

22

Review

ccs
CCS is also aimed at describing concurrent processes. The syntax of CCS is simpler than

CSP, in that Milner has kept the number of operators in CCS to a minimum, and believes

that higher level constructs such as conditionals and data structures can be encoded using

primitive operations.

Similar to CSP, CCS captures the ordering of events and interleaving actions of

concurrent processes. The creation and termination of processes can also be described.

However, the communication links between processes is pre-determined, and dynamic

reconfiguration of communication can not be captured here.

The Concurrency Workbench [Stevens98] is a CCS model checker.

n-Calculus

Milner devised the 1t-Calculus [Milner91] [Milner92] [Milner92a] after his work on CCS,

and 1t-Calculus is often seen as a descendent of CCS. The basic notion of the 1t-Calculus

is the idea of 'naming', where 'names' can be freely passed around. This powerful notion

enables the modeling of dynamic reconfiguration of system components and

communication links.

Like CCS, there has also been extensive research work into equivalences of models in the

1t-Calculus work, which provides the basis for model refinement [Carrington94]

[Morgan90].

The Mobility Workbench is a model checker for the 1t-Calculus [Victor94]. It allows

syntactical checks on 1t-Calculus expressions, as well as equivalence checks on two 1t

Calculus expressions at a time, in the manner defined by the equivalence theories

[Sangiorgi96]. Further, it provides facilities for deadlock checks.

Ambient Calculus

Devised by Luca Cardelli in 1997, Ambient Calculus [Cardelli98] is an extension to 1t

Calculus which aims to capture the relationship between mobile processes and run-time

environment. Novel concepts here include the 'in' and 'out' operators which describe the

23

Review

actions of a process entering into and exiting from a computing processor. Ambient

Calculus seems promising in describing mobile processes, however, the model is not yet

mature, and there are no support tools at present.

2.2.4 State Automata Based Approaches

State machines have been a useful modeling technique in many branches of engineering.

More powerful variants such as Statecharts by David Harel [Harel88] and Petri Nets

[Peterson81] have provision for describing concurrency.

Statecharts

A state diagram is a bipartite graph of states and transitions. It shows the sequence of

states that an object or an interaction goes through during its life in response to received

stimuli, together with its responses and action.

Hare I's work on Statecharts [Harel84] was a substantial improvement on the traditional

flat state machines. It also contains features such as hierarchical decomposition and

nested states, as well as the specification of concurrently executing components using

substates. The interactions between these components can also be specified using

message passing.

Statemate is a widely used tool for Statecharts [Harel90].

Recently, the Statechart formalism has been incorporated as a part of the dynamic

behaviour specification notation in the Unified Modeling Language (UML) [Penker98]

[Harel97].

Petri nets

Most theoretical work on Petri nets is based on formal definition of Petri net structures in

terms of bag theory. However, the graphical representation of the Petri net structure is

much more powerful and useful for modeling systems.

A Petri net is a representation of a Petri net structure as a bipartite directed multigraph,

consisting of places, transitions and directed arcs [Petri62].

24

Review

The basic Petri net consists of places and transitions. The firing of transitions depends on

the availability of tokens. Petri nets can be easily used to model concurrent processes,

whereby the tokens represent active threads of control, places represent the different

states thread executions may be in, and various synchronization mechanisms may be

modeled via the use of transitions.

Figure 2.1 illustrates the well known reader/writer problem [Petersen81], where writer

processes must mutually exclude all other reader and writer processes, but multiple

reader processes can access the shared data simultaneously. This solution allows n

readers to read at a time.

readers writers

Figure 2.1. Reader/Writer Problem with Bounded Number of Readers

Initially s Readers and t Writers

However, if an unbounded number of readers and writers are assumed, and that we want

to allow an unbounded number of readers at a time, then the system cannot be

represented by Petri-nets. In fact, it is necessary for readers to keep count of the number

of readers reading, and increment or decrement this counter when it starts or finishes

reading. This can be modeled by a place with a number of tokens equal to the number of

readers. This means that for a write to begin, it must be able to read for an empty place.

However, there is no mechanism in Petri nets which allows an unbounded place to be

tested for zero. Thus, if there is an unbounded number of processes entering the system,

then it cannot be represented by Petri nets.

25

Review

Inhibitor arcs

To overcome this problem, the additions of inhibitor arcs allow zero testing. It has a

small circle rather than an arrowhead at the transition, where the small circle means 'not'.

The firing rule is a transition is enabled when tokens are in all of its (normal) inputs and

zero tokens are in all of its inhibitor inputs. The transition fires by removing tokens from

all of its (normal) inputs.

Self-modifying Net

The self-modifying Petri net is another extension to the Petri net, which permits the

labelling of an arc with the name of a place, to denote that the enabling of the arc depends

on the number of tokens present in that particular place. If the place has no tokens, then

the arc does not exist. Formally, a self-modifying net is defined like an ordinary Petri net

as a bipartite multi-graph having edges of the form:

If q = 1 then the firing rule of the transition is defined as in the ordinary case. But q is

also allowed to be the name of an arbitrary place of the net. In this case, the number of

tokens to be moved from or to the place equals the actual number of tokens in q.

Therefore, self-modifying nets are able to modify their own firing rules [Valk77]. Figure

2.2 illustrates how a self-modifying arc can be disabled.

s p q

Figure 2.2. Self-Modifying Arc

We now can provide an alternative solution to the readers/writers problem.

26

Review

• the in transition controls the entry of reader and or writer processes, so that the n

place can keep count of the actual number of processes in the system.

• the w' place is the complementary place of w. The presence of a token in place w'

means the absence of writer processes. In this case, arc x is enabled, and the in

transition can add tokens to places, which can be used to enable transition b (reader)

or accumulated to enable transition y (writer).

in

n

out

Figure 2.3. Reader/Write Problem Revisited - Self Modifying Net Solution

Other Petri Net Variants

There are many other variants of the basic Petri Net beside the inhibitor arcs and Self

Modifying Nets. These include:

• Coloured-Petri Nets [Jensen92], these are high level Petri Nets often used to model

data types,

• Stochastic Petri Nets [Ciardo94], for timing sensitive systems, and

• Object-oriented Petri Nets [Lakos91].

Each of these variants have varying degrees of expressiveness, and thus have an impact

on the complexity of corresponding Petri Net tools.

27

Review

2.2.5 Discussion

There is a general consensus among the software industry that formal methods are

difficult to use. These are often attributed to the complexity in formalism, and the lack of

support tools [Holloway96].

Hence, there is a need for good supporting tools for various functions such as:

• (visual) modeling

• model checking (e.g. safety, live-lock, deadlock, reach-ability)

• design analysis

• model refinement

• code generation.

2.3 Distributed Computing Environments and Language
Support

Existing operating systems do not have adequate support for distributed software

engineering [Liu96]. Network operating systems such as Windows NT [Custer95] and

Novell enable the sharing of network resources, however, not at a transparent level.

Distributed operating systems such Mach [Rashid89] and Amoeba [Renesse89] are not

mature enough to be used outside the research community. One exception is Chorus

[Rozier90] where the CHORUS/COOL ORB has been recently acquired by Sun

Microsystems and is receiving wide usage [Lea93].

Instead of adding more functionality to existing operating systems, support for distributed

software engineering has been introduced at the middleware level. See Figure 2.4. There

is also support at a programming language and/or environment level, e.g. Java.

28

Review

Distributed Application

Middle-Ware

Conventional Operating System A Conventional Operating System B
e.g. Windows NT e.g. UNIX

Hardware 1 Hardware 2
e.g. PC e.g. DEC Workstation

Figure 2.4. Layers of Support for Distributed Software

2.3.1 Middleware

In order to provide support for distributed systems, various middleware layers have been

developed. Middleware provides the basic infrastructure for abstracting the

communication layer, thus simplifying the software engineering process. Existing

middleware includes CORBA, DCOM from Microsoft, and the longer standing DCE.

CORBA

CORBA is a de-facto industry standard for distributed object systems development

[OMG95]. The Object Management Group (OMG) brought vendors and end users

together to agree on the technical content of this distributed object architecture. The

CORBA specification details how objects should be able to transparently make and

receive requests and responses in a distributed environment. It is the foundation for

building applications from distributed objects and for interoperability between

applications in heterogeneous and homogeneous environments.

The ORB (Object Request Broker) is central to the CORBA architecture. An ORB is a

software component whose purpose is to facilitate communication between objects. It

does so by providing several capabilities. These include locating a remote object when

given an object reference, and the marshaling of parameters and return values to and from

remote method invocations. The ORB thus provides platform-independence to distributed

CORBA objects.

29

Review

Language independence is achieved in CORBA via a common object Interface Definition

Language (IDL) which defines the types of objects according to the operations that may

be performed on them and the parameters to those operations that is part of CORBA. The

following is a sample OMG IDL of an Account interface:

II Account.id!

II Forward declaration of Account interface.
Interface Account;

#ifndef Account_idl
#define Account_idl

II sequence of Accounts
typedef sequence<Account> AccountList;

include "Customer.id!"

interface Account {

} ;
#endif

II This Account's account number.
readonly attribute string accountNumber;

II This Account's current balance.
readonly attribute float balance;

II return list of Customers who hold this Account
CustomerList getCustomers();

II Withdraw the given amount from this Account.
II Returns new Account balance.
float withdraw(in float amount);

II Deposit the given amount into this Account.
II Returns the new Account balance.
float deposit(in float amount);

Interfaces described in IDL can be translated into any programming language. CORBA

applications and components are thus independent of the languages used to implement

them. For example, a client written in Java can communicate with a server implemented

using C++, which can in tum communicate with another server written in COBOL.

Existing implementations of CORBA include Iona Technologies's Orbix [Iona95],

BBN's freely available Corbus [BBN98] and Hewlett-Packard's ORB Plus [HP96].

30

Review

DCE

The Open Software Foundation's Distributed Computing Environment (DCE) is another

middleware product that supports distributed computing. DCE enables computers from

different manufacturers operating on different system software platforms to interact,

sharing data and applications transparently across networked, distributed environments.

The fundamental communication mechanism of DCE is the Remote Procedure Call

(RPC). RPC allows direct calls to procedures on remote systems as if they were local

procedure calls. This simplifies development of distributed applications by eliminating

the need to explicitly program the network communications between the client and

server. The DCE RPC mechanism masks differences in data representations on different

hardware platforms, allowing distributed programs to work transparently across

heterogeneous systems. The primary difference between DCE and CORBA is that DCE is

not necessarily object-oriented. There are many implementations of DCE around, most

notably the ones from Transarc [Transarc98] and Siemens [Siemens97].

DCOM

The Distributed Component Object Model (DCOM) [Microsoft98] is a protocol that

enables software components to communicate directly over a network. Previously called

"Network OLE", DCOM is designed for use across multiple network transports,

including Internet protocols such as HTTP. DCOM is based on the Open Software

Foundation's DCE-RPC specification and will work with both Java applets

[Horstmann98] and ActiveX [Chappell96] components through its use of the Component

Object Model (COM). For example, a developer could use Java to build a Web browser

applet that calculates the value of a portfolio of securities, using DCOM to communicate

stock values to the applet in real time over the Internet.

ActiveX [Chappell96] controls are among the many types of components that use COM

technologies to provide interoperability with other types of COM components and

services. ActiveX controls are the third version of OLE controls (OCX), providing a

number of enhancements specifically designed to facilitate distribution of components

over high-latency networks and to provide integration of controls into Web browsers.

These enhancements include features such as incremental rendering and code signing, to

allow users to identify the authors of controls before allowing them to execute.

31

Review

2.3.2 Distributed languages

Java

Software system components written in Java can be transported across the World Wide

Web via HTTP, and executed on different types of machines. Java's portability is due to

the concept of a Java Virtual Machine which acts as a translator that transforms general

Java platform instructions into platform dependent executable code. Java thus supports

the construction of distributed systems, although the actual transporting of Java software

components is by no means a transparent process.

In addition to Java's portability, Java Remote Method Invocation (RMI) is a CORBA-like

architecture that enables distributed software construction. One advantage of RMI is that

it supports the passing of objects by value, which is a feature not currently supported by

CORBA. A disadvantage is that RMI is a Java only solution, i.e. both RMI severs and

clients must be written in Java. For all Java applications, particularly those that benefit

from the capability to pass objects by value, RMI is a good choice. For those where

interoperability will be a concern, CORBA is the obvious choice.

2.4 Conclusion

This chapter has reviewed existing work on support for the engineering of distributed

systems. The three groups of work are:

• software architecture methodologies

• formal methods for architectural design verification

• distributed computing environments

We have seen that there is an abundance of theories and models for describing and

analysing concurrency. However, it is not clear how these theories can best be applied in

real world systems. There are also robust distributed computing environments present,

however, there is no adequate methodology guiding the design of distributed systems that

runs on these environments [Gorton97a].

There is clearly a need for a software architecture design and analysis methodology for

dynamic distributed systems. This methodology should be supported by an integrated

32

Review

toolset, for the purposes of prototyping architectural design, and automating the formal

analysis of these designs.

33

Dynamic PARSE Design Methodology

3. Dynamic PARSE Design
Methodology

The PARSE software engineering methodology has been introduced in section 2.1. This

chapter presents Dynamic PARSE (PARSE-D) which is an extension of PARSE that aims

to cater for not only the design of static, closely-coupled parallel software (as supported

by existing PARSE), but also the design of loosely-coupled distributed systems. These

loosely coupled distributed systems often exhibit dynamic reconfiguration features such

as those commonly found in mobile communication systems and various types of

software applications running across a network. These dynamic features add to the

complexity of the system greatly, and have severe implications for the system's

correctness at run-time. It is thus important for software engineers to capture these

dynamic reconfiguration features at an early stage of the software development process,

and thus refining and implementing the system with these distribution and concurrency

issues in mind. The representation of these dynamic features can also be used for design

analysis and verification.

A presentation of PARSE [Gorton95] in sufficient detail will firstly be given. This is

followed by a presentation of Dynamic PARSE design notation and the associated usage

rules [Liu96]. The Dynamic PARSE design methodology and a sample design will also

be presented.

3.1 The PARSE Methodology and Design Notation

PARSE (PARallel Software Engineering) is a software engineering methodology to

facilitate the design of reusable parallel systems. This methodology exhibits the following

features:

34

Dynamic PARSE Design Methodology

Graphical Design Notation: Systems are composed using a graphical design notation ,

which enables process structures and their precise interactions to be hierarchicall y

constructed.

Language and Architecture Independence: PARSE designs do not rely on any specific

programming language features or target machine architecture.

Formal Verification: PARSE designs can be mechanically transformed into Petri nets to

provide the potential for design verification .

Code Generation: PARSE designs can be mechanically transformed into skeleton

program code: an example is Occam [Gorton96b].

A PARSE process graph thus acts as a basis for subsequent software engineering stages

such as design verification and code generation .

PARSE process graphs depict the process partitioning and communications relationships

between processes, together with the role of each process in the system. Conceptually a

process graph comprises several concurrently executing processes that interact and

synchronise via message passing. Figure 3.1 shows the designs notations of PARSE

process graphs.

Process Objects

Data
Server

Communication Paths

~onous

■)
asynchronous

())
synchronous
bidirectional

broadcast

Path Constructors

non-deterministic

I 1 2

deterministic

-
concurrent

Figure 3.1. Summary of the PARSE Process Graph Notation

A system consists of a set of process objects, where these process objects have some

encapsul ated data and or functionality (object) as well a thread of control (process).

35

Dynamic PARSE Design Methodology

There are three fundamental categories of process objects, namely Function server, Data

server and Control process objects. Essentially, Function servers take a passive role in the

system behaviour and basically encapsulate some well-defined functionality required by

the system; Data servers also take a passive role and encapsulate some required data and

associated access methods. Control process objects have an active role in the system and

implement tasks such as the distribution of work and synchronisation of the system. The

process notation thus represents a simple formalism which captures the design heuristics

used by software engineers when partitioning a problem into processes. Further, it

encourages designers to create the passive process objects Function and Data servers

which may be candidates for reuse in subsequent developments.

The PARSE process graph also supports four types of communication paths between

processes. These are as shown in Figure 3.1 and include synchronous, asynchronous, bi

directional synchronous, and broadcast. In addition to process objects, some

communication paths may have external objects as the source or destination. Typical

external objects include hardware devices or other software subsystems outside the scope

of current development. These external objects are represented by a named, solid vertical

bar, and it is only the interface of these external objects that is important. Hence, it is only

necessary to specify the type of communication path connecting process objects to

external objects.

Path constructors indicate how individual processes should respond to pending messages

on multiple input paths. Annotating a design diagram with this information is important

as it specifies how a process is to react when competing messages are received on

different input paths. This increases the amount of design information captured in a

design diagram, and creates scope for automated design verification and code generation

tools. There are four types of path constructors, namely deterministic (prioritised choice),

non-deterministic, and concurrent (only applied to composite process objects, where

independent process object components exist to handle the incoming messages

separately).

Some of the other features of PARSE process graph include:

• The specification of replicated instances of a process object by using an index after

the process name.

36

Dynamic PARSE Design Methodology

• Ability to specify regular process structures such as pipelines and matrices.

• Hierarchical decomposition of process objects to manage complexity in design

diagrams.

3.2 Dynamic PARSE Design Notation

The Dynamic PARSE (PARSE-D) process graph notation (Figure 3.2) is designed to

supplement the static PARSE process graph notation discussed in section 3.1, while

maintaining the machine and language independence property. Some of the usage rules

present in PARSE also apply to Dynamic PARSE. The resulting extended notation

enables the design of distributed and parallel systems incorporating dynamic features. In

distributed object systems commonly built on middleware such as CORBA, software

components are often dynamically bound and released. It is important to explicitly

specify this feature.

