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ABSTRACT

Using a ray theory model, the energy transmissioh loss for éound .
propagating in shallow isovelocity water Wés calculated. The exact amplitudes
and phases of all rays at the receiver wé:e computed;‘these'amplitudes were
then summed coherently and the intensity obtained By squaring the total ampli—
tude. The energy transmission loss was found t§ increase with:

(i) increasing range ‘
(ii) increasing bottom loss
(iii) decreasing frequency -

(iv) decreasing height of receiver off the bottom.

When the bottom loss is small the‘energy‘léss with range follows a
cylindrical spreading law. As the botfom loss increases the‘fate of enéréy
loss with range increases approaching a modified Lloyd's mirror type of
propagation. | |

To ascertain the effect on the received energy of a slowly
varying bottom depth, abtype of perturbation:theony was used; From the bottom
depth distribution function, the distribution of the phase diStortion'éaUsed
to each ray by the variation in depth was obtained. By adopting é Monte-Carlo
procedure and hence computing’thé transmission loss at one'rahge many timés‘ |
by selecting phase distortions fdf each ray randomly ffom the‘éhase distoftién'
distribution, an expected fluctuation in intensity was determined, |

The rms fluctuatioh in intensity &ue to a variatién in the bottom‘

depth was found to increase with:



(i) 4increasing range
(ii) increasing frequency
(iii) decreasing bottom loss

(iv) increasing bottom depth variation.

To verify Tolstoy's (1,12) comparison between ray and mode theory
the arrival times of the first four modes as a function of frequency was

computed by ray theory.
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Lamb (1,1) in a classic paper, first considered the propagation
of a disturbance generated in a semi?ihfiﬁite medium by an impulsive point
or line source at the surface. He also.derived the formal solutions for
internal sources as integrals. )

Pekeris (1,2) 19,1, developéd the normal hbde theony~of'propagation‘
of sound in leyered media. In 19,8 Pekeris (1,3) extendga‘this theéry to -
cover the case of explosive sound ,and the predictions of tﬁé theory ébqut
the shape and varigtion of amplitude‘ih'fhe reéeiVed pressure pulsé were
verified by comparison With experimental data. _As well aglsdlviné'fhe ﬁﬁq
layered liquid half—spéce probleﬁ, Pekeris obﬁained the cﬁrveélof:the group L
and phase velocitiés for a fhrée layereaﬂliquid,halféspace where_thévveloc—
ities of successive layers increased. ”

The case where thgiintermediate.layer‘has a lower sohnd_velodity
than the water layer was investigated'by Presé and Ewing (1,4);‘ They were
interested in the fact that in some areas the 'Watef wave' consisted bf‘a
brief burst of high frequency sound which did’not éhow the dispersioﬁvand
Airy phase normally found. They found from fhe phase and group;vélocity ,
curves that a three layered liquid half‘space with a loﬁ‘speéd intermediate'
layer could account for this phenomenon. -Officer‘(1,5) has:dériﬁéd thé‘F:‘ ‘
frequency equatioﬂ and solutions for the three-liqﬁid half sPacé:by’thé use

of rays and plane-wave reflection and transmission coefficients.



The models for shallow water sound propagation mentioned so far
are idealized. In many circumstances the ideal models are adequate. More
of ten they are not. There are many parameters which influence shallow water
sound propagation. Weston and Horrigen 1967 (1,6) have identified ten
different mechenisms for the fluctuation of sound propagating over the same
path. By observing the amplitude and phase fluctuation of 2kHz sound trans-
mitted continuously over a 7), mile path in the Bristol Channei the periodicity
of the fluctuations could be studied. The‘sound fluctuation was observed

to be:
(i) seasonal in amplitude

(ii) seasonal in phase
(iii) diurnal in amplitude due to the changing aggregation of fish

(iv) various due to the depth-dependence of the tidal streaming

velocity
(v) various due to the tidal changes in water depth

(vi) phase effects due to changes in the mean tidal streaming

velocity
(vii) storm effects
(viii) surface duct effects
(ix) fluctuations of a few minutes period due to fish, daytime only

(x) fluctions of several minutes period due to internal waves, -

near slack water only.
We see then that sea states, currents, temperature gradients and espedially
the presence of fish cause large fluctuations in the transmitted sound
intensity. In particular, Weston and Horrigan report a 15dB attenuation due

to the breaking up of fish shoals at dusk.



We shall, in this paper, not be considering the fluctuation of
the just-discussed phenomena, we shall consider the effect on sound propa-

gation of:

(i) a sound absorbing bottom

(ii) variation in the bottom depth.

In 1955 Kornhauser and Raney (1,7) derived the attenuation coefficient for
each mode from the attenuation in the lower medium. They found the attenu¥
ation coefficient, which is frequency dependent, increases repidly with
increasing mode order.

Williams and Lewis (1,8)>following on from this work used the
model attenuation coefficients derived by Kofnhauser and Raney and allowed
for a slowly varying bottom depth to deriveiaverage intensity decay curves;

Two criticisms of Williamé and Lewis' report are:- |

(i) It assumes an unreal dependence of atfenﬁation on frequency.

(ii) It does not allow for modal interference.

Field Work done by the RAN

The RAN has conducted an acoustic trial in shallow water. - In
keeping with current geophysical practice explosive charges were used as
sources. Hydrophones were laid on the bottom in about 200 ft. of water and
thé trials ship sailed away setting off charges at predetermined ranges. |
Several radial runs were executed in this fashion as well as one circular
run. The acoustic signals received at the hydrophone were tape recorded.
These tapes were subseguently analysed and the propagafion loss curveé,
that is the curves of transmission loss in dB re 1 f't. vs'range, for fhe

various frequencies were obtained. Sonagrams were made of many shots.
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Figs 16 and 30 show typical propagation loss curves and selected sonagrams

of shots.

A summary of the results obtained is:-
(i) The slope of the propagation loss curves indicate an energy

3.5,

transmission law of r r‘l"'5 where r is the distance
from the source. This‘slope is frequency dependent, the

higher frequencies being attenuated less rapidly.