Dynamically Created Process Objects: function server, data server, and control

processes all may be created and deleted dynamically. The existing behavioural and

functional rules applying to their static counterparts also apply to them. In addition to the

inherited functionality of their static counterparts, these dynamic process objects may

enter and or exit the system at run time. This should not affect the execution of other

processes. Also, communication paths going into and/or coming out from dynamic

process objects are also dynamic in nature. These communication paths are set up when

the associated process objects are created, and are destroyed when process objects

terminate.

Dynamic process objects are often replicated. Each replicated instance has the same

process-internals. Different instances may be created and terminated at different times

throughout the run-time. The series of numbers enclosed by square brackets [O .. n]

denotes the range of the number of instances of the object that may be present in the

system at any one time. The symbol n may be replaced by a constant integer, or by

default, is the maximum number of thread instances a process may have as defined by the

underlying system. When expanded, each instance has an associated subscript. This

provides a way to uniquely identify each instance of the process.

37

Dynamic
Process Objects

, , --f 0. ~ny---,
,', dynamic ' ,
'- function server,' ', ,

r---------------1

: [O .. n]
' dynamic

data server

[O .. n]
dynamic

, control ,
1_ - - - - - - - - - - - - - ~
I I

' ... - - - - - - - - - - - - _ 1

Dynamic PARSE Design Methodology

Process Dynamic Transactional
Creation/Deletion Process TerminationCornrnunication Path

Arrows modes

r--, d~e~, ___ 1
~ __ ,.,

assassination

suicide

(proc :)
aging

- - - -) -- - - - - .

synchronous

---• ->- ----
asynchronous

-- (-))----
synchronous
bidirectional

-) --♦ -----

braodcast

Figure 3.2. Summary of Extended-PARSE Process Graph Notation

Creation/Deletion of Dynamic Process Objects: Function servers and control process

objects may create and delete dynamic process objects by invoking create and or delete

signals. They are shown via the twisted arrow notation. There are two rules of usage:

• the process object at the invoked end of a creation/deletion arrow must be of dynamic

type.

• the process object at the invoking end of a creation/deletion arrow must be an active

process object. This means the passive data server and function server is excluded.

Termination Modes of Dynamic Process Objects: There are three ways that dynamic

process objects may exit from the system: assassination, suicide, and aging.

Assassination: Any running process can kill a dynamic process. This ensures that

Dynamic PARSE designs are machine and language independent. In different distributed

operating systems, there are limitations imposed on deletion of processes by other

processes. For examples, in some operating systems, only parent processes may kill their

own children processes. In others, and especially when the processes are running in

different memory locations such as a distributed object system across a network, as long

as the process id is known, any process may kill it.

Suicide: A process or a thread may terminate its own execution . For example, threads in

Windows T may terminate themselves by calling the Win32 function: ExitThread.

38

Dynamic PARSE Design Methodology

Other heavy weight processes or a subsystem component may exit the system by itself

due to certain system exceptions.

Aging: This is the default termination mode. The created process dies from aging when it

completes its work. This occurs naturally, hence the term aging.

The notation provides a rich set of notations for describing all possible ways of

termination, and leaves the design decision for the software engineer.

Dynamically Created Communication Path: The four types of communication paths

can be used to connect to dynamic process objects. When both the sender and receiver

process objects are static process objects, the semantics of the communication path

remains the same as in PARSE, and any existing PARSE design rules apply here.

However, when either the sender or receiver process object is dynamic, the life-time of

the communication path is dependent on the associated dynamic process object. For

example, in Figure 3.3, the communication path data is not valid at all times. It is valid

when both the sending process and the receiving process are present in the system.

Hence, in this case, the data path is set up only after the creation of sender by control and

the creation of receiver by an external entity.

r create - - - - --- -- 1 -- - ' da)
,

' / [0 .. 1] ', control ~ I [0 .. 1] \

I

sender I

\' _r~~~i~~~ - , ,'
\ I \ ' - -,

'- ,J - - - - - -
not valid at all times

Figure 3.3. Implicit Dynamic Behaviour of Communication Paths

In the above example, there is (at any time) a maximum of one communication path

between the two dynamic process objects. However, this is not always the case. By

default, a communication path going into or coming out from a dynamic process object is

replicated if there are multiple instances of the process.

39

Dynamic PARSE Design Methodology

data
/ [0 .. 2] ', __________ ,, [0 .. 2] ' I

1
\ sender , receiver ,'

'' ,

◊

Figure 3.4. Replication of Dynamic Communication Path

The existing replication rules and notations in PARSE also apply to dynamic processes in

Dynamic PARSE. That is, by default, all associated processes are fully connected by

communication paths when all the dynamic process object instances exist. Path

restriction can also be used here to overwrite default behaviours (see Figure 3.5).

______ data: from sender[i] to receiveriiJ ___ _

/ [0 .. 2] ,\ for~= 1..2 ,,- [0 .. 2] '\
sender ,' , receiver ,'

/

◊
..... - - - - data: from sender[1]

(sender[l] \,_, ___ t_o_r-;~c ... e_i_ve_r_[_lJ_ (receiver[l,];
\ I / \ I

, - - - - - - , data: from sender[2]
(sender[2] '\ to r)ceiver[2]
\ ,

,✓ '

: receiver[l])
\ ,

'

Figure 3.5. Path Restriction in Dynamic PARSE

Transactional communication path: Software designers can explicitly show that the

communication between two processes is of a transactional type by using dotted arcs (see

Figure 3.6). These are different to the ordinary communication paths in the sense that

they are set up only when they are needed to transfer messages. As soon as the transfer is

complete, the path is no longer valid. Hence, the life span of a communication path is not

dependent on the life spans of the processes using it, but is dictated by the activity of

40

Dynamic PARSE Design Methodology

transferring the message. In a database system, a typical example would be a

transactional update to a data store.

~ _ -I database
~ .

update : customer
I

collect_
changes

Figure 3.6. Transactional Communication Path Example

The period of validity of the communication path depends on the associated process

internals, where process internals can be explicitly defined using an internal behaviour

specification language such as the PARSE Behavioural Specification Language (BSL)

[Gray94]:

PROC database
SEQ

-- other processing
sy-receive(update)

other processing
ENDSEQ

ENDPROC

PROC c o llect_changes
SEQ

-- other processing
s y -send(update)

other processing
ENDSEQ

ENDPROC

In thi s case, the transactional communication path update is not valid while other

processing are happening.

Communication Path Constructors: Not all four types of path constructors may be

applied when dynamic process objects are associated. Consider the example of an

incorrect use of path constructor in Figure 3.7 : the updates communication paths may be

replicated depending on the number of worker processes present in the system. Hence,

41

Dynamic PARSE Design Methodology

there may be multiple paths going into the data store, which need to be handled non

deterministically. The data server receives update messages from workers randomly.

Concurrent and deterministic input handling can not be used here as concurrent input

handling implies there is concurrency within the process. That is, the process may be

further decomposed. This cannot be used here since the data store is primitive. With

deterministic input handling, the receiving process selects between ready paths according

to path labels. However, when the paths are coming from instances of the same dynamic

process, the priority cannot be specified since there is no guarantee that a particular

instance of the process is present at a point in time. Hence, deterministic input handling

cannot be used here.

11
,, - - [O . .3] - - ',1 upc4ltes d

7 data server ', worker _ , ' .__ ___ __,

◊
,,, worker[l] \ __ \' -< ;~;;0~[::-:-~::]~-~ ,-,:-=-_ --,-~+------.1q data server I

- ..,, '
:, worker[3] ,

' /

Figure 3.7. Dynamic Updates to Data Server Requiring Non-deterministic

Constructor

Hence, path constructors are not to be used in conjunction with dynamic process objects.

All multiple inputs to dynamic process objects are handled non-deterministically.

Note: figure 3.7 illustrates an incorrect use of path constructor. Further, the figure is not

syntactically correct.

42

Dynamic PARSE Design Methodology

3.3 The Dynamic PARSE Design Methodology

The Dynamic PARSE software design methodology provides a hierarchical, object-based

approach to the design of dynamic software architecture. A system is decomposed into a

set of concurrently executing process objects which communicate via message passing.

These process objects can also be hierarchically decomposed in order to handle

complexity in design. The graphical design notation is used to capture the architectural

(structural and dynamic) properties of the required distributed software system.

A typical design process involves the following steps:

1. identify the various system components in the system.

2. classify the system components to be one of: active control process object (either

composite or primitive), passive function process object, and passive data server.

3. identify any process objects that are created and or deleted dynamically. Denote the

dynamic process objects and the corresponding creation and deletion actions by using

Dynamic PARSE design notations.

4. specify the interaction between the process objects using the 4 different types of

communication paths: synchronous, asynchronous, bi-directional (request-reply), and

broadcast.

5. use dynamic communication paths to specify any re-configurable communications.

6. For each composite process object, identify its component process objects and the

interaction modes. This step is repeated until all composite process objects at all

levels have been specified in terms of primitive process objects.

7. for each static primitive process object, indicate the order of handling of all incoming

messages to that process object using path constructors.

3.3.1 Sample Design -A Lift Controller

This section illustrates a typical Dynamic PARSE design. The example chosen here is a

simplified version of the Ubiquitous Elevator Problem discussed in [Howland-Rose94],

where the software structure changes according to client requests. It will be shown how

this dynamic change to software structure can be easily described using the Dynamic

PARSE design notation.

43

Dynamic PARSE Design Methodology

outside
sensor

job
allocation

table

panel
sensor

level_no

evel_no.up/dn requests [m] lift ---------1 allocator 1--------1 controller

movement
status

lift_pos
pdate

~__._, 'ft_id.up/dn
movement

table

Figure 3.10. Top Level Process Graph of the 'Lift Problem'

doors

lift
sensors

The requirement is to design software which controls passenger elevators. Elevators can

be called via up or do wn buttons on each floor. Inside an elevator, passengers may select

destination floors by pressing buttons on a panel. However, while the elevator is in

motion , only requests to go to floors in the same direction are accepted by the controller.

Figure 3 .10 shows the top level design of the system, after carrying out the design steps 1

- 5 listed in section 3.3.

44

close

open

up/dn

Door
open/close

manager

Outside

level_no
up/dn

level_no

up/dn

Dynamic PARSE Design Methodology

Elevator
update

lift_pos

nex t_request

lift_pos

Request Li ft

queue position

add_request

Request
i merpreter lift_pos

level_no

Figure 3.11. Decomposition of the 'Lift Controller' Process

Figure 3.11 is derived by decomposing the Lift Controller process, i.e. carrying out step 6

presented in section 3.3.

For a set of m lifts, there are m lift controller processes, each controls their own lifts

(Figure 3.10). There is also a process requests_allocator, which delegates tasks to

different lifts upon the receipt of requests from outside sensors. Notice there is only one

path being used at any time between requests_allocator and lift_controller. There is

always only one lift allocated the job to service a request. The request_allocator chooses

a lift by reading the movement status of all lifts, as well as the job_allocation_table. Thus

ensuring all lifts have approximately equal number of requests to serve, and at the same

time minimises overhead movement of lifts in order to service requests. Lastly, the

external entities: doors and lift_sensors provide status information to the corresponding

lift controller.

The process objects inside a lift_controller process are:

45

Dynamic PARSE Design Methodology

• Data server lift_position accepts input from the external entity lift_sensor. Whenever

requested, it provides the lift position information to the control process object

elevator _movement_control, and a control process object request_interpreter.

• Outside_request_filter is modeled as a control process object. Its main function is to

receive requests from the request_allocator and obtains movement information from

the movement_table. It subsequently sends processed requests to request_interpreter.

• Request_interpreter is also a control process object. It receives requests to go to

particular levels from two sources: the outside_request_filter - requests from outside

the lift, and panel_sensors - request from inside the lift. Request_interpreter obtains

current lift position information and determines which requests to be placed onto the

request_queue.

• Request_queue stores requested level numbers.

• Elevator _movement_control obtains the next request to service from the

request_queue. It determines the movement direction of the lift. If a change in

direction is required, it sends an update message to the movement_table. This control

process also tells the door _manager when the requested level has been reached or

not. It does this by comparing the requested level with the current lift position.

• Door _manager controls the opening and closing of the lift door.

The decomposition of the two processes: outside_request_filter and request_interpreter

are shown in Figure 3.12.

46

level_no
up/dn outside

request
control

up/dn

creat~:_,,--- [O .. n] --,\:

filter / '....... ,, ... "

Outside request filter

level_no

Dynamic PARSE Design Methodology

request
controller

up/dn

creat~,,,--- [O .. n;---,\

\ interpreter ,/ ____ ____ ... , ,

add
reques

Requests interpreter

Figure 3.12. Decomposition of 'Outside Request Filter' and 'Requests

Interpreter'

In both of these process objects, the level numbers (and up or down signals in the case of

outside_requestJilter) are received by the internal control processes, which then create

dynamic worker processes to carry out the work. The information such as level_numbers

and up or down signals are passed to corresponding instances of dynamic worker

processes upon creation.

The filter process inside the process outside_requestJilter simply checks whether the

request is going up or down. It also obtains current movement from the movement table.

If the request is in the same direction as the lift_movement, then the request is sent to

request_interpreter which subsequently places the request onto the queue. If however, the

request is in the other direction, the filter process waits till the lift movement has changed

before sending request to the interpreter.

Within the process request_controller, each instance of the interpreter checks current

lift_movement and position in order to decide if the request can be serviced without

changing lift movement direction. Thus adding the request to the request_queue. Both

requests from outside and inside the lift are serviced.

Both filter and interpreter processes die from aging .

Figure 3. 13 illustrates examples of alternative designs where the filter process exits the

system through either assassination or suicide.

47

Up/dn Process
garbage
contro l

up/dn

delete ,,-------- ----------
([O .. n] '')
,, filter 1
-...... _ _ __ ,,,,,/

Assassination Example

Dynamic PARSE Design Methodology

up/dn

:/ [O .. n] * ------\

:.___ filter / _ _,,,/

level_n

Suicide Example

Figure 3.13 Examples of Assassination and Suicide

48

Dynamic PARSE Design Methodology

3.4 Conclusion

In this chapter, the Dynamic PARSE Process Graph Design Notation has been presented.

The Dynamic PARSE Process Graph Notation has the following features:

• platform independent

• scaleable - encourages component-based design

• hierarchical - to manage system complexity

• user-friendly - graphical notation is simple to use

• rich set of process object types - enable architects to capture client-server

relationships easily

• rich set of communication types

• path constructors encourages explicit specification of concurrency

• dynamic properties such as process creation/deletion and communication

reconfiguration can be captured

Once the architectural properties have been captured using PARSE-D, the designs can be

subjected to analysis and verification. In chapter 4, the formal semantics of Dynamic

PARSE Process Graph Notation will be presented. This forms the basis of automated

design verification.

49

Dynamic PARSE AnalysisNerification Methodology

4. Dynamic PARSE
Analysis/Verification
Methodology

4.1 Introduction

In this chapter, the Dynamic PARSE Design Analysis and Verification process will be

described. In order to facilitate design analysis, Dynamic PARSE designs are translated

into corresponding formal models. These mathematically sound models then form the

basis for design analysis and verification.

Firstly, the translation scheme of Dynamic PARSE Process Graph Notation to the Petri

Net formalism will be presented. Then, the translation scheme for Dynamic PARSE to

the 1t-Calculus formalism will be described. A comparison between the use of Petri Nets

and 7t-Calculus will then be presented.

50

Dynamic PARSE Analysis/Verification Methodology

4.2 Translation Scheme

4.2.1 Translating Dynamic PARSE Designs to Petri Nets

Introduction and Past Work

Petri Nets are an important mathematical model for the analysis of systems with

interacting concurrent components. Petri Nets have been used previously as the auxiliary

tool for PARSE design analysis [Jelly95]. Once the corresponding skeleton Petri Net

model has been derived from a PARSE design, system properties can be analysed, and

knowledge gained about the system can subsequently be used to revise the design. Some

system properties that are desirable to be analysed include liveness and reachability

properties.

It is thus important to devise a set of rules for the translation of PARSE design

components to corresponding partial Petri Net models. Initial work in this area has been

carried out [Jelly95][Pateman95] where mappings for the four communication types,

basic programming structures such as sequence, selection and iteration, non-deterministic

constructors and concurrent constructors have been described and explained. There was

also a substantial case study carried out [Gorton96]. However, there has not been any

work carried out on deterministic constructors, nor dynamic features such as those

present in PARSE-D [Liu96].

In the following, the transformation from PARSE design elements to Petri Net models

will be presented, followed by the transformation rules for Dynamic PARSE to Petri

Nets. In order to model re-configurable system structures such as those commonly

designed using Dynamic PARSE, it is necessary to use a higher-level Petri Net known as

Self-Modifying Nets, proposed by Valk [Valk77].

51

Dynamic PARSE Analys is/Verification Methodology

PARSE to Petri Net

Here, the mappings for the four communication types are described. This is essentially

the same as those presented in [Jelly95] [Pateman95] and [Gorton96]. In addition, the

mapping for the three types of path constructors are shown.

,//

broadcasi
send !

•,

p

asynchron9us
send \

p

p

•,

p

Q

··

\ b af y~~~~:ous . . . ' . .
\ :'

...... ,.:'

Q

\\
\accept

/ eply

Q

Figure 4.1. Petri Nets Model: Four Communication Types

52

Dynamic PARSE Ana lysis/Verification Methodology

p Q

(

·· ..

·· ..

R

p Q

R

p Q

R

Figure 4.2. Petri Nets Model: Path Constructors

Basic Petri Nets are not expressive enough to model deterministic path constructors. The

inhibitor arc (represented by an arc with a small circle at the end) is necessary to model

the prioritised choice behaviour present in the deterministic path constructor.

PARSE-D to Self-Modifying Net

PARSE-D supports the design of systems with evolving system structures. To model

systems designed using PARSE-D, Self-Modifying Net [Valk77] is used. Figures 4.3 and

4.4 present two example mappings.

53

Dynamic PARSE AnalysisNerification Methodology

p Q

... -·· / .. ·····
···-........... .

·

return:

re::1 p .--~---.')

(\

..
.. •·•

...... j/l:~:
(Client ·;

client may or
may not block,

can do other ····•
things. •- ...

receive
result

Client

i-·············••:
' •

Figure 4.3. Self-Modifying Nets Model: Creating Worker Processes

For the Creating Worker Processes example:

• tokens are threads of control: initially, tokens are present in P and Client only, since

they are the only active objects in the system at start up time;

• the tokens in Client means there are 2 clients active in system;

• place c counts the number of active Q processes in system at any time;

• when place c contains zero tokens, there are no active Q processes in the system. To

reflect this change in the system, the two arcs labeled with c are disabled, thus

separating the sub-net representing process Q away from the main net representing

processes P and Client. Since the sub-net representing Q would have no token, it can

be ignored;

• the dynamic result path is also appropriately modeled via the self-modifying arc.

54

Dynamic PARSE AnalysisNerification Methodology

8····· ····· -(-■······P,~-m.e _____ ___ __ __ _______ _________ _

-·
-·

printer(

··.

create : Filter[i] creates filter[i+ I] __

,__ __,,___.....,:..::--filter ..)

Odd: from filter[i]
to filter[i+ I]
for i = l..n- 1

d

----~e-------,-------,t.-\eil?

e
pri mO .. \.\

Odds
generator

discard

Static filter

d

.... -·

dynamic filters ···-... _

Figure 4.4. Self-Modifying Nets Model: Sieve of Erastosthenes Problem

For the Sieve of Erastosthenes example:

.. ···

• Initially, 3 tokens in the processes: printer, odds_generator, and staticJilter,

representing that these are the 3 initial active processes.

• Place d is used to provide information regarding the last pnme number being

generated. The self-modifying arcs d and 'd are correspondingly enabled and

disabled.

• Placed is used for 2 purposes: for the creation of a new filter process, and for passing

an odd number to the next filter in the pipeline.

• Place e is used to record if the static filter has generated a prime number or not. The

self-modifying arc labeled with e thus represents the behaviour of a dynamic

communication path prime.

Table 4.1 presents the mappings between PARSE-D design notation components and

Self-Modifying ets.

55

dis~d

PARSE-D

Dynamic Process Objects

• initially

• created

• Create Signal

• Delete Signal

Dying Objects

• Suicide

• Assassination
• Aging

Dynamic PARSE AnalysisNerification Methodology

Self-Modifying Nets

Sub-nets

• initially disconnected from rest of the net, and has no
token, i.e. Not in system yet!
• once created, connected to main net, and has a token
for thread of control. Multiple tokens for replicated
objects.

• an enabled self-modifying arc, with associated create
transition, through which a token (thread of control) is
passed to a newly connected sub-net.
• A disabled self-modifying arc, with associated delete
transition, so to disconnect sub-net from main-net.

Absorb token, or disconnect sub-net

• absorb a token within the sub-net itself, disconnect
by reading a place in its own sub-net
• same as the delete signal
• once a token has traversed through all places, the
token is absorbed. Use self-modifying arc to disconnect
sub-net when no tokens left.

Transactional Communication Self-Modifying arcs
Paths

• synchronous send/receive otherwise same as for static communication paths.

• asynchronous send/receive
• broadcast
• bi-directional

Table 4.1. Summary Mapping of PARSE-D Components To Self-Modifying Nets

56

Dynamic PARSE Analysis/Verification Methodology

4.2.2 Translating Dynamic PARSE Designs to n-calculus

Monadic n-calculus

The 1t-calculus is a calculus for describing and analysing concurrent systems with

evolving communication structures. The simple monadic form of 1t-calculus is used here.

1t-calculus is based around the notion of naming. A system in the 7t-calculus is a

collection of independent processes that communicate via channels that in tum are

referred to by names. Names are the most primitive entities in the calculus, and have no

structure. There are infinite numbers of names, generally represented by lower case

letters.

Processes can be built up from names in the following ways:

Action term::= x <y>.P Outputs the name y along the channel named x then executes

P.

x(y).P

terms::= PI+ ... + Pn

PI I P2

(vy)P

!P

0

Input a name, call it y, along the link named x, and then

execute P (binds all free occurrences of y in P).

Choice operator, alternative actions, execute only one of Pi.

Composition (both + and I commutative and associative).

PIQ means that P and Q are concurrently active. They can

act independently, but can also communicate.

Restriction operator. Introduces a new name y with scope P

(binds all free occurrences of y in P).

Replication operator. Provides many copies of P.

!P means PI PI ... as many copies as you like. It satisfies !P

=PI !P.

Dead process.

Communication in the calculus is expressed by the following reduction rule:

COMM:(... + x(y).PI ...) I(... + x <z>.P2 + ...) ~PI{z/y} I P2

57

Dynamic PARSE AnalysisNerification Methodology

Sending z along channel x reduces the left hand side to P 1 I P2 with free occurrences of y

in PI replaced by z. Notice that {zly} has the same meaning as a-reduction in A-calculus,

which basically means replace free occurrences of y with z.

PARSE-D to 1t-Calculus

Process Objects: Similar to the classical process algebra model, a system is composed of

a collection of interacting agents, where each agent is defined by the actions it can

perform or as a composition of smaller agents. Hence, the agents in 1t-calculus may be

used to represent process objects in PARSE, with basic message passing modeled via the

input and output bindings such as the action terms x(y) and x <y>.

-- Communication Paths --

Synchronous: In 1t-calculus, a reduction between a pair of input binding and an output

binding can be used to synchronise communication between two agents. The reduction

rule discussed in section 4.2.2 (previous page) is synchronous in nature.

e.g. P= x.P and Q=x.Q

Here, P does a blocking send along communication path x, i.e. P cannot send messages to

Q until Q is ready to receive.

Asynchronous: in asynchronous communication, the sender does a non-blocking send:

P = x.O IP
Hence, in a more complex environment, P may resume doing other work, rather than

waiting for messages along x to be successfully received.

Bi-directional: a bi-directional communication typically models the request-reply type of

communication protocol. In 1t-calculus, we model it using two uni-directional

synchronous communication bindings. However, we need to make sure that the request is

sent earlier in time than reply.

58

Dynamic PARSE AnalysisNerification Methodology

p p

Figure 4.5. Bi-directional Communication

A single bi-directional communication can be modeled as:
- - - -
x <u>.u(z).0 I x(u). u <v>.0 or x <u>.u(z) I x(u). u <v>

where x is the forward request path, and u is the reply path.

A continuous bi-directional communication between processes P and Q can then be

modeled as:

P(x,u) = x <u>.u(z).P(x,u)

-
Q(x, v) =x(u). u <v>.Q(x, v) vis the desired/computed result

and thus the system is:

system =PI Q

where processes P and Qare executed concurrently.

Broadcast:

p X

Figure 4.6. Broadcast Communication

Consider this:

P = x<y>.P

Q =X(y).0

R =x(y).O

S =x(y).0

System = P I Q I R I S

59

Dynamic PARSE AnalysisNerification Methodology

Upon receiving y from channel x, processes Q, R, S becomes null processes O which can

not continue receiving copies of y. Hence Q, Rand S each receives one copy of y.

Further, P does not need to know how many copies of y to send out. P is repeated to

output unbounded copies of y through channel x. The system is terminated when no

active processes exist to receive y through x.

Although there is no primitive broadcast operation in n-calculus, we can simulate it via a

combination of the primitives presented in this section. We may view the above model of

broadcast communication as an atomic operation, thus achieving the purpose of design

verification and deadlock detection using the corresponding formal model.

-- Communication Path Constructors --

In PARSE, the order of handling of multiple input to a process object can be explicitly

specified using path constructors. The various types of path constructors include

deterministic, non-deterministic, and concurrent.

Non-deterministic

X

p

y

Figure 4.7. Non-deterministic Input Ordering

Consider Figure 4.7. Process Q handles the incoming messages in a non-deterministic

order. The choice operator inn-calculus '+' is non-deterministic:

-
P = x<v>.P

60

Dynamic PARSE AnalysisNerification Methodology

R = y <w>.R

Q = x(v).Q + y(w).Q

In this case, it is non-deterministic whether message along path x will be handled first by

Q, or message along path y takes precedence.

Concurrent

In this case, the receiver process is always composite, and there are internal primitive

processes that may handle the multiple inputs separately/independently.

, - - -...

X

p

y

Figure 4.8. Concurrent Input Ordering

The corresponding n:-calculus model for Figure 4.8 is as follows:

Q = QI I Q2

QI= x(v).QI

Q2 = y(w).Q2

y

and the definitions of P and R remains the same as the case for non-deterministic input

handling.

61

Dynamic PARSE AnalysisNerification Methodology

Determinstic

X
p

y

Figure 4.9. Deterministic Input Handling

Consider:

Q = x(v).y(w).Q

this is specifying that the message from channel x will be received before the message

along y is received. Hence, it implicitly specifies some sort of order in the handling of

messages. However, it also specifies that the handling of the messages is alternating, that

is, unless w is received via y, Q cannot go back and repeat processing v from x. This is

clearly an undesirable behaviour.

If we model it this way:

Q = x(v).y(w).Q + y(w).Q + x(v).Q

The first choice x(v).y(w).Q is for when both input from channels x and y arrive together,

then x is handled first before input from y, since x is the higher priority channel. The

second choice y(w).Q and the third choice x(v).Q are for when the inputs from x and y

arrive at different times, then whichever input has arrived, it is handled by Q.

-- Hierarchical Construction --

The Dynamic PARSE design notation supports hierarchical construction of software

components.

62

Dynamic PARSE AnalysisNerification Methodology

When using n-calculus for correctness verification, the description of the high-level

(composite) object is simply the total of all its internal process objects and the behaviour

of the higher-level object is the individual behaviour of the internal objects combined.

Figure 4.10 is a simple PARSE design which is constructed hierarchically:

X

s

X
p

(s J->

Figure 4.10. A Simple Hierarchically Constructed PARSE Design

The corresponding n-calculus description is as follows:

System = (v x)(S(x) I Q(x))

Q(x) = x(y).Q(x)

S(x) = (vy,z,w)(P(x,y,z,w) I R(z))

P(x,y,z,w) = x <y>. x <w>.P(x,y,z,w)

R(z) = z(w).R(z)

Notice the use of the restriction operator v in the description of S. The name z is

restricted so that its scope is within S. Hence, even if z occurs freely in Q, it is not the

same z as that which is restricted to P and R.

-- Other Dynamic Process Structures --

Dynamic process creation can be modeled in n-calculus easily due to the basic idea of

naming, and that all references to various objects can be passed just like names.

63

Dynamic PARSE AnalysisNerification Methodology

Consider the example in Figure 4.11 where process P creates a helper process Q to carry

out work for a client.

req p

,,----....
, ',

I

\. Q /I
✓>_ ___ ,, , , , .,

,~ result , , ,--------,
I q:=:7· I_ _____ , ~ I
L---------1
I I
I l '--------~

Figure 4.11. Dynamic Process Creation

The creation of process Q by process P can be modeled as in the following:

P(req,create) = req(result). create <result>.(P(req,create)I ("r)(Q(r,create)))

where P sends the handle to the Client communication path to Q, namely result, and Q

then subsequently uses to send reply of work done back to the client. Notice that P has

the ability to create several copies of Q depending on the number of requests from clients.

The process Q is defined as follows:

Q(r,create) = create(result). result <r>.0

In this case, the helper process Q dies of aging, that is, it automatically exits the system

once its work has been carried out. Process Q may also exit the system via the

assassination method, where it terminates when receiving the signal delete from another

process, possibly process P:

Q(r,create,delete) = create(result). result <r>.Q(r,create,delete) + delete(die).0

Lastly, we need the client processes to fire off the request:

client = req <r>.client

and the total system at the beginning can be modeled as:

system = client I P

64

Dynamic PARSE Analysis/Verification Methodology

to reflect the fact that process Q does not exist at compile time, but it may be created by

process P during run-time.

-- Dynamic Communication Structures --

Dynamic communication structures occurring frequently in (for example) mobile systems

can be easily modeled using 1t-calculus. Figure 4.12 is a PARSE design of an example of

a dynamic communication structure. In this example, the control and access to a specific

communication path is not held exclusively by one and only one process object, but is

passed around between various different process objects.

start I data

···········->-·······················:

stop I

0
data

start2
···········)························i

Figure 4.12. Dynamic Communication Structure Example

Here, the data communication path is dynamic, where process objects QI and Q2 have

access to the data communication path at different times in order to pass information to

process R.

The corresponding 1t-calculus expressions for this example is as follows:

Pl(startl, stop], start2, stop2, data)=

stopl. start2 <data>.P2(startl, stop], start2, stop2, data)

P2(startl, stop], start2, stop2, data)=

stop2. start I <data>.P l(startl, stop], start2, stop2, data)

QJ(startl,stopl,data) = data.Ql(startl,stopl,data) + stopl(sl).ldleQJ(startl,stopl)

65

Dynamic PARSE AnalysisNerification Methodology

Q2(start2,stop2,data) = data .Q2(start2,stop2,data) + stop2(s2).ldleQ2(start2,stop2)

IdleQJ(startl,stopl) = startl(data).Ql(startl,stopl)

IdleQ2(start2,stop2) = start2(data).Q2(start2,stop2)

R(data) = data.R(data)

SYSTEM= (Astartl,start2,stopl,stop2,data)

(Pl(startl, stop], start2, stop2, data)

I Ql(startl,stopl,data)

I IdleQ2(start2,stop2)

I R(data))

Note: data in the above n-calculus expression is an output channel. This is a shortcut

where the name of the output is not specified. This syntax is commonly used in various n

calculus literature [Milner91] [Milner92], and is also accepted by the automated n

calculus tool [Victor94].

66

Dynamic PARSE Analysis/Verification Methodology

Summary

Table 4.2 is a summary of mappings from Dynamic PARSE to n-calculus.

Dynamic PARSE

A software architecture

Process objects

Communication Paths

(Message passing)

· Synchronous

· asynchronous

· bi-directional

· broadcast

Path constructors

· non-deterministic

· concurrent

Corresponding n-Calculus Expression

A parallel composition of a set of interacting agents.

Agents

Input/output bindings, i.e. action term such as <y> and x(y).

· a pair of input/output bindings, e.g <y> ... I ... x(u) ...

reduction rule is synchronised

· sender sends a non-blocking send, e.g. P = I P (analogous to

asynchronous n-Calculus), or, insert a buffer agent between

the coupled input/output binding.

· 2 uni-directional synchronous communication bindings,

where time ordering is strictly request before reply:

e.g ... <u> ... u(v) .. -I ... x(z) ... <y> ...

· can be simulated with a set of asynchronous uni-directional

communication

Different ways of "composing" multiple communication paths

so as to have different ways of ordering.

· Choice operator is non-deterministic, e.g. P = x.P + y.P

· Independent handling by different sub-components

e.g. P(x,y) = Pl(x) I P2(y), Pl(x) = x.Pl, P2(y) = y.P2

67

· deterministic

(prioritised input

handling)

Dynamic Process

Creation

Process Deletion

· aging

· assassination

· suicide

Transactional

Communication Paths

Hierarchical

Construction

/modular encapsulation

Dynamic PARSE AnalysisNerification Methodology

· There is no prioritised choice in p-Calculus. However, for

deadlock analysis and verification purposes, we simplify this

to be a non-deterministic choice of all possible combination

of choices, thus covering all possible situation for state

exploration.

Newly spawned process is to be composed in parallel to the

parent process. The name 'create' can be used as a handle to

pass any other names (parameters, state info) to the newly

created process.

Process exits system by becoming null 'O' process.

· After all action terms, agent becomes 'O', e.g. P = y .. 0

· Explicit 'delete' signal sent to process to be deleted.

e.g. P = , Q = ... d ... , agent P assassinates Q here

· Upon receiving certain state information (name), process

terminates itself by becoming the null 'O' process

Handles to communications paths are simple 'names'. Names

can be freely passed around to different agents, thus achieving

re-configurable communication structure.

Use of restriction operator n for hiding internal details of a

module, e.g. S(x) = (nz)(P(x, z)IR(z)), where z is an internal

communication path of the composite module S.

Table 4.2. Summary Mapping of PARSE-D Components ton-Calculus

Expressions

68

Dynamic PARSE AnalysisNerification Methodology

4.2.3 Comparison between the n-Calculus and Petri Nets Approach

I. Mathematical Foundations

.1r-Calculus is a process algebraic approach, whereas Petri Nets is a state automata

approach, which is based on bag theory.

The process algebraic and the state automata approaches are better than set-theoretic

models such as Z, VDM, and B in describing the actual happenings during

reconfiguration of a distributed system. While set-theoretic models capture the states of

components as a result of (communication) reconfiguration, they are not equipped to

describe the actual happenings during the reconfiguration. Both the process algebraic and

state automata methods can better capture the interaction between process components,

and can be 'transformed' or 'executed' to model behaviour of the system over time.

Both .1r-Calculus and Petri-Nets use some form of state-space exploration method (e.g.

reachability trees, traces) for model checking.

II. Expressiveness of Modeling Elements

1t-calculus enables the modeling of concurrent and distributed processes where the

system structure is dynamic. It is based on the notion of naming and the passing of those

names between processes in the system, to enable dynamic communication, or message

passing amongst entities. Complex, powerful features can be expressed in 1t-calculus

precisely and succinctly.

The basic place-transition Petri Net is not expressive enough to model distributed systems

with dynamic features. An extension of Petri Net, namely Self-Modifying Net must be

used in order to model dynamic structural changes in a system.

69

Dynamic PARSE Analysis/Verification Methodology

III. Pragmatics - Ease of Use

The use of n-Calculus for systems modeling involves a substantial training and learning

period at startup. In general, software engineers are reluctant to use formal algebraic

methods to model systems [Saiedian96].