(ii) The energy loss at a fixed range increases with frequency.
Owing to (i) this increase becomes smaller with increasing

range.

(iii) Intensities along the constant range runs vary by as much as
15dB. The average water‘depth remains constant. This
variation of intensity is a function of bearing and not a
random fluctuation. This can be seen because the energies‘
received from the shots set off on the radial runs corre-
late well with the energies received from the shots set
off on the circular runs at the points where the radial
and circular runs cross. Since these independent runs
were made at different times of day, the dominant féctor

influencing the propagation losses is seen to be the bottom,

Discussion of Experimental Results

In order to determine whether the Pekeris model of water overlying

a fluid sediment was satisfactory, sonagrams of many shots were studied. If

normal-modes were propagating, then the sonagrams of the shot arrivals would

show mode structure due to the dispersive propagation. Denham and Kibblewhite

(1,9) in their analysis of long range propagation of sound off the New

Zealand coast give examples of sonagramsbof shots where mode propagation



is apparent. The sonagrams of the RAN shots however, showed no distinct
mode structure. Nor was dispersion apparent, the shot duration was essen-
tially independent of range. The assumptions needed to incorporéte the
Pekeris model therefore were not feasible and hence ray théory was used to
calculate the acoustic intensity a§ a fuﬁgtién of range.

In previous literature (1,10)(1,11) ray theory had been used
assuming incoherence or partial coherence only of the signals fgom the
separate ray arrivals. However to say that in shallow watér the éeparaté
ray arrivals are randomly distributed in phase is not generall&VCOfrect;
Most authors dismiss this point lightly with very little Justlflcatlon.
Two situations which show strong coherence between: the ray arrivals are°-

(i) Pekeris' Normal Mode Propagation

Tolstoy (1,12) shows the correspondence between ray theoryiénd
mode theory. In réy theory the total set¢of multiply-reflected réy_paths
from an infinite set of images displaced along a vertical line through the.‘
source as shown in Fig.1. When a shot is fired eaéh of these images simul—‘
taneously trensmits a shot impulse. These 1mpulses from the varlous 1mages QK
travel towards the receiver via the shortest rgute. At dlscrete p01nts along
this path the phase and amplitude of the’ﬁulées change abruptly corresponding
to surface or bottom reflections. Beééusg‘the higher order imageé are
further from the receiver than the lower order images,’the shét is heard a£
the receiving point for a much longer time than the duration of the‘shot
itself. In addition to this, thé received shot intensity level varies
with time, It is this variation with time that indicates the'séparate‘rﬁys

arrive coherently.



Let us label the iﬁages according fo‘thé nﬁmber of surface and
bottom reflections a ray, from it to the receiver, undergoes. The group of
images for which the total number of reflections en route is approximately
the same will arrive at the receiver almost Simultaneously.. Depending on the
distribution of phases within this group, the rays will,reinforde,or cancel.,
Since the duration of the shot is small cdmpared to the tétal received shot
duration and successive image sets are fu:thér‘from the :eceiver'these ’
reinforcements and cancellétions of the sucdeésive‘image sets manifést theﬁ-
selves as separate modes of propagation arriving at different timés;at the
receiver. If all the rays arrived incoherently, no such mode strudtﬁre would
exist and the received intenéity‘would vary'ohly slowly. |

(ii) The Propagation Loss Curves obtained by the RAN

Using raey theory, we calculate the pfopagation loss cur#ea for
isovelocity water as a function of range. If we‘assume the separatequy
arrivels are incoherent, then the.slope'of fhe_léss_@ﬁrve is betﬁeen 3 and
6dB per range doubled, Fig 18. This slope inéreésés with iﬁcfeaSing‘bottom
loss. A slope of 3dB per raﬁge doubled corresﬁonds‘to 1o§sless feflection
from the bottom and hence normal modes propaegate. A slope of 6dB'per fange
doubled corresponds to a perféctly absorbing bottom:and hence we‘héve only
the direct and surface reflectediarrival undefgoing spherical sbreédiﬁg;-
6dB per range doubled is the maiimum slope‘obtainabié, assuming the rays add
incoherently. |

The fact that the propégation loss curves.in the area considered
exhibit a slope of 10-15dB per range dogblediihdicates that phase annihiiation

has occurred end hence the rays arrive cohérently at the source.



SYNOPSIS OF THIS PAPER

The present paper analyses shallow water propagation allowing for
phase coherence between the separate rays. An IBM 360/50 computer was
progremmed to calculate the amplitude and phase of each ray at the receiver.
The amplitude and phase change of each bottom reflection was computed at
each step from the bottom loss and phase change vs grazing angle data fed
into the computer. These separate rays were then summed coherently to obtain
the total intensity at the receiver.

The propagation loss curves were then plotted on a function of:-

(i) frequency

(ii) bottom loss
(iii) depth of receiver

In the area considered the bottom depth changes by a factor of
two several times in the length of a run. Because these depth changes occur
over large distances, the bottom is essentially flat with a maximum slope of
one in fifty.

To ascertain the effect of this variation in depth a type of per-
turbation theory was used. To the calculated exact phase of each rey a phase
correction was added. This correction was selected randomly from a distri-
bution of phase correction factors. The distribution of phase correction
factors was calculated from the change in path length of the ray from source
to receiver due to the statistical variation of the bottom depth about the
mean. By running this program repetitively with different sets of random
numbers an expected variation of the signal intensity at the receiver was

determined.



The theoretical 'sonagram' of the shots‘was calculated using the
bottom loss parameters produced in the first section of the paper. These
sonagrams show the shot duration over a lossy bottom is small compared to
the shot duration which would occur if the bottom were lossless and:normal
modes were propagating. To verify Tolstoy's(1,12) comparison betweén ray
and mode theory, the arrival times for the first four modes as a function of
frequency were computed. The bottom was assumed td be lossless end fhe range

was the same as the range used to calculate the theoretical 'sonagrams‘ of the

shots.
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2. CALCULATION OF PROPAGATION LOSS CURVES USING COHERENT RAY THEORY

In this section we set about calculating the transmitted energy
loss as a function of range. We will meke no assumptions ebout the randomness
or pseudo-randomness of the phases of the ray arrivals gt the receiver as has
been done in the past by other authors. We will compute the‘gzggi‘phase of
each ray at the receiver in order to find the dependence of trgnsmission

loss on:-
(i) Renge:

(ii) Bottom Loss
(iii) PFrequency

(iv) Depth of receiver.