Petri-nets can have textual representation for tool machine analysis, but also importantly,

the graphical representation of concurrency is intuitive to use.

IV. Hierarchical Composition/Decomposition

n-Calculus models support true hierarchical structuring. Composition is carried out via

well defined mathematical operators,+ (choice composition) and I (parallel composition),

coupled with encapsulation, and the A operator for hiding in modules.

Petri Nets do not support true hierarchical composition [Valmari96]. Different levels of

designs are firstly flattened in order to generate a single large Petri Net model for the

system. This has implications in limiting the use of composition reachability analysis

[Cheung94] [Russo97].

V. Automatic Verification Tool Support

For the basic Petri Net, the formal framework has been thoroughly researched. There are

various mature Petri Net tools that support the construction, and subsequent verification

of Petri nets. An example of a widely used Petri Nets tool is Design/CPN [Jensen92].

However, for Self-Modifying Nets, there is currently no known tool support. It has been

shown that the reachability problem is undecidable for Self-Modifying Net [Valk78]. In

fact, it has been shown that extended Petri Nets with the ability to test for zero allows a

Petri Net to simulate a Turing machine. Thus, a Petri Net with inhibitor arcs can model

any system. As a consequence, almost all analysis questions for Petri Nets become

undecidable, since they are undecidable for Turing machines. Hence, the Self-Modifying

Net is a good theoretical framework for modeling PARSE designs, but subsequent

analysis of the resultant Self-Modifying Net can only be done manually, and only to a

certain extent.

70

Dynamic PARSE AnalysisNerification Methodology

Model checking tools for n-Calculus also suffer from the same state explosion problem.

However, this problem is alleviated in two ways. Firstly, the use of compositional

reachability analysis is possible with n-Calculus models, hence an analysis of the system

design can be carried out on isolated modules, and if required, integrated analysis with

black-box components that have been proven correct can be carried out. Secondly, then

Calculus model checking tool (Mobility Workbench) employs heuristics which reduce

the search space during model checking. The details for the on-the-fly algorithm can be

found on [Victor94].

In short, n-Calculus is supported by the Mobility Workbench, and there is no tool support

for Self-Modifying Nets.

VI. Future Work

There is an abundance of theoretical work in the area of n-Calculus equivalence. The

equivalence theory, once mature, can be used to aid the refinement of specifications

[Morgan90], and bridge the gap between design and implementation. There is much

scope in this area of research.

For Petri Nets, the translation to program code is not possible. The refinement of Petri

nets does not give rise to interesting results.

71

Dynamic PARSE Analysis/Verification Methodology

4.3 The Dynamic PARSE Design Analysis and Verification
Process

The general approach to the development of the Dynamic PARSE Design Analysis and

Verification process involves the following steps:

• choose an appropriate formalism

• devise mapping from Dynamic PARSE design features to the formalism chosen

• reason about system by analysing the formal model

Dynamic PARSE designs can be analysed for the presence of structural deadlocks

[Birkinshaw95]. In a Dynamic PARSE design, a structural deadlock occurs at an

architectural level when there is circular dependency amongst process objects. In n

Calculus terms, deadlock occurs when a system of collaborating agents is equivalent to a

dead process. That is, when the system cannot proceed to do any useful work. For an in

depth discussion on n-Calculus' equivalence theory, please refer to [Sangiorgi96].

The Dynamic PARSE Design Analysis and Verification process works in two ways:

Process 1: Design analysis process for a single design - design refinement aid

A designer would typically go through the following process in developing a software

architecture using the Dynamic PARSE method:

1. devise an initial software architecture design using the Dynamic PARSE process

graph notation

2. transform the Dynamic PARSE design to the corresponding formal model (e.g. n-

Calculus)

3. analyse the formal model for any design faults (e.g. deadlock checking)

4. revise the initial Dynamic PARSE design to eliminate design fault

5. repeat steps 2-4 to refine the software architecture design.

72

Dynamic PARSE Analysis/Verification Methodology

Dynamic PARSE
,~

Design

Corresponding Design
Formal Model Feedback

'

Property Checking
(e.g. deadlock)

Figure 4.13. The Dynamic PARSE Design Analysis/Verification Process for

Single Designs

Process 2: Design analysis for multiple designs (design alternatives) - design decision

aid.

The Dynamic PARSE method can also be used as a design decision aid by taking the

following steps:

1. devise multiple/alternative designs using the Dynamic PARSE process graph notation

2. transform the alternative Dynamic PARSE designs to their corresponding formal

models.

3. analyse the various formal models for design faults.

4. based on the feedback from step 3, choose the best design alternative.

73

I

Alternative Dynamic
PARSE Designs

I
I

Corresponding
Formal Models

I
I

Property Checkings
(e.g. deadlock)

--

-..

-

Dynamic PARSE Analysis/Verification Methodology

Select
Design

'~

~
Bes t Design

ernative Alt

Figure 4.14. The Dynamic PARSE Design Analysis/Verification Process for

Multiple Design Alternatives

Hybrid approaches can also be taken.

• Multiple design alternatives can be analysed first. Once a particular design has been

selected, it can be further refined iteratively.

• All designs can firstly be refined separately using Process 1, and then a single design

can be chosen from analysing all refined design alternatives.

The Dynamic PARSE Design and Analysis processes are supported by the PARSE-DAT

tool. Chapter 5 details this supporting environment.

4.4 Conclusion

Additional confidence in the validity and correctness of the Dynamic PARSE process

graph design notation is gained via n-calculus and Petri Net modeling.

We have chosen n-calculus as the formalism to support design analysis and verification

in Dynamic PARSE over the Self-Modifying Net. This decision was made according to

comparisons between them in the areas of expressiveness, usability of modeling

language, tool support and possible future works.

74

Dynamic PARSE Analysis/Verification Methodology

However, n-calculus is a complex formalism that has a steep learning curve, and often

software professionals do not have the time or resource to master its use. Hence, tool

support for this verification should be constructed to hide the details of 7t-calculus from

software engineers.

By using the n-calculus formalism to model Dynamic PARSE designs, we also have

increased understanding of the role and nature of module interconnection languages

[Rice94].

All of the n-calculus definitions in this chapter have been checked for correctness and

deadlock freedom using the Mobility Workbench [Victor94], which is an automated tool

for manipulating and analyzing systems described in 7t-calculus.

By adopting the Dynamic PARSE Design Analysis and Verification methodology,

software developers may reduce risks involved in large-scale software development

projects. Design alternatives can firstly be explored through analysis according to certain

properties, before an investment is placed on a single design. Chapter 5 will describe the

PARSE-DAT environment which supports the design and analysis stages of the Dynamic

PARSE methodology. This supporting environment will simplify the use of the Dynamic

PARSE methodology by automating the analysis process.

75

Dynamic PARSE Design Analysis Tool

5. Dynamic PARSE Design
Analysis Tool

5.1 Introduction

For a software engineering methodology to be widely adopted, it is important to have

accompanying tool support. A Computer Aided Method Engineering (CAME) tool and or

a Computer Aided Software Engineering (CASE) tool should have the following features

[Quatrani98]:

• easy to use graphical editing environment, which supports:

- click and drop diagram construction,

- consistency checks,

- syntax and semantic validation (of design notation),

- navigation,

- printing facility,

- documentation,

- repository and multi-user support.

• provision for abstraction of underlying formal model

• support for design analysis

• provision for seamless transition between development stages

• steps involved in the use of the tool must reflect the development process as

described by the methodology.

There are several ways to achieve CASE and CAME tool support for a new software

engineering methodology [Gray97]:

1. Use existing CASE tools that have been built for a different, but similar methodology.

76

Dynamic PARSE Design Analysis Tool

2. Use general-purpose application software such as word processors and drawing

packages.

3. Construct full-featured custom tools using metaCASE products.

4. Construct custom tools using other implementation technologies not specifically for

CASE tool constructions. For example, hand coding in 3GLs.

We have chosen to use a metaCASE tool (method 3) in constructing a CASE tool that

supports the Dynamic PARSE design and analysis methodology. These meta CASE tools

are specialised application generation environments specifically intended for the

construction of new CASE/CAME tools. Naturally, resultant CASE/CAME tools will be

more powerful than simply reusing existing CASE/CAME tools (method 1) or from using

general purpose packages (method 2). At the same time, less tool development time and

resources are required, as we are not building CASE/CAME tools from scratch as in

method 4 [Gray97].

PARSE-DAT (PARallel Software Engineering - Design Analysis Tool) is an integrated

environment that enables the design and analysis of distributed software architectures.

PARSE-DAT supports the Dynamic PARSE Design and AnalysisNerification

methodology by providing a design tool for the software design stage (PARSE-OT), as

well as supporting the translation of graphical designs into corresponding 7t-Calculus

formalism expressions, for analysis and verification purposes (PARSE-AT). Figure 5.1

illustrates the iterative design process, with feedback from the analysis/verification result

obtained from the tool.

77

Dynamic PARSE Design Analysis Tool

r---------------------------------,-----------··· i

p~
or

Mtaliit+
I
I
I
I
I
I
I
I
I
I
I
I I

Mtility
Wik
hn:h

..

Figure 5.1. Dynamic PARSE Design and Verification Methodology

This chapter firstly presents the metaCASE approach to the implementation of the

PARSE-DAT design and analysis/verification environment. Then, the PARSE-DAT

design environment and the PARSE-DAT analysis/verification environment will be

described. Sample use of the integrated environment will be given through a sample

design constructed and formally analysed in PARSE-DAT.

5.2 The MetaCASE Approach

5.2.1 MetaEdit+ Overview

MetaEdit+ [Metacase96a] is a metaCASE tool that can be customised to allow the

construction of multi-user CASE tools to support different software engineering

methodologies. The specification of methods in MetaEdit+ is managed with the Method

Workbench method engineering toolset. This includes tools that can be used to describe

the methods to be supported in MetaEdit+.

The following is a list of features of MetaEdit+:

• Multi-user - several users can concurrently operate on the same repository

• multi-tool - different tools provide a different view of the same object

78

Dynamic PARSE Design Analysis Tool

• multi-method - the environment provides mechanisms for method integration and

consistency checking

• multi-form - the environment provides several representation formats for the same

design object

• multi-platform - MetaEdit+ is platform independent both for the environment and the

data.

Further, MetaEdit+ provides the following four families of tools:

• Environment management tools

• Model editing tools

• Model retrieval tools

• Method management tools

Table 5.1 taken from [Metacase96c] details the functionality of the various tools.

Tool Family Tool Tool Functionality

Environment Startup Launcher Initialization of the environment, login, launching of
Mana2ement tools Main Launcher other tools, modification of run time parameters
Model Editing Tools Diagram Editor Manipulation and creation of diagrams where objects

and relationships can be viewed and manipulated as
graphical diagrams

Matrix editor Manipulation and creation of models which can be
viewed and edited as matrices, and algorithms
performed on them to aid design decisions.

Table Editor Manipulation and creation of object types in models
and all their properties. Model object types can be
viewed together. This is especially useful for
requirements analysis.

Model Retrieval tools Repository Browsers Allows hierarchical access to models and metamodels
stored in the repository;

Report Editor Generates textual descriptions of the models stored in
the repository using a procedural query and data
manipulation language.

Method Management Object tool Specification of conceptual object types and their
Tools Property tool textual representations

Relationship tool
Role tool
Graph tool
Symbol Editor Specification and design of graphical objects and their

behaviors. Linking of graphical objects to conceptual
object types

Table 5.1. MetaEdit+ Tools

79

Dynamic PARSE Design Analysis Tool

The PARSE-DAT environment has been implemented using the MetaEdit+ metaCASE

tool. Although MetaEdit+ supports a multi-user, collaborative editing environment, the

particular version we used i~ building this prototype is a single user version running on

Windows NT. However, the model implementation stored in the repository can be

migrated to a multi-user (client-server) version running on other platforms such as the

various flavours of UNIX.

5.2.2 The GOPRR Meta-Model

The conceptual data model employed by MetaEdit+ is the GOPRR model

[MetaCase96d].

The basic GOPRR modeling constructs are:

• A Graph denotes an aggregate concept that contains a certain set of objects and their

relationships (with specific roles). An example of a graph is a Data Flow Diagram

[Y ourdon79] [Y ourdon89]. The graph concept is fundamentally a generalised

decomposition graph: it can be included in a parent graph, attached to an object, role

or relationship. Hence, a graph enables modeling and representation of recursive

structures such as decomposition, or complex objects as often found in development

methods.

• Objects, which consist of independent and identifiable design objects. These

typically appear as shapes in diagrams, and can have properties such as names.

Objects are basic components of methods. Examples of objects are an Entity in an

Entity Relationship Diagram or a Process in a Data Flow Diagram.

• Properties are attributes of objects and can only be accessed as parts of objects or

relationships. Properties typically appear as textual labels in diagrams, and they

can contain single data entries such as a name, text field or number. An example

of a property is the number of a Process in a Data Flow Diagram.

• Relationships are associations between objects, and can also have properties.

Relationships typically appear as lines between shapes in diagrams, or verbs in

texts. An example of a relationship is a Data Flow in a Data Flow Diagram.

• Roles define the ways in which objects participate in specific relationships. In

diagrams roles typically appear as the end points of Relationships (e.g. an

80

Dynamic PARSE Design Analysis Tool

arrowhead). Roles too can have properties. An example of a role is the

specification by directed arrow which end of a data flow relationship is 'to' and

which 'from' part of the flow.

Through the use of this GOPRR meta-model, the concepts, languages, graphical

representations and operations of a software architecture design method can be supported

in MetaEdit+.

5.2.3 Output Specification Tool

There are three environment generators in MetaEdit+.

• The Method support environment generation system compiles the method's object

specifications into parts of the metamodel repository when they are defined.

• The Method help generation system generates on-line help components associated

with each method. This help can then be accessed through a model editing tool

interface from the repository.

• The Report and Transformation generation system. It is used for delivering various

reports and conducting checking on the models.

The primary output specification tool is the Report Editor, which is a part of the Report

and Transformation generation system. After the conceptual content of the method has

been defined, textual representation from the developed models can be produced within

MetaEdit+. The textual outputs can be for example check lists, interconnection lists,

skeleton program code for the system, or acts as input to external model analysis tools.

Such outputs can be defined within MetaEdit+ using the Report Editor tool.

The Report Editor is based on the use of templates. The templates provide access to the

programming constructs in the Report Definition Language. The Report Definition

Language is similar to a 3GL providing sequence, selection and iteration, as well as

references to each element in the GOPRR model, i.e. Graphs, Objects, Properties, Roles

and Relationships.

81

Dynamic PARSE Design Analysis Tool

Once the report has been specified, it can be tested by selecting the Run menu option.

The reports are automatically tied to the method used, and thus are loaded automatically

when the method is selected.

5.3 PARSE-DAT Design Environment (PARSE-OT)

5.3.1 Implementation

The development of PARSE-OT involved the following steps:

1. Development of the method data-model

2. Development of representations

3. Evaluation of the models

4. Development of reports and model checking

5. Generation of support environment and guidance

The steps were carried out partially in parallel, and there were iterations through the

steps. The evaluation of the model led to redesign and corrections, and the use of the

method led to its subsequent evolution.

The primary focus of the development of the Dynamic PARSE data model involves an

examination of the conceptual content of the Dynamic PARSE method, i.e. identifying

the objects and their relationships in the method. Once these objects have been identified,

they are visually represented using the GOPRR notation [Metacase96d]. The conceptual

structure forms the core of the PARSE-OT tool development, because it defines the data

model of the PARSE-OT environment, and is used as the source of all other definitions

and tool functionality. Figure 5.2 shows the GOPRR model of Dynamic PARSE.

82

Nam:

Data Server
Object

Figure 5.2 GOPRR Model of Dynamic PARSE

83

Synchronous
C.Omnmnication

Asynchronous
C.Omnmnication

C.Omnmnication

Nam:

Nam:

Nam:

Nam:

Dynamic PARSE Design Analysis Tool

The similarities between the various types of Dynamic PARSE Process Objects led to the

abstract parent object. These similarities include the properties of name and description,

as well as the connections via the various types of communication paths. This inheritance

hierarchy can be seen in the centre of Figure 5.2, where the rectangles are object types,

diamonds are relationship types, circle role types, and ovals property types. Dynamic

PARSE Process Objects thus has two properties: Name and Description, and the three

Dynamic Process Objects inherit these properties, as well as adding another: Cardinality.

Process objects are connected by communication paths via To and From roles.

5.3.2 Using PARSE-OT

Dynamic PARSE designs are constructed in the PARSE-DAT design environment

(PARSE-DT). Figure 5.3 shows the main graph editor window, where Dynamic PARSE

designs can be constructed using various Dynamic PARSE design components provided

in the palette. This supports rapid prototyping. The main MetaEdit+ control window is

also displayed, from which the graph editor window can be invoked.

The software architecture design of an example Data_Control module has been

constructed using various tools in the palette, and is displayed in the main graph editing

window. There are two passive data server process objects, coordinated by two control

process objects. The four process objects are connected by various communication paths.

Design rules are built into the PARSE-DT environment, hence imposing restrictions on

designs. For example, if a designer attempts to connect an asynchronous communication

path to a data process object, the editor will display a message window indicating that

this is not allowed, as it is meaningless to send messages to a data server asynchronously.

This feature removes many common design errors.

Designers can also specify various properties about the individual design components.

Such properties include for process objects - process object name, behavioural

description, decomposition (for composite process objects), and for communication

paths: path name, type of message, protocol and priority.

84

Dynamic PARSE Design Analysis Tool

The PARSE-DAT tool may be used in a multi-user mode, due to the support from

MetaEdit+. Thu , collaborative oftware architecture de ign work can be carried out

amongst a design team, and the precise usage of the Dynamic PARSE design notation

eliminates any possibility of design ambiguity or confusion.

Meta.Edit+
Main

Window

PARSE
Process Graph

Editing Window

O>--- - - - - - - - - --'""-":

85

Graph
Editor
Palette

Dynamic PARSE Design Analysis Tool

5.4 The Design Analysis Environment (PARSE-AT)

5.4.1 Implementation

The design analysis environment consists of a model transformation processor, built using

the Meta-Edit+ Report Generator. This generates a corresponding n:-Calculus model in

textual form. These n:-Calculus models may then be analysed for correctness.

e,apci11e, ...
.l,rapk 1'ife .. ,

EIXT_CONT

re _IOdc

GRAP~"TA

ROl j l----11--->-- -l---+-----""!1'•' ~\

•
Active: 'Nono' Grid: 100@100 Zoom : 100'11

{ 'agent ', :Process name; 'C
dowh,le >Q; l :Path name; ','; f.
l = ·,

1 r now the right hand side of p1 expression~,

•

DoWhile
ForEach

do -Asynchronous to (PARSE)>Asynchronous (PARSE], (Path name , '',)

do - Synchronous to (PAASE)>Synchronous (PARSE), { .Path name, .',)

do - Bi-directional to (PARSE)>Bi-directional (PARSE), (Path name, '',)

dowh1le -Brnadcasl to (PAR SE)>Broadcasl (PARSE], (Path name, '',),

r right hand side out channels "'/

do -Asyn chronous from (PARSE) >Asynchronous (PARSE) (· ·; Path name; ''.

do -Synchronous from (PARSE)>Synchronous (PARSE) (" '. :Poth name; '';)
• ... ,.....,,... . •-~ l !"

Figure 5.4 n:-Calculus Report Generator

The control structures available for use include Do, DoWhile and ForEach (iterations), and

If (selections). The iterations can be applied to all of the GO PPR data model entities, which

correspond to the PARSE-0 process graph, the various process objects, the communication

paths, as well as their respective properties and roles. In the translation, the process object

names' have been used as agent names, and the communication path names used as n:-

86

Dynamic PARSE Design Analysis Tool

composition of all the static process objects. Figure 5.4 shows the Report generator in

PARSE-DAT.

5.4.2 External Design Analysis Tool: Mobility Workbench

Once a Dynamic PARSE design has been constructed in the PARSE-OT environment,

the corresponding 1t-Calculus can be automatically generated for analysis/verification

purpose. The 1t-Calculus generator has been implemented by utilising the MetaEdit+

Report Editor.

The Mobility Workbench is a model checker for 1t-Calculus. It has the following

capabilities:

• syntactical checks on 1t-Calculus expressions

• equivalence checks on multiple 1t-Calculus expressions

• deadlock detection (with output trace)

• deadlock freedom verification

• textual file input

• timing information

• debugging messages

The Mobility Workbench employs the on-the-fly search algorithm to alleviate the state

explosion problem. The On-the-fly algorithm relies on demand-driven generation of

states to avoid the construction of irrelevant system configurations [Andersen94]

[Bhat95].

5.4.3 Using PARSE-AT

Figure 5.4 shows how users can invoke the 1t-Calculus report generator in the PARSE

design analysis and verification environment (PARSE-AT).

87

PARSE Process
Graph Editing

Window

0

Generated
1t-Calculus

agent expressions

Dynamic PARSE Design Analysis Tool

" HUl!>set deb.,9 1
tNE>1rp.,t • . • ldat.a.pi ~
MIJE)d&adl ocks MTA..UlfTROL
No der.ad locks found ,
NIJl >l i.-e deadlod ., MTA_CCNTRa.
No deadlocks round .
UMtr (]l\J ttrae 8l <1Pt,M ; 0,109409
S~s l e111 CA.I l 1r,i~! 0.001420
CC ll~: 0. 001183
Rea l tl .-e e lepnd; 0 , U6001
011"1.'!rhead! 0.003989
111JB,0

Generator

Process
Graph Palette

9 14:20:02 t£T 1995)

Mobility
Workbench

Figure 5.5 PARSE-AT Screen Capture

The user can firstly generate the corresponding re-Calculus expressions from the graphical

design by invoking the re-Calculus generator. The resultant re-Calculus agent expressions

are displayed in the 'Report Output' window. This textual output can then act as textual file

input to the Mobility Workbench [Victor94] , where analysis and verification can be carried

out. Currently, the Mobility Workbench runs on Windows NT (as its corresponding license

on UNIX is around 10 times more expensive), and the University facility provides more

powerful Sun machines which are suited for running the mobility Workbench. Hence, we

have adopted the textual file sharing method for integrating the use of Mobility

8

Dynamic PARSE Design Analysis Tool

use of Mobility Workbench's Report Editor and the Mobility Workbench. In future

versions, this mechanism can be improved through either of two means:

purchase MetaEdit+ license for UNIX platforms, or

recompile Mobility Workbench to produce executables running on PCs.

In this example, the Data_Control module has been analysed and shown to be deadlock

free.

In some other cases, the analysis result from the Mobility Workbench may indicate that

the design is not deadlock free. In which case, that information should be taken into

account in the next refinement phase. Alternatively, the architect may wish to discard the

faulty design altogether and opt for a different design.

5.5 Conclusion

This chapter has presented an environment for supporting the design and analysis of

distributed software architectures. PARSE-DAT provides an editing environment for

software architects to specify software architectures quickly and precisely using the

Dynamic PARSE Process Graph Notation. The resultant designs can then be analysed

and checked for structural deadlocks.

The PARSE-DAT environment has been implemented using a metaCASE tool called

MetaEdit+. The advantage of taking this approach is twofold: by using a meta-CASE

tool, which is a specialised application generation environments, less tool development

time and resource is required compared to implementation using 3GLs. At the same time,

the resultant tool/method can be fully customised according to the methodology, and is

more powerful and useful compared to using general-purpose applications.

The various features of the PARSE-DAT environment include the following:

• Easy to use graphical editing environment (PARSE-OT), which includes

completeness and consistency checks.

• Automatic transformation of graphical design to corresponding formal model

(PARSE-AT).

• Support for external design analysis (PARSE-AT).

89

Dynamic PARSE Design Analysis Tool

The Dynamic PARSE software design methodology coupled with the supporting

environment thus encourages an iterative design process by enabling software architects

to check for design correctness of various alternate designs at an early stage of

engineering process.

The advantages of this early iterative design process include:

• Early detection of design fault reduces cost in development.

• Iterative verification of alternate design choices allows software architects to choose

the better design.

90

Case Studies

6. Case Studies

This chapter presents four case studies designed and analysed using the Dynamic PARSE

methodology.

The case studies range from the simple client-server and pipeline architectural style, to a

novel design of a high speed network, and a collaborative work environment.

For each of these case studies, the Dynamic PARSE architectural design will be

presented. This is followed by the corresponding design analysis and verification carried

out using PARSE-DAT.

6.1 A Client-Server System

6.1.1 Dynamic PARSE Design

Client-server computing exploits all the strong points of a distributed system, such as

fault tolerance and application portability. Developing software using the client-server

paradigm encourages code reuse. In a networking environment, a server often serves

multiple clients [Comerford94] [Larocque94]. In order to exploit the hardware

parallelism, the main server often creates multiple workers to provide services to all

clients.

In the top-level diagram (Figure 6.1), client is modeled to be a dynamic process. This

means there may be multiple clients at any one time, or there may be no clients at all. An

external object called client_generator is used to create clients in the system. In real

world applications, the client request may come from the user keying a request through

91

Case Studies

the keyboard, or may simply be a part of an appl ication program needing certain

computations carried out by another program.

~ ate ~/~~~~~'\,..., ____ r_eq_u_es_t--t■-)--ir Secvec J
I L----✓ \ ::~e_n~~/ ()) t j
Client_ reqreply

generator

Figure 6.1. Top Level Process Graph of a Client-Server System

There are two communication paths between a client and the server. There 1s a non

blocking send from the client to request service to be done, with a blocking receive at the

server's end. Then, a bi-directional communication path is set up, for the actual request

message and reply to be transferred.

request Main_
server

create
,,,.,,.---

, '
,' [O .. m] \
\ worker ,'

',,l::q,eply

Figure 6.2. Decomposition of the server process

The server process here is modeled as a control process. Its decomposed structure is as

shown in Figure 6.2. Its function is to receive requests from clients, create instances of

workers to perform the necessary work or computation, and upon completion, send the

required result back to clients. Notice that the work request and reply messages are

passed between clients and the worker processes without the supervision of the

main_server process. Upon work completion , instances of the worker process objects exit

the system. Hence the default terminati on behaviour: aging.

92

Case Studies

6.1.2 Dynamic PARSE Analysis and Verification

The following is the corresponding partial n-Calculus model generated by PARSE-AT

for the purpose of checking for structural deadlocks. Basically, the process objects have

been translated into n-Calculus agents with possible actions or events being possible

messages passed along the various communication paths, which essentially represent the

dependency relationships between the various process objects in the system. Notice

reliable communication is assumed, hence the simplified translation for asynchronous

communication paths. This simplification does not alter the deadlock checking result.

The creation of WORKER process is similarly simplified. In addition to achieving a 7t

Calculus model that is easier to understand (for the presentation purpose in this thesis),

this simplification also reduces the search space, hence reducing the time required for the

analysis process.

agent CLIENT(reqreply, request) = 'request. 'reqreply. CLIENT <reqreply, request>

agent CLIENTSERVER = (SERVER I CLIENT)

agent SERVER = (MAINSERVER I WORKER)

agent MAIN SERVER(create, request) =

request. 'create.MAINSERVER<create, request>

agent WORKER (reqreply,create) = create.reqreply. WORKER<reqreply,create>

The overall system is thus a parallel composition of all the process objects, namely the

CLIENTSERVER agent. A deadlock check can then be carried out to detect any structural

deadlock in this client-server software architecture. Also note that the composite

SERVER object can firstly be analysed for deadlocks, as this n-Calculus model supports

compositional analysis for a hierarchical Dynamic PARSE design. The following is the

analysis output from Mobility Workbench:

MWB>deadlocks CLIENTSERVER

No deadlocks found.

MWB>deadlocks SERVER

No deadlocks found.

93

Case Studies

The analysis results from Mobility Workbench indicate that this cli ent-server architecture

is free from structural deadlocks. Hence, the designer have gained some confidence in

this design by using PARSE-DAT, and may continue to refine the design, and or further

develop the system using for example an OOD method [Eriksson98].

6.2 Primes Sieve of Erastosthenes

6.2.1 Dynamic PARSE Design

This example is the classic problem "Primes Sieve of Erastosthenes". This problem of

generating prime numbers using multiple processes is described in [Kramer85]. The aim

is to compute all the prime numbers up to a certain positive integer limit. To achieve this,

we require a process that generates a stream of odd numbers, a set of processes that filters

out non-primes, and an output process that returns prime numbers. However, we do not

know in advance how many filtering processes are required since we do not even know

how many prime numbers to compute. Dynarruc PARSE allows the design of this type of

program, where the structure cannot be determined statically.

~---«E----1----------------r ~ • • I

odds-

pnm~ pnme 1
I I
I I

1 : filter[i] creates filter[i+l]
,,,,,,.-J...--

s_fi lter ([O .. n] 'i
,._..__+--\, filter ,/ --- odd _____ ;

◊ expand

odd : from filter[i]

to filter[i+ l]

for i = l..n-1

Figure 6.3. Dynamic PARSE Design of 'Primes Sieve of Erastosthenes'

94

Case Studies

The process graph in Figure 6.3 computes prime numbers. The process odds_generator

generates a stream of odd numbers that are fed into a pipeline of processes. Each filter

process sends the first number it receives to a printer process and subsequently filters out

multiples of that number from the stream of odd numbers. It also creates a new filter

process when it detects a new prime. The program terminates when a filter sends a prime

to the printer process that is greater than limit.

For example, odds_generator generates 3 as the first number, and passes it to the first

filter process. This filter process passes 3 as a prime number to the printer process, and

the printer process subsequently prints 3. The next number generated is 5, since 5 is not a

multiple of 3, the first filter process creates a second filter process, and passes 5 to it.

Upon receiving the number 5, the second filter process sends 5 to the printer process for

printing. This process is continued for number 7, hence a third filter process is created.

When 9 has been generated, it however does not bypass the first filter process. Since 9 is

a multiple of 3, it is discarded. We can see from this process, a sequence of prime

numbers is generated: 3, 5, 7, 11, 13, ... and so on, with each prime number received by

the last filter in the pipeline at all times.

The following is a set of design features:

• The s_filter process is static. It is created when the system begins execution.

• Value of n depends on limit. It is determined at run time. This is consistent with filter

processes being created at run time.

• The creation of filter processes in the growing pipeline is ordered. Each filter process

is created by the last created process. The unique numbering of filter process

instances can be used to define the ordering here: filter[2] is created after filter[]],

filter[3] is created after filter[2], and so on. Hence, for example, filter[4] does not

exist in the system if filter[i] for i = 1,2, and 3 are not present in the system.

• Once an instance of the filter process has been created, it stays in the system until the

termination of the entire program itself. That is, when all prime numbers up to limit

have been computed.

• The paths named prime going into the printer process are dotted. There is always just

one prime number coming from the last filter in the pipeline. As soon as a particular

filter instance has used its prime path to send a number to printer, that path is no

longer needed. Hence the transactional nature of this communication path.

95

Case Studies

• The printer process may be modeled as a control process if it controls the termination

of the program. Whenever the printer process receives a prime number from an

instance of the filter process, it checks to see if it is greater than limit. If it is, then the

program is terminated.

• The pipeline may grow forever. If limit is specified as unlimited or not specified at

all, then the printer process accepts all numbers coming from the prime

communication path, and new filter processes are generated all the time (although

becoming less frequent!).

~ ~ ~ : - filt~r11J _____

: f'if t~;c2J; : filt~ti3]; :f'iit~;C4L' : - iitt~r15J _____
.... - - - - _____ _____

I

Processor A Processor B Processor C Processor D

Figure 6.4. Process Distribution on a Multi-Processor Machine

The solution to this problem is a perfect example of an application program that can fully

exploit the processing power of symmetric multi-processing machines. Each time a filter

process is created, the underlying system would dispatch it to a processor with the

smallest load. So, basically, all filter processes could be more or less evenly distributed

around different processors.

96

Case Studies

6.2.2 Dynamic PARSE Analysis and Verification

The corresponding n-calculus model to the Sieve of Erastosthenes design is as follows:

-
agent ODD_GENERATOR(odd,x) = x <odd>.ODD_GENERATOR(odd,x)

agent PRINTER(y) = y(prime).PRINTER(y)

agent FILTER(x,y) = x(odd). y <odd>.FILTER'(x,y)

agent FILTER'(x,y) = x(odd).(FILTER'(x,y) + ("mid)(FILTER"(x,mid) I FILTER(mid,y)))

agent FILTER"(x,mid) = x(odd). mid <odd>.FILTER"(x,mid)

The names x and y have been introduced to model the incoming and outgoing path

respectively for passing the odd number from one filter to the next. The name mid has

been introduced to model the intermediate connection between two adjacent filter

processes. Notice that the name odd represents the data (i.e. an odd number) being passed

through the pipeline of filter processes. Hence, this model is data dependent, and is a

more complete model of the Dynamic PARSE design.

However, this n-calculus model is infinite in nature. It generates an infinite search space,

and hence any analysis on structural deadlocks would be inconclusive. However, one

should notice that the behaviour of all the filter processes are identical. Hence, the n

calculus model used for deadlock checking can be reduced to the following:

agent ODD_GENERATOR(odds) = 'odds.ODD_GENERATOR(odds)

agent PRINTER(prime) = prime.PRINTER(prime)

agent SFILTER(odds,odd,prime) = odds. 'prime. 'odd.SFILTER'(odds,odd)

agent SFILTER'(odds,odd) = odds. 'odd.SFILTER'(odds,odd)

agent FILTER(odds,odd,prime) = odds. 'prime. 'odd.FILTER'(odds,odd)

agent FILTER'(odds,odd) = odds. 'odd.FILTER'(odds,odd)

agent SIEVE= SFILTER I FILTER I ODD_GENERATOR

This PARSE-DAT generated n-calculus model can then be analysed by Mobility

Workbench, and has been found to be free from structural deadlocks.

97

Case Studies

6.3 HTPNET

6.3.1 Dynamic PARSE Design

This network transfer protocol example is taken from [Gorton94], which is an

experience report on the design and implementation of the packet management

component of a transport protocol for broadband networks. The protocol, known as

HTPNET [Chan94], has been designed to exploit parallel architectures. It consists of

the protocol software at both the transmitter node and the receiver node, as well as a

simulation of a high speed network to connect transmitter and receiver. In this case

study, only the design of the software for the receiving node will be considered in

detail.

The highest level of the system design is shown in Figure 6.5. Transmit and Receive

respectively encapsulate the required behaviour of sending and receiving packets.

Internally, each is decomposed into a number of lower level process objects that

perform the protocol processing. Both are active process objects with complex

internal state, and hence are most appropriately represented in a process graph by the

control process icon.

Network is categorised as a function server. It is passive, sequential, has no externally

visible state and encapsulates some well-defined functionality within the system. It

simply accepts data and synchronisation packets from Transmit, and passes these on

to Receive after introducing a realistic delay. In a similar manner it relays

acknowledge packets from Receive to Transmit.

98

Case Studies

ack_t

RECEIVE

ack_r

Figure 6.5. Top Level PARSE Design

As there is no inherent prioritisation amongst its input paths, Network selects data

non-determjnistically from one of the three input paths. This is contrasted against

Receive, which handles its two input paths concurrently. Receive is required to use

different process objects to accept data packets from each path at a lower level

abstraction. This implements the semantics of a concurrent path constructor, and is a

design rule that can be checked and enforced.