Since we wish to obtain theoretical curves of transmissidn,IOSS to matéh the
experimental curves obtained by the RAN our model must allow for the impor-

tant environmental features in the area where the RAN trial was held,

Relevant Geophysical, Oceanographic and_Experimentdl‘Data

(1) Bathythermograms taken at vafious stations ihdicate'the

water to be essentially isovelécity'ih hatufe.‘ |

(ii) The bottom consists of a clayey silt to a fine sand.

(iii) The bottom is eésentially flat,with‘én average depth of 200 ft.

(iv) The explosive sources were set so they exploded at about L0 ft.

(v) The receiving hydrophones were léid on the bdtﬁom-in 200 ft.
of water,

(vi) Travel time éurves‘(Fig.Z) for éhofs.on one fun show,thé

bottom,to‘haVe a layered structure.



(vii) The shot duration is essentially independent of range
(Fig.30).
(viii) There was good experimental correlation between the total

energy in the shot and thefniﬁqﬁﬁat peak pressure.

Discussion of these results

The Bottom

Since the bottom is muddy or silty, we can attribute to it a ’
density of 1.5 to 2.0 times the density of water (Hamilton(2,1)). Further,
we can attribute a sound velocity of .97 to 1.2:times the velocity in water
to the sediment. Hampton 1967(2,2) has conducted‘exéeriments to determine
the attenuation and velocity in water-saturated sediments for a large range
of sediment concentrations and several sediment types. He showed that |
where the sediment was in suspension, the local sound velocity was lOwef
than the sound velocity in water and this velocity increased to the uncon-
solidated sediment velocity as the concentration of sediment increéséd. The
mechanism that causes the velocity of sound in the suspensiqn to be lower

than that in the water is easy to see. We have:-

vk

c = =

s

where ¢ is the local sound velocity and K and p afe the comﬁressibiliﬁy

and density of the water-saturated sediment. When we have sediméht parfiﬁles
in suspension and hence not intimately inlconféct, the compréssibility K of »
the water is not modified significantly for low sediment concentrations.

The density of the water-saturated sediment increases however and so we See
that the sound velocity c is reduced. Hence we see that the sound velocity

in water-saturated sediments decreases with increasing sediment comcentration
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until the suspension density becomes so great that the compressibility
increases due to adjacent particles constantly touching and hence transmitting
stress. Under these circumstances the sound velocity rapidly increases to

the normal sediment velocity. Not all sediments will form a suspension :

clay and silt will and so we can expect that when the sea floor consists of
silty clay, and there is a current, there will be always a layer of sediment
in suspension. We see then that under these circumstances, which are
frequently encountered, the sound velocity in the sediment will increase

from a value below the water sound velocity (at the water/sediment interface),
to the normal sediment velocity at some depth in the sediment.

The travel time curves of Fig.2 indicate that the normal sediment
velocity is 1.11 times the velocity of sound in water. Whether the sediment
arrivals are refracted rays travelling horizontally in the sediment or are
rays travelling through the sediment and reflected from a deep high speed
layer is of no consequence. Officer (2,3) shows that for large ranges, the
slope of the travel time curve of reflected arrivals‘is asymtotic to, the slope
of the travel time curve of refracted arrivals. That a low speed layer
exists is seen because:-

(a) The high propagation losses encountered in the RAN trial
indicate the bottom loss is high even at grazing incidence. A low speed
layer will give high losses at low grazing angles since rays will be refracted
towards the normal on passing through the water/low speed layer interface.
Using Fig.9 we see there are two mechanisms which give large attenuations

in the intensity of the sound following path (ii):
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(i) Attenuation dﬁe to propagation in layer 2.

(ii) Attenuation due to imperfect reflection from the low speéd
sediment/high speed sediment interface. Figs 6 and 7 give
curves of reflection coefficient and ehergy loss of a plane
wave travelling in a low speed layer being reflected from an
interface with a high speed layer. The reflection coefficient
and energy loss are plotted against angle of incidence for

several wave attenuations in the high speed layer.

Both of the mechanisms (i) and‘(ii) give an energy 1055 which 1
increases rapidly with frequency. Hence a low speed lajer will give é'high‘
bottom loss which increases wifh frequency at loﬁ and zero grazing Angles;

(b) The thin low speed layer acts as ai'high pass' filter énd a1iows'
only the higher frequencies to ﬁass from the sediment to thé ﬁatér. Sénagfams :
(Fig.23) show that the two arrivals before the watef wave arrival'have a |
central frequency of 600Hz. A low speed 1gyer 5-10 ft. deep‘effectivgly

filters out all low frequency oomponents‘from a sound wave passing through it. -

The Nature of the Received Shot

That the received shot du:ation is independent of‘rénge‘can be seen
from Fig.30. If normal modes were propagating over é lossleSS bottom; the
shot duration would be proportional ﬁo rahge (Officer(Z,h)). ‘Lack of-diséer-
sion in the water wave can be explained in term$ of ray theory. -

When the bottom loss is high, the signal intéﬁsity from the higher
order images (Fig.1) becomes rapidly Smallef with_iﬁcreasing iﬁage'ordéf.
Dispersion in the received signal however, is dﬁe'to the,léte-a:rivingisighgls
from the higher order images. Hence where bottdm'loss i$ high, the recéiiéd

shot duration is essentially independent of renge. Since only the rays
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which have low grazing incidence at the bottom cafry significant energy
and there is negligible separation in the fime of arrival of these rays,
the peak intensity at the receiver due to a shot will be the same as‘the
peak intensity due to.a continuous source. The peak]ﬂﬁ@rﬁﬁfwithin a shot
is proportional to the total energy when the;shot duratien is constant.
Hence the energy transmission loss curves for a continuous source will be
approximately the same as the energy trenshiesion‘less curves for an
explosive source when |

(i) Shot duration is short

(ii) Shot duration is constant with range.

The Model Adopted

The model is that of Fig.1, con31st1ng of a two layer model of
isovelocity water over1y1ng & sediment base. The water depth is taken as
200 ft. The source is a continuous p01nt source situated 1,0 ft. below the
surface. The bottom is assumed to be lossy and the bottom reflectlon and
phase change on reflection curves of the form-given}in Flg.j,

A full account of tﬁe derivation of the refleetion‘eOeffioieﬁt <
of Fig.3 is given in Appendix 1. |

Formulation of the Problem .

Considering Fig.1 now, we see that at any instanf‘of‘time:the
source and all of the images will be in phase,'ffansmitting.omnidirecfionally
a uniform intensity signal. The time independent amplltude potentlal at the

receiver for the Ray. (I,J) is given by:- ((Hy%cer)
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x. = Yo T4 (kR + ¥). (2.2)
¢ R :

is the amplitude at unit distance

T or B representing the upper or lower image sets

1}

respectively as shown in Fig.1

¥y (I,J) is the amplitude at the receiver of the Rayy (I,J)

1]

Hy (I,d) is the bottom reflection coefficient
is the number of bottom reflections undergone by Rayqy (I,J)
is the number of surface reflections undergone by Ray, (I,J)

= Ry (I,J) is the path length of the Ray, (I,J) from

source to receiver.
is the wave number.

= ¥, (I,J) is the total phase change en route due to surface

and bottom reflections.

Referring agein to Fig.1.

and so

W&(I,J) = 2-D + 2DJ + 2(H-D) I

(2.3)
Wé(I,J) = D-2 + 2DJ + 2(H-D) I
R = W% +T2) (2.3,)

The angle of incidence A of the Ray, (I,J) is given by:-

A

= ten (T/W) (2.5)
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The criticel angle of incidence C is given by

¢ = sin ‘(c1/02) " (2.6)

From Fig.3 we see that when A <C, the bottom reflection coefficient is
very low and rays which have an angle of incidence greater than critical
will be rapidly attenuated.

In the summation of Xy and X, over I and J, we see (Fig.1) that

T

since we will be summing successively highef order images, it is useful to

redefine X and XT.

B
Let . ‘
Xy (x-1) = -XB(K, K-1) g
2K = X_(X,
" (2 o) K) o (2.7)
and Xp (2L-1) = xT(L?1;;L)
X, () = XL, L) )
The total amplitude at the receifer ﬁill be given_by
M N
X = x(o) + ZJ Z.'(xB(K) + %,(1)) (2.8)
K=1, L=1 '

We are summing successive orders of images and hence W is an
increasing function of K and L. This means A is an increasing function of

K and L.

Using the changed notation of equation 7., we define M and N
AB(M) >C > AB(M+1)

AT(N) >C > AT(N+1) (2.9) '
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M and N are then the values of the dummy parameters K and L
which give the highest order images below cutoff.

From equation 2.2, the total change in amplitude and phase due
to all of the bottom and surface reflections from source to receiver is
given by:-

Ref = yI e v ‘ (2.10)

The reflection from the surface is assumed lossless with a phase
change of II. Associated with each bottom reflection, there is an amblitude
change of u and a phase change of € ., u and € are selected from the

family of u and € vs A given in Fig.3.

The total reflection coefficient from source to receiver for the
Ray o (I,J) is given by:-

Rof = #Ia(I’J) o JIIT J + € (T,5)I] _ “Ia(I"J) . ,j«g(I,J) (2.11)
Hence ¥ (I,7) = ITI J + €I o (2.12)

Computation

Using the form of reflection coefficient and phase change given
in Fig.3, we now evaluate the series(2.8) by a computer program (Appendix 2);
The propagation loss as a function of range, frequency, receiver depth and
bottom loss can be obtained by varying each of these parameters separately
while keeping the others constant. Figs 10-15 plot the theoretical propa-
gation loss curves as a function of range, frequency bottom losé and

receiver depth,



1 $

These graphs show:-

(a) The slope of the propagation loss curve increases with:-
(i) decreasing frequency Fig.10(b)
unless bottom is lossless Fig.10(a)
(ii) increasing bottom loss Fig.11
(iii) increasing range Figs.10-15

(b) The propagation loss (dB re 1 ft) decreases with

(i) decreasing bottom loss Fig.11

(ii) Increasing height off bottom Fig.1y
unless bottom lossless Fig.12
decr—easi )
(iii) VYdistance from sound source Figs.10-15.

(c) The difference between hydrophohe response on the bottom and )0 ft.
off the bottom increases with
(i) increasing frequency Fig.15
(ii) increasing bottom loss Fig.13
(iii) increasing range for low frequencies g

Fig.13
decreasing size for higher frequencies)

3. INTERPRETATION AND BISCUSSION OF THE RESULTS

(a) That the slope of the propagation loss curves increase with
are found to ‘
increasing range we expect. Indeed all of the curvegﬁhave envelopes of the

form: 4 -y
I = r e ¥ (2.12)

and we immediately see the 1-1 correspondence between this decay law and the

one obtained when we use normal mode propagation.

&, }
I = QZJ rle By T - (2.13)

i=1
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In the latter case Hy is the attenuation coefficient of the ith'mode.

Where the bottom is lossless, so many rays are tramsmitted from
the source to the receiver without loss that the phases of these are arbit-
rary and so from geometrical considerations alone the spreading law is r—1
irrespective of the propagating frequency. Where there is a bottom loss,
only the rays with small graéing angies at the bottom and hence few bottom
bounces from source to receiver, carry significant energy. ’Each low grazing
incidence ray has an approximatély antiphase surfacé reflected pair; the
degree of out-of-antiphase increasing with increasing grazing angie of the
ray. The degree of out-of-antiphase, being due to path length differences.
between the ray and its surface reflected pair, increases with incréasing
wave number and hence frequency.