The decomposition of Receive is illustrated in Figure 6.6. Receive consists internally

of three process objects. DataProc is responsible for processing data packets from

Network, and SynkProc is responsible for processing incorrung synchronisation

packets and generating acknowledgments. This satisfies the requirements placed on

the decomposition of Receive by the concurrent path constructor in the top level

design diagram. DataProc is modelled as a control process because, in addition to

processing data packet headers, it maintains state information on successfully received

data packets. This state information is periodically retrieved by SynkProc over the

Status path, which provides a synchronised request-reply connection. SynkProc uses

the status information to produce an output on the Ack path which is relayed via

Network to Transmit. DataProc imposes no priority over its two input paths , indicated

by their convergence into a non-deterministic path constructor.

99

Case Studies

data t DATAPROC

status

synk_t

Figure 6.6. RECEIVE Object Decomposition

When a packet is found to be error-free and in-sequence, DataProc sends the

corresponding packet address reference to the RecHost process object. RecHost

represents the operating system interface on the receiving node. It essentially acts as a

packet sink, extracting messages from the RecData asynchronous communications

path.

Moving down to the lowest level of decomposition for Receive, the internal structure

of DataProc is shown in Figure 6.7. The Header function server non-deterministically

accepts messages on the Data and Status paths. Packet headers are stored in the

tempFIFO data server process. A synchronous path connects Header to tempFIFO,

thus requiring the two processes to rendezvous to exchange data. Synchronous paths

are generally most suitable for connecting to data servers. Passing data over a buffered

asynchronous path to a data server which already provides buffering introduces the

potential for unnecessary copying of data.

100

Case Studies

TEMPFIFO

store retrieve

status

Figure 6.7. DA TAPROC Object Decomposition

The process object tempFIFO is a data server that simply waits on its two input paths

and selects one non-deterministically. It essentially provides some post-processing

(header stripping) and a FIFO buffer between the Header and Output function servers.

6.3.2 Dynamic PARSE Analysis and Verification

The corresponding n-calculus model for this partial HTPNET system is as follows:

agent HEADER(data_r,status,store,st) =

data_r(d). store <d>.HEADER(data_r,status,store,st)

+ status(sr). sr <st>. HEADER(data_r,status,store,st)

agent TEMPFIFO(store,retrieve) = store(d). TEMPFIFO(store,retrieve)

+ retrieve(req). req <d>. TEMPFIFO(store,retrieve)

agent OUTPUT(retrieve,req,recdata) = retrieve <req>.req(d). recdata <d>

. OUTPUT(retrieve, req, recdata)

agent DATAPROC = HEADER I TEMPFIFO I OUTPUT

agent SYNKPROC(synk_r,status,ack_r,sr) = synk_r(s). status <sr>. sr(st). ack_ r <st>

.SYNKPROC(synk_r,status, ack_r,sr)

agent RECHOST(recdata) = recdata(rd).RECHOST(recdata)

agent RECEIVE= DATAPROC I SYNKPROC I RECHOST

agent TRANSMIT(data_t,synk_t,ack_t,d,s) =

data_t <d>. TRANSMIT(data_t,synk_t,ack_t,d,s)

101

Case Studies

+ synk_t <s>.ack_t(ac).TRANSMIT(data_t,synk_t,ack_t,d,s)

agent NETWORK(data_t,ack_t,synk_t,data_r,ack_r,synk_r,sr) =

data_t(d).data_ t <d>.NETWORK(data_t,ack_t,synk_t,data_r,ack_r,synk_r,sr)

+ synk_t(s).ack_t(ac).NETWORK(data_t,ack_t,synk_t,data_r,ack_r,synk_r,sr)

+ synk_r <sr>.ack_r(ac).NETWORK(data_t,ack_t,synk_t,data_r,ack_r,synk_r,sr)

agent SYSTEM = TRANSMIJ1 NETWORK! RECEIVE

The names such as d and st are data being passed along communication paths. They have

been included in this model to improve readability. They represent the data being passed

around and the status information. The 1t-calculus model generated by PARSE-DAT does

not contain these names in order to reduce search space. This simplication does not affect

the deadlock analysis. Further, the asynchronous communication channels have been

simplified to be synchronous communication channels in the corresponding 1t-calculus

specification, for both presentation and analysis efficiency purposes. Also, the

hierarchical structuring of design is reflected in the 1t-calculus model.

Upon analysing these 1t-calculus models for structural deadlocks, the following output

was obtained from Mobility Workbench:

MWB>deadlocks TRANSMIT

No deadlocks found.

MWB>deadlocks NETWORK

No deadlocks found.

MWB>deadlocks RECEIVE

No deadlocks found.

MWB>deadlocks SYSTEM

No deadlocks found.

Hence, we find there is no structural deadlocks present in this system. Notice that it is

possible to expand the 1t-calculus model for the NETWORK and TRANSMIT module if

their graphical design is given. Once again, the advantage of compositional analysis is

demonstrated here.

102

Case Studies

Appendix A lists the n-calculus model and analysis result of an intermediate HTPNET

design which exhibits the presence of structural deadlock.

HTPNET has been implemented in Occam running on a network of transputers. For

the implementation details of the HTPNET-system (including process graphs and nets

for the Transmit and Network process objects), please refer to [Chan93].

Lastly, this example design illustrates that the analysis performed by the Mobility

Workbench tool is also applicable to static process architectures.

6.4 SEP-TOOL

6.4.1 Dynamic PARSE Design

This case study is based on a research project described m [Gorton97] and

[Hawryszkiewycz96] which looks at the application of computer-supported

collaborative work (CSCW) or groupware technology to a range of software

engineering activities. Groupware technology provides support for collaboration on

software development tasks, and is applicable to both co-located and geographically

distributed software development teams.

The basic goals of this GWSE (Global Working in Software Engineering) system

were to provide the following:

• software process description tools

• project management and monitoring facilities

• workflow management for defined processes

• transparent document sharing, archiving and management

Since the requirement was to support both co-located and widely distributed software

development teams, the system must be able to provide distributed coordination,

communication and document management between groups of developers at several

sites.

103

Case Studies

Several commercial-off-the-shelf (COTS) components have been integrated, and

supplemented with additional functionality to form the GWSE system. The workflow

management engine is based on Lotus Notes, the document archive database is based

on Intersolv's PVCS version control system, the process modeling tool SEP-Tool, has

been implemented in C++ using CORBA as a distribution and synchronisation

technology, and the modeling tool interfaces with the project management tools and

capabilities which are provided by Microsoft Project.

ONIG.RA1Im PVCNAlollvE

14-------~TKNN------~~#N
Toa.

i+----..

rom;
\\aEH.OW
sm\'ER#N

ll'.xl.M1NrAlollvE
..... ----------------------.i nR;amy

Figure 6.8. GWSE Architecture [Gorton97]

This case study focuses on the software process modeling as provided by the SEP

TOOL (Software Engineering frocess-TOOL). This is a graphical process modeling

environment which enables distributed team members to collaboratively define a

process model for a project. The tool is a real-time groupware tool, or WYSIWIS

(What You See Is What I See), and needs to ensure model consistency when faced

with multiple concurrent updates.

Applications such as the SEP-TOOL have many complex concurrency requirements. For

example, the client must be able to accept updates and various messages while the

graphical user interface is in use. And at the server side, updates to the consistent model

must be broadcast to all clients, while accepting new requests. Further, new clients

104

Case Studies

need to be initialised while broadcasting outstanding updates. Lastly, an additional

requirement is the support for editing multiple models simultaneously.

There are many different server implementation possibilities. These requirements

naturally lend themselves to multithreaded solutions, such as: thread-per-update-request,

thread-per-client, thread-per-update-broadcast, and so on.

In order to minimise risks and cost of failure, an iterative approach should be taken

such that complex components in the architecture are isolated and demonstrated by

building 'proof of concept' prototypes.

PARSE-DAT can be used to analyse the critical components of the architecture.

Figure 6.9 shows an architectural component of the SEP-Tool that has been analysed

using PARSE-DAT.

set DATASTORE

(10 ... 100] ,',
: USER_ : cl ientID
: lNTERFACE; «) USER_

t--+------1 MANAGER

: J , .. _________ .,

cachedata

cthrdpar

------------ --: ·nitmodel -,
10 .. 1001 --+-; ____ , 10 .. 1001 '\ ?u dalte / [0 .. 1001 \

CACHE ~ LL) : CLlENT ; , -,f-~---t--\1 UPDATE I

MODEL _\._ \ THREAD/ _ THREAD,/ _____________ get_data ' ____ ____ ... -"

Figure 6.9. Dynamic PARSE Design for SEP-Tool

105

USERTABLE

userinfo

Case Studies

6.4.2 Dynamic PARSE Analysis and Verification

The following is the generated 1t-Calculus model for the SEP-TOOL architecture in

Figure 6.9. Notice the peripheral objects such as datastore and usertable are not captured

in this 1t-Calculus model. Since these passive data servers communicate only with the

server and usermanager process objects, their dependency relationship does not need to

be analysed for deadlock. The advantage of this is that the search space is reduced.

agent SERVER(regclient,set, unregclient,bind,cthrdparam, init, workreq, req, update) =

regclient.set.unregclient.update.init. 'cthrdparam. 'workreq. 'req

. SERVER(regclient,set, unregclient, bind, cthrdparam, init, workreq, req, update)

agent USERMAN(getclient, workreq,userinfo,regupdatethrd) =

getclient.regupdatethrd. workreq. 'userinfo

. USERMAN(getclient, workreq, userinfo, regupdatethrd)

agent USERTABLE(userinfo) = userinfo.USERTABLE(userinfo)

agent DATASTORE(req) = req.DATASTORE(req)

agent CLIENTMAN(clientid,set, unregclient, cclienthrdpara,bind, update) =

'set. 'unregclient. 'cclienthrdpara. 'update. 'clientid

. CLIENTMAN(clientid, set, unregclient, cclienthrdpara, bind, update)

agent Ul(clientid, clientinfo, cachtodisplay, cache4display) =

clientinfo. cachtodisplay. clientid. 'cache4display

. Ul(clientid, clientinfo, cachtodisplay, cache4display)

agent UP DATETHRD(getclient, update, cthrdparam, regupdatethrd) =

cthrdparam. 'getclient. 'update. 'regupdatethrd

. UPDATETHRD(getclient, update, cthrdparam, regupdatethrd)

agent CLIENTTHRD(regclient, initmodel,getcacheddata, cclienthrdpara, update,

cachtodisplay,init) = cclienthrdpara.update. 'regclient. 'initmodel.

'cachtodisplay. 'getcacheddata. 'init. CLIENTTHRD(reg client, initmodel,

getcacheddata, cclienthrdpara, update, cachtodisplay, init)

agent CACHEMODEL(initmodel,getcacheddata) =

initmodel.getcacheddata.CACHEMODEL(initmodel,getcacheddata)

agent TOOL= USERTABLE I DATASTORE I SERVER I USERMAN I CLIENTMAN I
U/ I CACHEMODEL I UPDATETHRD I CLIENTTHRD

106

The Mobility Workbench analysis result:

MWB>deadlocks TOOL

No deadlocks found.

6.5 Conclusion

Case Studies

In this chapter, we have examined the use of the Dynamic PARSE Design and Analysis

methodology. The PARSE-DAT tool has also been evaluated through four case studies.

These case studies are of different architecture types, and vary in complexity. We have

shown the expressiveness of the Dynamic PARSE process graph design notation,

demonstrated the typical Dynamic PARSE design and analysis processes, as well as the

value of the PARSE-DAT design analysis tool.

107

Conclusions

7. Conclusions

This thesis has presented a novel software architecture design and verification

methodology for dynamic distributed systems. Architects employ a pragmatic, graphical

design method called Dynamic PARSE (PARSE-D) to design the software architecture,

which provides an explicit representation of the parallelism and distribution in a system

via a well defined set of model elements. The architects thereby capture the concurrent

and dynamic features of the system. Such dynamic features include the creation and

deletion of processes and re-configurable communication links. Lastly, the correctness of

the design can be verified, and possible design faults may be detected by using an

automatic design analysis and verification tool called PARSE-DAT. This integrated rapid

prototyping environment with an automated analysis facility enables the designer to

verify their design at an early stage of the engineering process, hence reducing resource

overheads incurred in discovering deadlock at the later testing stage.

Specifically, the following has been presented in this thesis:

• Dynamic PARSE Process Graph Design Notation: which is an extension to the

architecture description language PARSE. This resultant set of notations can describe

dynamic features such as the creation and deletion of process components, and

dynamic communication reconfiguration.

• Translations of Dynamic PARSE Process Graph Design Notation to two formalisms:

n-Calculus and Self-Modifying Nets.

• A distributed software engineering methodology (PARSE-D) supporting design using

Dynamic PARSE Process Graph Notation and design analysis/verification utilising n

Calculus.

• An integrated tool-set environment called PARSE-DAT for supporting the PARSE-D

software engineering methodology. The two major components are the CASE tool

108

Conclusions

PARSE-OT that enables the construction of Dynamic PARSE designs; and an

automated analysis/verification tool called PARSE-AT.

An empirical study of the 'influence of formal methods' [Pfleeger97] has shown that

formal design, combined with other techniques, yields highly reliable code. Further, in a

formal methods roundtable presented in the April 1996 IEEE Computer, it was pointed

out that: " ... the purpose of formalisation is to reduce the risk of serious errors in

specification and design. Analysis can expose such errors while they are still cheap to

fix".

PARSE-Dis precisely a software engineering methodology in this direction.

Future Directions

There are several areas of possible future work to extend the capability of the Dynamic

PARSE design and analysis methodology as well as the PARSE-DAT environment.

Machine aided design refinement: regarding the formal design analysis method, there is

the possibility of providing support for machine aided design refinement, in order to

bridge the gap between the design stage and the implementation stage. There is much

sound theoretical rt-Calculus work in the areas of equivalence. The work in exploring the

possibilities of refining Dynamic PARSE designs through rt-Calculus would be

interesting and valuable.

Incorporating a Performance Prediction Tool: on the issue of CASE tool support,

there is currently independent work done in the area of performance evaluation and

prediction [Hu97]. Work in incorporating the performance prediction tool into PARSE

DAT should be fruitful.

Integration with object-oriented design methods: In this thesis, we have described

Dynamic PARSE as an architecture design methodology. Once software architecture has

been devised and validated, detailed design is the next development stage. Object

oriented methodologies provide a seamless transition from the analysis stage to the

design stage. It is anticipated that integrating the Dynamic PARSE methodology with an

109

Conclusions

object-oriented approach at the detailed design stage would be an effective way of

developing software. This integration work could take place on two levels. Firstly on the

methodology level, mechanisms need to be worked out to support the transition from

architecture design in Dynamic PARSE onto detailed object-oriented designs. Secondly,

tool support can be carried out by integrating an existing object-oriented CASE tool (such

as Rational Rose) into PARSE-DAT.

Detailed design analysis: PARSE-DAT enables automated design analysis and

verification on an architectural level. Automated analysis on an implementation/

algorithmic/ code level is worth exploring in the future.

110

Appendix

Appendix

A. Sample Mobility Workbench Output

The following is the n-Calculus model of an intermediate HTPNet design that exhibits

presence of structural deadlock. The Mobility workbench analysis output is also included.

HEADER(data,status,store,st) = data(d). 'store<d>.HEADER(data,status,store,st)

+ status(sr). 'sr<st>.HEADER(data,status,store,st)

TEMPFIFO(store,retrieve)

store(d).retrieve(req). 'req<d>.TEMPFIFO(store,retrieve)

OUTPUT(retrieve,req,recdata) = 'retrieve<req>.req(d). 'recdata<d>

.OUTPUT(retrieve,req,recdata)

DATAPROC(data,status,recdata) = (Astore,retrieve,st,req)

(HEADER(data,status,store,st)

TEMPFIFO(store,retrieve)

OUTPUT(retrieve,req,recdata))

SYNKPROC(synk,status,ack,sr) = synk(s). 'status<sr>.sr(st). 'ack<st>

.SYNKPROC(synk,status,ack,sr)

RECHOST(recdata) = recdata(rd).RECHOST(recdata)

RECEIVE(data,synk,ack) = (Astatus,recdata,sr)

TRANSMIT(data,synk,ack,d,s)

(DATAPROC(data,status,recdata)

SYNKPROC(synk,status,ack,sr)

RECHOST(recdata))

'data<d>.TRANSMIT(data,synk,ack,d,s)

+ 'synk<s>.ack(ac) .TRANSMIT(data,synk,ack,d,s)

NETWORK(data_t,ack_t,synk_t,data_r,ack_r,synk_r,sr) =

data_t(d). 'data_r<d>.NETWORK(data_t,ack_t,synk_t,data_r,ack_r,synk_r,sr)

+ synk_t(s) .ack_t(ac) .NETWORK(data_t,ack_t,synk_t,data_r,ack_r,synk_r,sr)

+'synk_r<sr>.ack_r(ac).NETWORK(data_t,ack_t,synk_t,data_r,ack_r,synk_r,sr

SYSTEM= (Aack_t,data_t,synk_t,ack_r,data_r,synk_r,sr_t,sr_n,d)

(TRANSMIT(data_t,synk_t,ack_t,d,sr_t)

NETWORK(data_t,ack_t,synk_t,data_r,ack_r,synk_r,sr_n)

RECEIVE(data_r,synk_r,ack_r))

111

MWB>deadlocks RECEIVE

No deadlocks found.

MWB>deadlocks TRANSMIT

No deadlocks found.

MWB>deadlocks NETWORK

No deadlocks found.