We expect that phase‘cancellatiqn will be more complete as the
frequency decreases and the bottom loss increases and so the fate of energy
loss with raﬁge will be correspondingly higher. In equafion,Z;iZ H can nOﬁ
be seen to increase with bottom loss and decrease with frequency. Bottom‘
loss is a function of frequency ahd S0 K can be expressed as a funcfion of
frequency only. |

(b) Where the bottom loss is nbn—zefo; there is an imprbvement of : the
order of 10dB in the receiver response by raiéing the receiver off'the
bottom. Very close to the bottom eagh ray has a bottom reflected pair that
has traversed almost exactly the same.path length but has undergone a phasé
change of approximately I radians at the,bottbh-reflection. Thus the sound
intensity in the near ﬁicinity of the bottom ié conSiderably'reduced.‘
However, while there is strong phase canceilation qlose to the bottom, the

phase coherence, and hence cancellation, several wavelengths above the



bottom is not nearly so strong, and so the receiver response is greater
off than on the bottom,

If the bottom is lossless, a ray with large grazing angle will
not be antiphase Wifh its bottom reflected pair. The phase change at a @
bottom reflection is dependent on the grazing angle of the ray : ‘the phase
change decreasing from II radians at zero grazing incidence to zero at
critical grazing incidence. Thus the effect of the lossless bottom is to
allow the rays with high grazing angles, large numbers of surface and
bottom reflections, and hence effectively random‘phases, to‘pfopagéte‘with
the result that the receiver response is not depth dependent.

When we compare the family 6f fheoretical curves ﬁithﬂthe experi;
mental curves of Fig.16 we find bottom reflection parameteré ¢an be found
to meke the theoretical curves 'fit! the experimental cdrves. The theorét—
ical curves thus found are givén in Fig.17 and the predicted bottom reflection
curves are given in Fig.). It is useful to noté that the bottom réflegtion
parameters used to make the fheoreticalncurves fif thé experimental cufvés
are very frequency dependent. This is‘in acCordanQe with the expériﬁental‘
results of Marsh‘(2,5) apd is in fact generally accepted to be the case.
The high bottom loss‘at grazing incidence is explained usihg the model of t
Fig.2 in Appendix 1.

It is interesting to note the theoreticél curves obtainéd, using
the bottom reflection parameters found above, for the case where no coherence

of rays is allowed. These curves Fig.18 exhibit:
(1) ‘NQ frequency dependence ‘
(ii) A max slope of 6dB per octave doubled

(iii) No depth dependence of receivér response.
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Lo CONCLUSIONS

We see that to account for the‘high rate (r~3°5 - r_4'5) of
transmitted energy 1o§s in shallow isovelocity water and the dependence of
receiver response on receiver depth, we must allow for the phase coherencé‘
of the rays. It is maintained that it is only in exceptional circumstances
that the phases of the propagéting rays can be considered_fandém.

In chapter 3 we will be considering the effect-onltransmission.
loss of a perturbafion in the bottom depth. $he resulté of chapter 3‘shbw -
that the propagation loss cﬁfves obtained in this.ohapter‘are stable ﬁnder
a small perturbation of the parameters‘and hence these propagation loss

curves are not singularities in a mathematical solution but are physicallyj

realizable, |
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3. THE VARIATION IN SIGNAL INTENSITY DUE TO THE ROUGH BOTTOM

Recent Work in the Field

Tolstoy and Cilay (3,1) discuss the variation in intensity due to
inhomogenities in the medium. They treat :

(a) The Reflection of acoustic signals at a rough boundary.

(b) The reflection from a slightly irregular stratified medium.

(¢) Propagation in a waveguide with slightly irregular interfaces.

In the treatment of (¢), Tolstoy and Clay assume :
| (i) The eigenvalues of the characteristic equation corres-
pond to the local stratification.
(ii) The stratification varies slowly from one local region
to another.

(iii) There ﬁég no reflection: or apfreciable scattering of
energy from one mode to another in the transition
regions.

The model assumed then,is one of normal mode ?ropagation, assﬁming
the modes 'accommodate' themselves to a slowly changing bottom depth with
no interaction between the sepagrate modes.

Since normal modes consist of wave packets of 'stationéry phase'
propagating down the waveguide, we see that the largest single cauéé of
intensity fluctuation is mode interference. A smali change in the phase of
each mode can result in a large,chénge in the received intensity. Thesé
small phase fluctuations can be caﬁsed by inhdmogeneties-in‘the propagating
medium or by irregularities in thé waveguide interface. Tolstoy and Clay

evaluate the effect of . the irregular waveguide on mode propagatidn by



considering the phase perturbations of each mode introduced‘by & small
veriation in the bottom depth. Their line of argument is as follows:-

Consider the wave equation,

w?
V3 +;z¢ = 0

put ¢ = R(r). ¢(z)

then VI?"”R(r) + K®*R(r) = 0

SR @) + ¥%(z) = O

2
W
where K&+ ¥?= e

Now the solution ¢(z) can be expanded into normel modes ¢(m,z) and these '

functions are discrete for trapped modes.

The acoustic pressure at depth z and range r can be expressed as : Cabkﬁy'
: 2% Clay‘)
M _ o
p(t) = - ip }Z: Pme— i(kmr ~.9t’- n/y) - Smr.
vr ‘
where Pm is a factor taking into account;the’effect of transmitter depth,
receiver depth, source strength and the horizontal component of the wave

number on the received‘preésure due to the mﬁh mode. p is the density of‘
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the propagating medium and Sm is the attenuation coefficient Qf-thé mth mode,

If now there is a perturbation in the bottom depth, the bressure'

at the receiver will be given by:-
M

m—

p(t) = -% : ?ﬁe- i(kr - ot - n/) +1A$m) -8 r
r m=1 . »
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where Eﬁ is \/Pm(source). Pm(receiver)

and k= <k (r)>
m m r

and ASm is the total phase change of the mth mode over the distance r due

to a perturbation in the wave number km of em(r)

i.e. km(r) k o+ em(r)

r
and so AS = /- € _dr
m m
o
Hence Tolstoy and Clay derive the formulae for the intensity
fluctuation to be expected in waveguide propagation due to mode interference.
To be useable we must know the distribution n and hence the distribution of

AS_.
m

The above analysis of Tolstoy and Clay is limited in its appli-
cation because |

(i) A1l the rays comprising the 'stationary phase'! of a mode do
not travel identical paths. If they did the intercept time of each mode
would be very short. That the intercept time is pot short éan be seen from
typical sonagrams of shallow water propagation. (Tolstoy ahd Clay pg.111).
Hence the several paths which constitute one mode will ha#e pﬁase correcfion
factors which can differ markedly.
Consider Fig.1. The rays undergoing approximately the same total number
of reflections will strike the bottom at points which can be large distances
apart., If these rays in the unperfurbed case constituted the coherent wave
packet of a mode, we could hardiy say éll these rays in the perturbed case

had their path lengths altered by the same amount due to a varying bottom
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depth. Consider, for example, the two rays having a total number‘of surface
and bottom reflections of 10; unless the source and receiver are both near
one of the interfaces we can expect the positions of bottom bounce of these
two rays to be separated by uﬁ to 2,000 feet where the sourca/:receiver
separation is 10,000 ft.

We see then that € and hence AS@ can vary substantially depen-

ding on which ray we are considering and hence

r

AS = f[ 'em(r) dr
o .

is a good approximation tq the phase correction to be applied to each mode
only for the higher order modés which interact strongiy with fhe bottom,

(ii) No account is taken of the‘vafiation‘in the slope of -
the bottom,

(iii) No scattering of sound 'out' of a mode is ellowed.

(iv) Since mode interferenqe[ié assumed to cause the fluctu-
ations in intensity the anaiysis is only applicable.to a C.W, source, - When
we have an explosive soﬁrce of short dﬁration the‘sepérate modeé have differ-
ent arrival times and no mode interference can<occuf; .The flﬁctuation in.‘v
received intensity does occur hdwéver:éhd sovthé'anélysis of Tolstoy and
Clay is not applicable to the case Where the source is ah impulsive‘éhé.“v

Procedure Followed in this Paper

In order to evaluate the rms fluctuation in the received intensity
of transmission and hence in the transmissibn loss,céused by the variation

in the bottom depth, we must'allow.for’fhe phase distortion caused by the -
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path lengths of the several rays, which in the unperturbed case constituted
a mode, being altered by varying amounts., Once again we use the model of
#ig.1 and make the assumption that, since the bottom loss is high, only
those rays with low grazing incidence contribute significant amounts of
energy. This assumption is verified in the next chapter where we plot the
intensity within the received shot as a function of time,

The amplitude of sound at the receiver due to the Kth image on

the o (top or bottom) side is given by (2.2) (2.7)

%, (xK) = X I, (R + V) | (3.1)
R
where ¥ = I.B + J.

The bottom depth varies sbout some mean value H and so the ray

path lengths from source to receiver will vary ebout some mean value also

Put R = R+4R (3.2)
where R = Wit+ T2 (2.4)

Xo I, JER +V +8 )

Hence  X4(K) = > (3.3)

where & = K.AR ‘ | (3.1)
and so when AR « R

% © & Lo SKE + v+ 8) '  (3.5)

= T® o 9 (3-6)

where X, (K) = X0 ule JUR +¥ )_ | (3.7)

R



Thus, when A R « R s, the effect of a small increase in path
length is to alter the phase of the received image by §.
The total intensity at the receiver will be given by:-

LT, (e B3 ) (3.8)

X

i
>
Paan
(@]
N
+
L\/Iz
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o |
~~
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h
(0]
cl
%
=
p

In order to evaluate (3.8) we must know all the &'s. We see
that the phase distortion & for a particular ray will be described by a
distribution the standard deviation of which increases with:-
(i) T he magnitude of the fluctuation in bottom depth.,
(ii) The grazing incidence of the ray upon striking the bottom,

(iii) The total number of bottom bounces from source to receiver,

The Perturbation of Phase S.

Typical bottom profiles for several runs in the area where the
RAN acoustic trial was held are shown in Fig.19. From these and more
detailed records of echo soundings we see that the bottom depth, although
varying by a factor of two, does so in such a large distance that the bottom
in any small area can be considered flat and horizontal. Depth/frequency
curves for all of these runs were drawn Fig 20 (a— e) and a representative
depth distribution curve was determined Fig.20f. We can assume then that
when the bottom depth fluctuates about a mean depth, the depth/distribution
curve has the bimodal form of Fig.20f. We shall use Fig,20f, with a change

of origin, as the depth distribution function W( Ah) about the mean.
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Referring to Fig.2),, we see that the increase in'path‘léngth per

bounce due to a perturbation in the depth of Ah is
Ar = =2 x Ah x cos (¢) to the first order ©(3.9)

If the surface of the water is Smooth, the total variation in péth length

due to the bottom depth variation for a ray undergoing I bottom bounces is

given by:-— I o :
AR(I) = LAri . S (3{10)
i=1 | = L
I , , . .
= —2cosg \ Ah, , o (3e11)
. -

where the ZB% are selected from the distribution W('Ah). For the‘éonven—
ience of computation, we define a variable AH(I)

I

AH(I) = LAhi o (B2
i= | L
where the Ah, are selected from W( Ah). -
Then AR(I) = -2 cos ¢ A H(I) e o o (3413)
where H(I) is selected from W( AH(I)), the distribution of AH(I).
Since W(AR) is a symmetricsl finite distribution, W(AH(I)) is &

normal distribution (for sufficiently iafge I)'Withfstandard_déviatiqn'.
given by R R SR v

where o¢_ is the standard deviation of W( Ah).
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To confirm that (3.14) is é'good approximation to ¢ a Monte Carlo
procedure was adopted where the distribution and stendard deviation of
#( AH(I)) was obtained by summing sets of I variables selected from W( Ah)
randomly. This was done for several values of I and hence the distribution
curve and standard deviation as a function of I could be graphed as in
Fig.23a. From the distribution curves we see that W( AH(I)) is approximately
a normal distribution even for I as small as twenty and we also see that
o =22VI is a good fit to the points of ovs I shown in Fig.é}b o, wgé
taken as 22 for the purposes of computation and so equation 3.1) was verified.