MWB>time deadlocks SYSTEM

Deadlock found in

Appendix

(A~v,-v2,-v3,-v4,-v5,-v6,-v7,-v8,-v9) (~v. (\ac)TRANSMIT<-v2,-v3,-v,-v9,-v7>

(A~vlO) (-v. (\ac)N<-v2,-v,-v3,-v5,-v4,-v6,-v8> /

(A~vll,-v12,-v13) ((A~v14,-v15,-v16) ((-v5. (\d) '~v14. [d]HEADER<~v5,-vll,-v14,-v10>

+ ~vll. (\sr) 'sr. [~v10]HEADER<~v5,~vll,-v14,-v10>)

-v14. (\d)-v15. (\req) 'req. [d]TEMPFIFO<~v14,-v15> /

'~v15. [~v16]-v16. (\d) '~v12. [d]OUTPUT<~v15,~v16,-v12>)

-v6. (\s) '~vll. [-v13]-v13. (\st) '~v4. [st]SYNKPROC<~v6,-vll,-v4,-v13>

-v12. (\rd)RECHOST<~vl2>)))

reachable by 5 commitments

Deadlock found in

(A~v,-v2,-v3,-v4,-v5,-v6,~v7,-v8,-v9) (~v. (\ac)TRANSMIT<~v2,-v3,-v,-v9,-v7>

(A~vlO) (-v. (\ac)N<~v2,-v,-v3,-v5,-v4,-v6,-v8> /

(A~vll,-vl2,~vl3) ((A~v14,-vl5,-vl6) ((~v5. (\d) '~v14. [d]HEADER<~v5,~vll,~v14,~v10>

+ ~vll. (\sr) 'sr. [-v10]HEADER<-v5,-vll,-vl4,-vl0>)

-v14. (\d)-v15. (\req) 'req. [d]TEMPFIFO<-v14,-v15> /

'~v15. [~v16J~v16. (\d) '~v12. [d]OUTPUT<~v15,~v16,~v12>)

-v6. (\s) '~vll. [-v13]-v13. (\st) '~v4. [st]SYNKPROC<-v6,-vll,-v4,-vl3>

-v12. (\rd)RECHOST<-v12>)))

reachable by 11 commitments

Deadlock found in

(A~v,-v2,-v3,-v4,-v5,-v6,-v7,-v8,-v9) (-v. (\ac)TRANSMIT<~v2,-v3,-v,-v9,-v7>

-v. (\ac)N<-v2,-v,-v3,-v5,-v4,-v6,-v8> /

(Astatus,recdata,sr) ((Astore,retrieve,st,req) ((-v5. (\d) 'store. [d]HEADER<-v5,stat

us,store,st> + status. (\sr17) 'sr17. [st]HEADER<~v5,status,store,st>)

store. (\d)retrieve. (\req18) 'req18. [d]TEMPFIFO<store,retrieve> /

'retrieve. [req]req. (\d) 'recdata. [d]OUTPUT<retrieve,req,recdata>)

-v6. (\s) 'status. [sr]sr. (\st) '~v4. [st]SYNKPROC<-v6,status,-v4,sr>

recdata. (\rd)RECHOST<recdata>))

reachable by 1 commitments

Deadlock found in

(A~v,-v2,-v3,-v4,~v5,~v6,-v7,-v8,~v9) (~v. (\ac)TRANSMIT<~v2,-v3,-v,-v9,-v7>

-v. (\ac)N<-v2,-v,-v3,~v5,~v4,-v6,-v8> /

(A~v10,-vll,~v12) ((A~v13,-v14,-v15,-vl6) ((~v5. (\d) '~v13. [d]HEADER<-v5,-v10,-v13,

-v15> + -vlO. (\sr) 'sr. [~v15]HEADER<-v5,-v10,-v13,-v15>)

-v13. (\d)-v14. (\req) 'req. [d]TEMPFIFO<-vl3,-v14> /

'~v14. [-v16]-v16. (\d) '~vll. [d]OUTPUT<~v14,~v16,-vll>)

-v6. (\s) '~vlO. [-v12]-v12. (\st) '~v4. [st]SYNKPROC<~v6,-v10,~v4,-v12>

~vll. (\rd)RECHOST<~vll>))

reachable by 7 commitments

112

User CPU time elapsed: 18.008499

System CPU time: 2.503421

GC time: 7.274832

Real time elapsed: 71.444265

Overhead: 43.657513

Appendix

113

Bibliography

Bibliography

[Andersen94]

[Ansart89]

[Aonix98]

[AST98]

[BBN98]

[B-Core96]

[Belina91]

[Bhat95]

H.R.Andersen (1994) Model Checking and Boolean Graphs, TCS,

vol.126, no. I.

J.P.Ansart, V.Chari (1989) General Survey on the Estelle Results,

in the book: The Formal Description Technique Estelle, North

Holland, pp.17-34.

Aonix (1998) Software Modeling Solutions - Software Through

Pictures, http://www.methods-tools.corn/tools/

frames_analdes.html

Advanced Software Technologies Inc. (1998) GDPro: Product

Overview, http://www.advancedsw .corn/overview .html

BBN (1998) Distributed Planning & Operations Management -

Corbus, http://www.bbn.com/products/dpom/corbus.htm.

B-Core UK Limited (1996) The B Toolkit, user manual, March 6,

1996.

F.Belina, D.Hogrefe, A.Sarma (1991) SDL With Applications From

Protocol Specification, Prentice Hall.

G.Bhat, R.Cleaveland, O.Grumberg (1995) Efficient On-The-Fly

Model Checking for CTL *, Proceedings 10th Annual Symposium on

Logic in Computer Science (LICS'95), San Diego, July, Computer

Science Press, pp.388-97.

114

[Birkinshaw95]

[Booch94]

[Bowen95]

[Butler96]

[Cardelli98]

[Carrington94]

[Carter96]

[Cayenne98]

[Chan93]

Bibliography

C.I.Birkinshaw, P.R.Croll (1995) Modelling the Client-Server

Behaviour of Parallel Real-Time Systems Using Petri Nets, Proc.

28th Ann. Hawaii Int'l Conf. System Sciences, Parallel Software

Engineering Minitrack, Vol.2: Software Technology, IEEE

Computer Society Press, Calif., 339-48.

G. Booch (1994) Object-Oriented Analysis and Design with

Applications, Redwood City CA: Benjamin Cummings.

J.P.Bowen and M.G.Hinchey (1995) Seven More Myths of Formal

Methods, IEEE Software July 1995 vol.12 no.3, pp.34-41.

M.Butler, M.Walden (1996) Distributed System Development in B,

Proceedings 1 st Conference on the B Method, November 24-26,

Nantes, France, pp.155-90.

L.Cardelli, AD.Gordon (1998) Mobile Ambients, ETAPS'98, also

available at http://www.luca.demon.co.uk/

D.Carrington, I.Hayes, R.Nickson, G,Watson, J.Welsh, A Review of

Existing Refinement Tools, Technical Report UQ-SVRC-94-8,

Software Verification Research Centre, University of Queensland.

F.Carter, A.Fekete (1996) Cerberus - A Tool For Debugging

Distributed Algorithms, Procedings 1st JFIP TClO International

Workshop on Parallel and Distributed Software Engineering,

Chapman and Hall, pp.110-21.

Cayenne Software (1998) Class Designer: New, User-Friendly

Tool for Designing Java and C++ Objects, http://

www .cayennesoft.com/classdesigner/

T.S.Chan, I.Gorton (1993) A Transputer-based Implementation of

HTPNET: a Transport Protocol for Broadband Networks, in

115

[Chan94]

[Chappell96]

[Cheung94]

[Cheung94a]

[Ciardo94]

[Coad91]

[Coad9la]

[Coleman94]

[Comerf ord94]

Bibliography

Transputer Applications and Systems Vol. 2, Proceedings of the

1993 World Transputer Congress, Aachen, Germany, pp 899-910,

IOS Press, September.

T.S.Chan and I.Gorton (1994) A parallel approach to high-speed

protocol processing, in Transputer Applications and Systems 94,

Proceedings of the 2nd World Transputer Congress, Como, Italy,

September, pp 209-22, IOS Press

D.Chappell (1996) Understanding ActiveX and OLE, Redmond,

WA: Microsoft Press, 1996.

S.C.Cheung, J.Kramer (1994) Tractable Dataflow Analysis for

Distributed Systems, IEEE Transactions on Software Engineering,

vol.20, no.8, August, pp.579-93.

S.C.Cheung, J.Kramer (1994) An Integrated Method for Effective

Behaviour Analysis of Distributed Systems, Proceedings of 16th

IEEE International Conference on Software Engineering, Sorrento,

Italy, May.

G.Ciardo, R.German, C.Lindemann (1994) A Characterization of

the Stochastic Process Underlying a Stochastic Petri Net,

Transactions on Software Engineering, vol.20, pp.506-15.

P.Coad, E. Y ourdon (1991) Object-Oriented Analysis. Prentice Hall.

P.Coad, E. Y ourdon (1991) Object-Oriented Design. Prentice Hall.

D.Coleman, P.Amold, S.Bodoff, C.Dollin, H.Gilchrist, F.Hayes,

P.Jeremes (1994) Object-Oriented Development: The Fusion

Method, Upper Saddle River, NJ: Prentice-Hall.

R.Comerford (1994) Engineering Workstations and PCs, IEEE

Spectrum, April, pp 45-46.

116

[Custer93]

[Dehbonei95]

[Diaz89]

[Durr95]

[Elseaidy96]

[Eriksson98]

[Eucalyptus97]

[Faergemand91]

[Faergemand93]

[Faergemand94]

Bibliography

H.Custer (1993) Inside Windows NT, Microsoft Press.

B.Dehbonei, F.Mejia (1995) Formal Development of Safety

Critical Software Systems in Railway Signalling, in Applications of

Formal Methods, edited by Michael G. Hinchey and Jonathan

P.Bowen, Prentice-Hall, pp.227-52.

M.Diaz, J-P.Ansart, P.Azema, V.Chari (1989) The Formal

Description Technique Estelle, North-Holland.

E.H.Durr, N.Plat and M.de Boer (1995) CombiCom: Tracking and

Tracing Rail Traffic using VDM++, in Applications of Formal

Methods, edited by Michael G. Hinchey and Jonathan P.Bowen,

Prentice-Hall, pp.203-26.

W.Elseaidy, R.Cleaveland, J.Baugh (1996) Modeling and Verifying

Active Structural Control Systems, Science of Computer

Programming. To appear. A preliminary version of this paper

appears in the Proceedings of the 1994 Real-Time Systems

Symposium.

H-E.Eriksson, M.Penker (1998) UML Toolkit, Wiley.

http://www-run.montefiore.ulg.ac.be/projects/

EUCALYPTUS.html (Jan 1997).

O.Faergemand, R.Reed (1991) SDL'91 Evolving Methods, Proc.

SOL Forum '91, North-Holland, Amsterdam.

O.Faergemand, A.Olsen (1993) Tutorial on New Features in SDL-

92, TFL, Telelcommunications Research Laboratory, Lyngso Alle

2, DK-2970 Horsholm Denmark.

O.Faergemand, A.Olsen (1994) Introduction to SDL-92, Computer

Networks and ISDN Systems vol.26, pp.1129-42.

117

[Fields92]

[FME98]

[Gamma95]

[Garland94]

[Garland95]

[Gorton93]

[Gorton94]

[Gorton95]

[Gorton95a]

Bibliography

R.Fields, M.Elvang-Goransson (1992) A VDM Case Study in

Mural, IEEE Transactions on Software Engineering, vol.18, no.4,

April, pp.279-95.

Formal Methods Europe (1998) FME Tools Database - Name of

Tool: ProofPower, http://www.csr.ncl.ac. uk/projects/FME/

InfRes/tools/fmtdb027 .html

E.Gamma, R.Helm, R.Johnson, J.Vlissides (1995) Design Patterns:

Elements of Reusable Object-Oriented Design, Addison-Wesley.

D.Garlan, R.Allen, J.Ockerbloom (1994) Exploiting Style in

Architectural Design Environments, Proceedings of SIGSOFT '94

Symposium on the Foundations of Software Engineemg, December.

D.Garlan, D.Perry (1995) Introduction to the Special Issue on

Software Architecture, IEEE Transactions on Software

Engineering, April.

I.Gorton, I.E.Jelly, J.Gray (1993) Parallel Software Engineering

with PARSE, in Proceedings of COMPSAC-17, IEEE Int. Computer

Software and Applications Conference, November, Phoenix,

Arizona, USA, IEEE.

I.Gorton, T.S.Chan, I.E.Jelly (1994) Engineering High Quality

Parallel Software Using PARSE, Parallel Processing: CONPAR 94

- V APP VI, pp.381-92.

I.Gorton, J.Gray, I.E.Jelly (1995) Object-based Modelling Of

Parallel Programs, IEEE Parallel and Distributed Technology,

Summer edition, pp.52-63.

I.Gorton, I.E.Jelly, P.Croll, P.Nixon (1995) Directions in Software

Engineering for Parallel Systems, Proceedings of 28th Hawaii

118

[Gorton96]

[Gorton96a]

[Gorton96b]

[Gorton97]

[Gorton97a]

[Gray94]

[Gray97]

[Harel88]

[Harel90]

Bibliography

International Conference on System Sciences, Software Technology

Track, Jan 3-6, IEEE.

I.Gorton, I.E.Jelly, J.Gray, T.S.Chan (1996) Reliable Parallel

Software Construction Using PARSE, Concurrency: Practice and

Experience, vol.8(2), pp125-46, March.

I.Gorton, J.Zic, I.E.Jelly (1996) Supporting Multiple Fonnal

Methods in PARSE, University of New South Wales, internal

report.

I.Gorton, Y.H.Ng, A.Liu (1996) Generating Occam From PARSE

Process Graphs, Transputer Communications, vol.3, no.1, pp.51-9

I.Gorton, I.T.Hawryszkiewycz, C.Chung, S.Lu, K.Ragoonaden

(1997) Groupware Support Tools for Collaborative Software

Engineering, 30th Hawaii International Conference on System

Sciences, Informations Systems Track, IEEE, Hawaii January.

I.Gorton, I.Jelly (1997) Software Engineering for Parallel and

Distributed Systems: Challenges and Opportunities, IEEE

Concurrency, vol.5, no.3, pp.12-15.

J.Gray (1994) Definition of the PARSE Process Graph Notation,

version 2 (PGN/2), Technical Report PARSE-TR-2b, March 1994.

J.P.Gray, B.Ryan (1997) Applying the CDIF standard in the

Constructing of CASE Design Tools, In Proceedings of Australian

Software Engineering Conference (ASWEC97), Sydney Australia,

28 Sept - 3rd Oct, IEEE Computer Society Press.

D.A.Harel (1988) On visualfonnalisms, Communications of ACM,

vol.31, no.5.

D.Harel, H.Lachover, A.Naamad, A.Pnueli, M.Politi, R.Sherman,

119

[Harel97]

[Harel-E90]

[Hawryszkiewycz96]

[Hayes91]

[Hayes91a]

[Hayes91b]

[Henderson92]

[Hoare69]

[Hoare85]

Bibliography

A.Shtull-Trauring, M.Trakhtenbrot (1990) Statemate: A Working

Environment for the Development of Complex Reactive Systems,

Transactions on Software Engineering, vol.16, no.4, pp.403-414.

D.Harel, E.Gery (1997) Executable Object Modeling with

Statecharts, IEEE Computer, July, pp.31-42.

E.Harel, O.Lichtenstein, A.Pnueli (1990) Explicit Clock Temporal

Logic, Proceedings of 5th Annual Symposium on Logic in

Computer Science, June, pp.402-13.

I.T.Hawryszkiewycz, I.Gorton (1996) Distributing the Software

Process, Australian Software Engineering Conference, Melbourne,

Australia, pp.176-82.
I

I.Hayes (1991) Applying Fonnal Specification to Software

Development in Industry, in Specification Case Studies, Prentice

Hall, pp.285-310.

I.Hayes (1991) C/CS Temporary Storage, in Specification Case

Studies, Prentice-Hall, pp.311-24.

I.Hayes (1991) CICS Message System, in Specification Case

Studies, Prentice-Hall, pp.325-32.

B.Henderson-Sellers (1992) A Book of Object-Oriented Knowledge,

Prentice Hall.

C.A.R.Hoare (1969) An Axiomatic Basis for Computer

Programming, Communications of the ACM, vol.12, no.10,

October.

C.A.R.Hoare (1985) Communicating Sequential Processes, Prentice

Hall.

120

[Hoare-JP95]

[Holloway96]

[Hoornan89]

[Horstrnann98]

[Howland-Rose94]

[HP96]

[Hu97]

[Iona95]

[Jacobson92]

Bibliography

J.P.Hoare (1995) Application of the B-Method to CICS, in

Applications of Formal Methods, edited by M.G.Hinchey and

J.P.Bowen, Prentice-Hall, pp.97-124.

C.M.Holloway, R.W.Butler (1996) Impediments to Industrial Use

of Formal Methods, Formal Methods Roundtable, IEEE Computer,

April, pp.25-6.

J.Hooman, W-P.deRoever (1989) Design and Verification in Real

Time Distributed Computing: An Introduction to Compositional

Methods, Proceedings of 9th International Symposium on Protocol

Specification, Testing and Verification, North-Holland.

C.S.Horstrnann, G.Cornell (1998) Core Java 1.1 Volume 1 -

Fundamentals, Sun Microsystems Press.

K.Howland-Rose, U.Szewcow (1994) Exposing Concurrency, an

Object Oriented Approach - Objects to Occam, IOS TCAS

Conference.

Hewlett-Packard (1996) HP ORB Plus 2.0 For HP-UX, SunSoft

Solaris, and Microsoft Windows NT - Product Brief,

http://www.hp.com/gsy/orbplus.html, updated May 22.

L.Hu, I.Gorton (1997) A Performance prototyping Approach to

Designing Concurrent Systems, Proceedings of 2nd International

Workshop on Software Engineering for Parallel and Distributed

Systems, IEEE Computer Society Press, California, pp.270-6.

Iona Technologies Ltd. (1995) Orbix 2 - Distributed Object

technology, Programming and Reference Guide, Release 2.0, Iona

Technologies Ltd.

I.Jacobson, M.Chriterson, P.Jonsson, G.Overgaard (1992) Object

Oriented Software Engineering, Reading NY: Addison-Wesley,

121

[Jacobson92a]

[Jahanian88]

[Jelly95]

[Jelly96]

[Jelly96a]

[Jensen92]

[Jones89]

[Jones91]

[Klein93]

[Koyrnans90]

Bibliography

1992.

I.Jacobson (1992) Object-Oriented Software Engineering: A Use

Case Driven Approach, Addison-Wesley, 1992.

F.Jahanian, D.Stuart (1988) A Method for Verifying Properties of

Modechart Specifications, Proceedings 9th Real-Time Systems

Symposium. IEEE Computer Society, December, pp.12-21.

I.Jelly, S.Russo, CSavy (1995) From Textual Representation of

PARSE Designs to Petri Nets, Research Note - Draft version, April

1995, through personal communication.

I.Jelly, I.Gorton (1996) Current Research Directions in Software

Engineering for Parallel and Distributed Systems, Software

Engineering Notes, through personal communication.

LE.Jelly, I.Gorton (1996) Case Tools For Parallel Systems,

Transputer Communicatioins, 1996, vol.3, no.1, pp.3-6.

K.Jensen (1992) Coloured Petri Nets. Basic Concepts, Analysis

Methods and Practical Use. Volume 1, Basic Concepts,

Monographs in Theoretical Computer Science, Springer-Verlag.

CB.Jones (1989) Systematic Software Development Using VDM,

2nd Edition, Englewood Cliffs, Prentice Hall.

CB.Jones, K.D.Jones, P.A.Lindsay, R.Moore (1991) MuRAL: A

Formal Development Support System, Springer-Verlag.

M.H.Klein, T.Ralya, B.Pollak, R.Obenza, M.G.Harobur (1993) A

Practitioner's Handbook for Real-Time Analysis: Guide to Rate

Monotonic Analysis for Real-Time Systems, Kluwer Academic.

R.Koyrnans (1990) Specifying Real-Time Properties with Metric

122

[Kramer85]

[Kramer94]

[Kurshan94]

[Lakos91]

[Lano96]

[Larocque94]

[Lea93]

[Leduc94]

[Liu73]

Bibliography

Temporal Logic, Real-Time Systems, vol.2, no.4, November,

pp.255-99.

J.Kramer, J.Magee (1985) Dynamic Configuration for Distributed

Systems, IEEE Transactions on Software Engineering, vol.SE-11,

no.4, April 1985, pp.424-35.

J.Kramer (1994) Distributed Software Engineering, Proceedings

16th International Conference on Software Engineering, IEEE

Computer Society Press, California, pp.253-63.

R.P.Kurshan (1994) Computer-Aided Verification of Coordinating

Processes, Princeton University Press.

C.Lakos (1991) Simulation with Object-Oriented Petri Nets,

Proceedings Australian Software Engineering Conference, Sydney,

Australia, July.

K.Lano (1996) The B La,nguage and Method: A Guide To Practical

Formal Development, Springer-Verlag London.

J.Larocque (1994) Client-Server Trend, IEEE Spectrum, April,

pp.48-50.

R.Lea, C.Jacquemot, E.Pillevesse (1993) COOL: System Support

for Distributed Object-Oriented Programming, Chorus Systems,

September.

G.Leduc (1994) A Method for Applying LOTOS at an Early Design

Stage and its Application to the ISO Transport Protocol, The OSI95

Transport Service with Multimedia Support, Springer-Verlag,

Berlin, 151-80.

C.L.Liu, J.W.Layland (1973) Scheduling Algorithm for

Multiprogramming in a Hard Real-Time Environment, Journal of

123

[Liu96]

[Liu96a]

[Liu97]

[Liu97a]

[Liu98]

[Low96]

[Luckham95]

Bibliography

the ACM, vol.20, no.I, January, pp.46-61.

A.Liu, I.Gorton (1996) Modelling Dynamic Distributed System

Structures in PARSE, Proceedings of 4th Euromicro Workshop on

Parallel and Distributed Processing, IEEE Computer Society Press,

California, 352-9.

A.Liu, T.S.Chan, I.Gorton (1996) Designing Distributed

Multimedia Systems Using PARSE, First IFIP Workshop on

Software Engineering for Parallel and Distributed Systems,

Chapman and Hall, Berlin, Germany, 25-26 March, pp.50-61.

A.Liu, I.Gorton, (1997) Designing Distributed Object Systems with

PARSE, Proceedings of 5th Euromicro Workshop on Parallel and

Distributed Processing, IEEE Computer Society Press, California,

pp.335-42.

A.Liu, I.Gorton, J.Zic (1997) Formalising PARSE Design Notations

with n-Calculus, internal report, Dept. of Computer Systems,

School of Computer Science and Engineering, University of New

South Wales.

A.Liu, I.Gorton (1998) PARSE-DAT: An Integrated Environment

for the Design and Analysis of Dynamic Software Architectures,

Proceedings International Symposium on Software Engineering for

Parallel and Distributed Systems, IEEE Computer Society Press,

California, pp.146-55.

G.C.Low, G.Rasmussen, B.Henderson-Sellers (1996) Incorporation

of Distributed Computing Concern into Object-Oriented

Methodologies, Journal of Object-Oriented Programming, June,

pp.12-20.

D.C.Luckham, J.Vera (1995) An Event-Based Architecture

Definition Language, IEEE Transactions on Software Engineering,

124

[Luckham95a]

[Magee89]

[Magee94]

[Magee95]

[MetaCase96]

[MetaCase96a]

[MetaCase96b]

[MetaCase96c]

[MetaCase96d]

Bibliography

vol.21, no.9, pp.717-34, September.

D.Luckham, J.J.Kennedy, L.M.Augustin, J.Vera, D.Bryan, W.Mann

(1995) Specification and Analysis of System Architecture Using

Rapide, IEEE Transactions on Software Engineering, special issue

on Software Architecture, vol.24, no.4, pp.336-55, April.

J.Magee, J.Kramer, and S.Sloman, (1989) Constructing Distributed

Systems in Conic, IEEE Transaction on Software Engineering,

vol.15, pp.663-75.

J.Magee, N.Dulay, J.Kramer (1994) Regis: A Constructive

Development Environment for Distributed Programs. In

IEF/IOP/BCS Distributed Systems Engineering, vol.1, no.5,

pp.304-12, September.

J.Magee, N.Dulay, S.Eisenbach, J.Kramer (1995) Specifying

Distributed Software Architectures, Proceedings of 5th European

Software Engineering Conference (ESEC 95), Sitges, Spain,

September.

MetaCase Consulting (1996) MetaEdit+ version 2.5, User's Guide,

MicroWorks, Finland.

MetaCase Consulting (1996) MetaEdit+ version 2.5, Method

Workbench User's Guide, MicroWorks, Finland.

MetaCase Consulting (1996) MetaEdit+ version 2.5, System

Administrator's Guide, MicroWorks, Finland.

MetaCase Consulting (1996) MetaEdit+: A Fully Configurable

Multi-User and Multi-Tool CASE and CAME Environment, White

paper, February, Finland.

MetaCase Consulting (1996) Developing New Methods with the

125

[Microsoft98]

[Milner89]

[Milner91]

[Milner92]

[Milner92a]

[Mok91]

[Monroe96]

[Monroe97]

[Morgan90]

[Naim96]

Bibliography

MetaEdit Personal Environment, White paper, February, Finland.

Microsoft (1998) Microsoft COM Home - Component Object

Model, last updated July 2, http://www.rnicrosoft.com/com/

RMilner (1989) Communication and Concurrency, Prentice Hall.

RMilner (1991) The Polyadic tr-Calculus: a Tutorial, Laboratory

for foundations of Computer Science, Computer Science

Department, University of Edinburgh.

RMilner, J.Parrow, D.Walker (1992) A Calculus of Mobile

Processes - Part I, Information and Computation, Vol.100, pp.1-40.

RMilner, J.Parrow, D.Walker (1992) A Calculus of Mobile

Processes - Part II, Information and Computation, Vol.100, pp.41-

77.

AK.Mok (1991) Towards Mechanisation of Real-Time System

Design, In Foundations of Real-Time Computing: Formal

Specifications and Methods, Kluwer Press.

RT.Monroe (1996) Capturing Design Expertise in Customized

Software Architecture Design Environments, Proceedings of the

Second International Software Architecture Workshop, October.

RT.Monroe, A.Kompanek, RMelton, D.Garlan (1997)

Architectural Styles, Design Patterns, and Objects, IEEE Software

January, pp.43-52.

CC.Morgan (1990) Programming from Specifications, Prentice

Hall.

G.Naim (1996) Complexity Drives Search for Simple, Fail-safe

Software, in The Australian Newspaper, Tuesday January 16.

126

[Ng95]

[Nierstrasz92]

[OMG95]

[Oreizy98]

[Ostroff85]

[Pateman95]

[Pecheur92]

[Peled96]

[Peterson8 l]

Bibliography

K.Ng, J.Kramer (1995) Automated Support for Distributed

Software Design, Proceedings of 7th International Workshop on

Computer-aided Software Engineering (CASE 95), Toronto,

Canada, July.

O.Nierstrasz, S.Gibbs, D.Tsichritzis (1992) Component-Oriented

Software Development, Communication of ACM, vol.35, no.9.

Object Management Group (1995) The Common Object Request

Broker: Architecture and Specification, Revision 2.0, OMG.

P.Oreizy, N.Medvidovic, RN.Taylor (1998) Architecture-Based

Runtime Software Evolution, Proceedings of the International

Conference on Software Engineering (ICSE'98). Kyoto, Japan,

April 19-25.

J.S.Ostroff, W.M.Wonham (1985) A Temporal Logic Approach to

Real Time Control, Proceedings of 24th IEEE Conference on

Decision and Control, Florida, December, pp.656-7.

S.Pateman (1995) An Investigation of PARSE and DISC

Integration, Computing Research Centre, Sheffield Hallam

University, Technical Report Series CRC-95-6.

C.Pecheur (1992) Using LOTOS for specifying the CHORUS

distributed operating system kernel, Computer Communications,

vol.15, no.2, March, pp.93-102.

D.Peled (1996) Combining Partial Order Reductions With On-The

Fly Model-Checking, Journal of Formal Methods in Systems

Design, vol.8, no.l, pp.39-64.

J.L.Peterson (1981) Petri net Theory and the Modeling of Systems,

Englewood Cliffs, N.J., Prentice-Hall.

127

[Petri62]

[Pfleeger97]

[Pnueli77]

[Potter91]

[Quatrani98]

[Rashid89]

[Rasmussen96]

[Renesse89]

[Rice94]

Bibliography

C.A.Petri (1962) Kommunikation mit Automaten, Schriften des Iim

2, Institut fur lnstrumentelle Mathematik, Bonn. English translation

available as Communication with Automata, Technical Report

RADC-TR-65-377, vol.1 supplement.I, Applied Data Research,

Princeton, NJ, 1966.

S.L.Pfleeger, L.Hatton (1997) Investigating the Influence of Formal

Methods, IEEE Computer, February, pp.33-43.

A.Pnueli (1977) The Temporal Logic of Programs, Proceedings 18th

IEEE Symposium on Foundations of Computer Science, Computer

Society Press, pp.46-57.

B.Potter, J.Sinclair, D.Till (1991) An Introduction to Formal

Specification and Z, Prentice-Hall, C.A.R. Hoare Series Editor.

T.Quatrani (1998) Visual Modeling with Rational Rose and UML,

Addison-Wesley.

R.Rashid, R.Baron, A.Forin, D.Golub, M.Jones, D.Julin, D.Orr,

R.Sanzi (1989) Mach -A Foundation to Open Systems, Proceedings

of the 2nd Workshop on Workstation Operating Systems,

September.

G.Rasmussen, B.Henderson-Sellers, G.C.Low (1996) Extending the

MOSES Methodology to Distributed Systems, Journal of Object

Oriented Programming, July-August, pp.39-46.

R.vanRenesse, H.vanStaveren, AS.Tanenbaum (1989) The

Performance of the Amoeba Distributed Operating System,

Software - Practice and Experience, vol.19, March, pp.223-34.

M.D.Rice, S.B.Seidman (1994) A Formal Model for Module

Interconnection Languages, IEEE Transactions on Software

128

[Richter94]

[Roscoe97]

[Rozier90]

[Rumbaugh91]

[Saiedian96]

[Sangiorgi96]

[Saracco89]

[Shan95]

[Shaw96]

[Shlaer93]

Bibliography

Engineering, vol.20, no.I, January, pp.88-101.

J.Richter (1994) Advanced Windows NT, The Developer's Guide to

the Win32 Application Programming Interface, Microsoft Press.

AW.Roscoe (1997) The Theory and Practice of Concurrency,

Prentice-Hall International Series in Computer Science.

M.Rozier, V.Abrossimov, F.Armand, J.Boule, M.Gien,

M.Guillemont, F.Herrmann, C.Kaiser, S.Langlois, P.Leonard,

W.Neuhauser (1990) Overview of the CHORUS Distributed

Operating System, Chorus Systems.

J.Rumbaugh, M.Blaha, W.Premerlani, F.Eddy, F.Lorensen (1991)

Object-Oriented Modeling and Design, Englewood Cliffs NJ:

Prentice-Hall.

H.Saiedian (1996) An Invitation to Formal Methods, IEEE

Computer, April, pp.16-30

D.Sangiorgi (1996) Bisimulation in Higher-Order Process Calculi,

Journal of Information and Computation, vo.131, pp.141-78.

R.Saracco, R.Reed, J,Smith (1989) Telecommunications Systems

Engineering, North-Holland Elsevier.

Y-P.Shan, R.Earle, S.McGaughey (1995) Distributed Objects -

Rounding Out the Picture: Objects Across the Client-Server

Spectrum, Object Technology - A Virtual Roundtable, IEEE

Computer, October, pp.60.

M.Shaw, D.Garland (1996) Software Architecture: Perspective on

an Emerging Discipline, Prentice-Hall, New Jersey.

S.Shlaer, S.J.Mellor (1993) A deeper look at the transition from

129

[Siemen97]

[Silberchatz91]

[Spivey88]

[Spivey92]

[Spragins92]

[Stevens98]

[Stovsky88]

[Sun98]

[Taylor96]

Bibliography

analysis to design, Journal of Object-Oriented Programming,

February.

N.Richter (1997) DCE - Product Families, Siemens Nixdorf

Informations systeme AG, Last Update: August 12, 1997,

http://www.sni.de/servers/dce/dce_us/dceprod.htm

Silberchatz, J.Peterson, P.Galvin (1991) Operating System

Concepts, 3rd ed., Addison-Wesley.

J.M.Spivey (1988) Understanding Z, A Specification La,nguage and

Its Fonnal Semantics, Cambridge UK: Cambridge University Press.

J.M.Spivey (1992) The Z Notation: A Reference Manual, 2nd

Edition, Prentice Hall, New York.

J .D.Spragins, J.L.Hammond, KPawlikowski (1992)

Telecommunications - Protocols and Design, Addison-Wesley.

P.Stevens (1998) The Edinburgh Concurrency Workbench,

http://www.dcs.ed.ac. uk/home/cwb/

M.P.Stovsky, B.W.Weide (1988) Building Interprocess

Communication Models Using STILE, Proceedings 21st Annual

Hawaii International Conference On Systems Sciences, vol.2,

pp.639-47.

Sun Microsystems (1998) Software & Networking - Solaris

Products, http://www.sun.com/solaris/datasheets/

ds-solaris-os.html

RN.Taylor, N.Medvidovic, KM.Anderson, E.J.Whitehead Jr.,

J.E.Robbins, KA.Nies, P.Oreizy, D.L.Dubrow (1996) A

Component- and Message-Based Architectural Style for GUI

Software, IEEE Transactions on Software Engineering, June.

130

[Transarc98]

[Valk77]

[Valk77a]

[Valk78]

[Valk93]

[Valmari96]

[Victor94]

[Wirfs90]

[Wordsworth96]

Bibliography

Transarc (1998) DCE Product Overview - Building Effective

Distributed Computing Solutions, http://www.transarc.com/dfs/

public/www/htdocs/.hosts/externaVProduct/Txseries/DCE/DCEOve

rview/dceoverview.html

R.Valk (1977) Self-modifying Nets, Technical report no.34,

University of Hamburg, Germany, July.

R.Valk (1997) Generalizations of Petri Nets.

R.Valk (1978) On The Computational Power Of Extended Petri

Nets, Proceedings of the 7th Symposium on Mathematical

Foundations of Computer Science, LNCS, vol.64, Berlin: Springer

Verlag, September, pp.526-35.

R.Valk (1993) Extending S-invariants for Coloured and

Selfmodifying Nets, Technical report no.165, University of

Hamburg, Germany, December.

A.Valmari (1996) Verification Algorithm Research Group at

Tampere University of Technology, Tietojenkasittelytiede, no.8, pp.

25-38. Also available at http://www.cs.tut.fi/ohjN ARG

NARG.html

B.Victor (1994) A Verification Tool for the Polyadic n-Calculus,

Licentiate Thesis, Technical report DoCS 94/50, Dept. of Computer

Systems, Uppsala University. May be obtained via

ftp://ftp.docs.uu.se/pub/mwb/

R.J.Wirfs-Brock, B.Wilkerson, L.Wiener (1990) Designing Object

Oriented Software, Prentice Hall.

J.B.Wordsworth (1996) Software Engineering with B: An

Introduction, Addison-Wesley.

131

Bibliography

[Y ourdon79] E.Yourdon, L.Constantine (1979) Structured Design, Prentice Hall.

[Y ourdon89] E. Yourdon (1989) Modem Structured Analysis, Prentice Hall.

132

	Title Page : Dynamic Distributed Systems Design: An Architectural Design and Verification Approach
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables

	1. Introduction
	2. Review
	3. Dynamic PARSE Design Methodology
	4. Dynamic PARSE Analysis/Verification Methodology
	5. Dynamic PARSE Design Analysis Tool
	6. Case Studies
	7. Conclusions
	Appendix
	Bibliography