To obtain a rendom variable AOH(I) from approximately the distri-
bution W( AH(I)), we first generate a normal random variable AOH(1)‘With
mean zero and standard deviation 0y and then We'multiply the variable :so
obtained by\/f_. We now have a normal random variable with ah epproximate
distribution of W( AH(I)).

To evaluate equation ().8) we obtain all of the &(K) by noting:-

8(K) = 8, (1.J) using (E 1.7) (3.15)
= -2k cos ¢AH(I) . - (3.16)
$ -2k cosp VI A _H(1) (3.17)

Thus by generating at each step a normal variable with mean o
and standard deviation o_ we can compute ﬁsing (3.17) a pséudo -random” 3
phase correction for each ray.

The fact that for small I, say I <5 the distribution of W( AH(I))~
is not normal concerns us very little since:- | |

(1) The grazing angle for the lowest order rays is so low thét,

the change in path length due to a perturbation in bottom
depth is very small.
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(1i) The very lowest order rays arrive at the receiver antiphase
and hence there is very little contribution to the received
intensity from the rays with very few bottom bounces.

Evaluation of the Sound Intensity Variation.

The series (Egquation 4.8) was evaluated by the same computer
program as that given in Appendix 2 using the reflection parameters of
Fig.), except that to the arrival phase of each ray a pseudo-random.phase 8
was added. W(8), the distribution of §, as we can see from above is’é
function of the angle of incidence of the ray, the no. of bottom bouﬂces
the ray undergoes and the bottom roughness. The details of the subroutine
which computes a pseudo-random phase & for each ray are givéﬁ in Appendix 3.
By repeating this entire process over and over, we genefate by é Monte-Carlo
technique the distribution function of the received intensity X.

We wish to find the behaviour of:-

(i) The rms fluctuation of received intensity.

(ii) The mean received intensity |
as we vary:-
(i) the frequency
(ii) the magnitude of the bottom perturbation
(iii) the range. |

Summary of results obtained

Figs 2,-28 show that
(a) the rms fluctuation in received intensity:;
(i) Increases with frequency
(ii) 1Increases with range

(iii) Increases with increasing bottom roughness.
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In each of the above cases the rms fluctuation increases to a
maximum finite value for some value of the frequency, range and bottom
roughness.

(b)  The mean signal intensity increases with increasing bottom roughness;

(c) The intensity fluctuation is a slowly varying function of frequency.

Discussion and Interpretation of Results

The bottom loss parameters assumed are those of Fig.) and the mean
bottom depth is 200 ft. By using the exact depth distribution curve of
Fig.20F having a standard déviation of bottom depth variation of 22 ft. about
the mean, we ought to be able to predict the variability of the received
intensity, of sound propegeting in the shallow water area of the RAN trial,
The propagation loss curves of Fig.17 then, are thbSe obtained where thie
bottom depth is constant at 200 ft. If the Bottom is not flat but fluctu-
ating in depth, we can expect that the propagation loss overla given distance
in any one area will vary by as much as 10dB. This variation arises bécguéa
the bottom depth variation causes the several propagating rays to undergo
phase distortion and so the total coherent intensity also veries. The present
theory gives that successive transmissions over the same path will undérgo
the seme transmission loss. However, & small change>in transmission path by
means of a cheange in position or bearing will cause the transmission loss
to vary. This is because the bottom profile varies extensively for changeé
in position and bearing and hence is bestvdescribed‘statistically. |

The intensity of the received energy fluctuatés to an extent which
increases with increasing bottom roughness. This intenéity fluctuation does

not increase indefinitely but assumes a maximum value when the bottom is
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rougher than a given value. The way in which the standard deviation of the
intensity fluctuation increases with increasing‘boﬁtom roughness for 100Hz
is shown in Fig.2). Notice‘thét Fig;25 showsxthat the_rms fluctuation
increases with range for fairly smooth bottomé; Whén the bottom‘isgsuffic-
iently’rqugh we can no longer dbnsider the.recéived’energy‘to be a pertur-
bation of the energy recéived when the bottom is shobth;,bThe phase |
distortions caused by‘the extra“path lengths traveiied by.the’several’
propagating rays become very large and so the rays can be con31dered to B
arrive with totally random phases.‘ It is more approprlate in: these circum-
stances to add thevintgnsiti;s 6f the several ray arrlvals to obtaln‘the
total received intensity. When the bottom‘bécomes so idﬁgh'tﬁaf:fhis‘hgbpéns
the fluctuation in received intensity %ill‘bé a.functidn‘of theinumber of
rays which contribute’to‘fhe total intensity. | } |

Notice here that when ﬁe say the bottbm is 'rough"we‘meéh frough‘
enough to cause an appfeciabié phésé difference‘to~a ldw graziﬁg‘incidence ~
ray'. We specify low gr#zing inéidence becauée f§r'a high ldsavbéttom only'
these rays carry enough energy to:be‘ofisighificance;‘-Hénce"roughpessf,
increases with frequency and range. ‘Fcr‘high frequencies eveﬁvaismélllpértur-
bation in bottom depth can cause 1arge phase fludtuations af thevreceive:
and the phase fluctuation increases with increa31ng range. | B

Bottom loss also affects the apparent 'roughness of the bottom.
In an area where the,bottom loss is high, the only raysawhich carry signifi-
cant energies are thqse which have very low graziﬁg in¢idencesf Since fhe"
phase variation for any one ray is prdpdrtional to fhe‘ﬁﬁmber of Eottom

bounces and the grazing angle as well as the standard deyiation'offvariation ‘
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in the bottom depth, we see that rays with few bottom bouﬁces and hence low
grazing angles will not have their phases greatly modified. Where bottom
loss is low however, rays which undergo a large numbef of bounces contribute
significantly to the received signal intensity. Because these rays interact
with the bottom so frequently, their phases become random in very short ranges
and so the total received intensity is best obtained by summing the intensity
of the several received ray intensities. Notice that any mode structure,
especially for the higher modes would be destroyed although the spreading law
would be a cylindrical spreading lew. This is because the rays add in intensity
which gives r_2 spreading, but in addition to this the total received shot
duration is proportional to r and hen;e the overall spreading law is

I ar-1

We expect then that:-
(i) For small bottom 'roughness' the‘extent of received intensity
fluctuation increéses with increasing range.
(ii) 'Roughness' increases with:-
(a) increasing frequency
(b) increasing range
(¢) decreasing bottom loss.

From the previous discussion we expect that as the roughness of
the bottom increases, the phases of the rays cerrying significant energy at
the receiver will become more random. The energy loss rate of r-3’5-4 r~h'5
we obtained in Fig.17 is due to the fact that each arriving ray whichvunder~
goes 'x' bottom reflections has a corresponding pair which has undergone 'x'
bottom reflections also and has traversed the same distance from source to

receiver. This latter ray has undergone one more surface reflection and so
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the received amplitudes due to these two rays are approximately antiphase
because there is a phase change of 180° associated with each surface reflec-
tion. Hence by causing the phases of the separate rays to fluctuate, the
signals from an image and its surface reflected pair will not be exactly
antiphase.

As the phase distortion increases, so the rays will tend to become
more and more incoherent, and more and more will the propagation loss approxi-
mate that obtained by adding the intensities only of the separate ray arrivals
(Fig.18). A plot of the mean of the received intensity fluctuation vs
standard deviation of bottom roughness (Fig.zh) for 100Hz shows that for a
standard deviation of bottom roughness greaier than 50 ft. the separate ray.
signals can be thought to be incoherent while for a_Bottom variation‘Of less
than five feet, there is little change in the level of receivéd signal
intensity due to phase distortion.

We include Table 1, a typical tablebgiving tabulated results of
ten values of intensity for ranges 100,000 ft. and 200,000 ft. and frequencies
100, 500 and 1000,



Variability in the Intensity(dB re 1 ft)

TABLE 1

o = 10 ft.

Range 100,000 ft.

Frequency 100 ‘500 ‘ 1000
(= 9.17 - 99.65 109,71
E - 93038 "106.00 _107-1'_2
- 98025 -102-19 -109076
é - 100.82 -100.62 -121,01
- 97.8 -100. 18 - 99.5),
Semples ¢ . 400,31 -100. 00 “101.93
( - 106.83 -101.19 = 98.63
E - 103.3), -100.52 - 99.6) -
- 95.27 -101.38 -100.)2 .
(- 95.27 -103,.78 -11.0y
Standard DA
Dev' of Lol 2.1 6.8
Semple
Range é00,000 ft. : ‘
Frequency 100 500 T 1000‘
(= 112.43 -110.25 =113,.65
( - 111.07 -111.72 . =120.65
2 “107 .37 - =109.93 =118.),9
- 117, - =107.59 -110.92
Samples (-119.3? -108.10 -116.27
(= 11y.10 -10),.0), -11)..55
(= 99.13 -107.32 -122.55
( - 105.56 -106.03 =111,.30
( - 108.13 -108.,,1 -11),.13
(-125.7 -111,37 -112,92
( , L
Mean - 112,00 -108.),9 . -115.92
Stepdard '
Dev™ of 705 2.3 v 3.6

Sample

3§
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The standarévdeviation of bottom depth variation is assumed to be
10 ft. Notice that while at 100HZ the intensity fluctuation increases with
range, it is difficult to make such a prediction at 500 or 1000 Hz.

So far, we have considered the intensity fluctuation qf a single
frequency sound. The question arises. If we have a discrete bandwidth of
sound, how wéll does the intensity,ét one frequency correlate with the inten-
sity at another frequency, over the same propagation path? (viz the same
bottom profile). If the variation of intensity is r;pid with frequéncy;
then the total intensity from a finite bandwidih,of sound'will fluctuate
very little. . A

To ascertain the affect of altering‘the propagating frequency‘
slightly, equation 3.8 was evaluated for thg central fréquehCies 100, 500,

1000Hz and also for six equally spaced frequencies about the central frequency

using the same set of random numbers in each case. This corresponded to
finding the received intensity for several.closely spaced frequencies for
sound propagating over the same bottom. The intensity variations with fregq-
uency are shown in Fig.26 for many different ranges. ‘Since the intensities -

at different ranges are calculated»uéihg different sets of random numbers,
we see that Fig.26 gives us a good idea of hdﬁ the intengity;fluctuates'with .
fregquency. | | o

The.normalized autocdvariahce functions of the intensity variation

with frequency are given fof‘several cases Fig.27.v The intensity variations
are taken compared to the mean intensity at that range‘as determined from
Fig. 8. We see from the autocavarianoe functiong fhat the intensity varies

only slowly with frequency. In addition to this we see that the rate of

variation is proportional to the frequency.
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That the intensity is a slowly varying function of frequency can
be seen since
(i) The mean propagation loss at any one range varies very little
indeed for a small change in frequency if all other param-
eters stay constant.

(ii) The phase changes caused by perturbations in the bottom depth
differ only slightly when the frequency changes. In fact,
the phase change differs at a rate which is proportional
to the rate of chenge of frequency.

Consider & perturbation in path length of AR. The associated
phase change due to this perturbation is:-

2 op (3.16)

€ = X
_ AR . f, 2I
- c
de _ df

and so the phese chenges by the same fréctional amount as the frequency.
Where df « f then d € « € and_hence & small frequency perturbation results
in only a smell variation in the phase perturbation. Equation ).17 also
tells us that the intensity'varies slowly with respect to small fractional
clianges in the frequency of propagation,

Hence the fact that the intensity at 1000Hz varies slowly compared
with cheanges in frequency of 10Hz ﬁhile the intensity at 100Hz veries slowly
when we change the frequency by 1Hz is expected.

From Fig.26 we can say now that if we are considering the intensity

fluctuation as received from a broadband signal, the expected variation in
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intensity for a 6% filtered signal is only 1or 2dB less than the expected
variation when we filter out a single frequency. The‘intensity fluctuation
we can expect is still of the order of 6dB when we use a 6% fllter. Notice
also that this fluctuation is constant for a 6% filter for frequencies in
the range 100-1000Hz.

When we look at Fig.2) we see that the average tfénsmission loss
where the standard deviation of bottom depth variation is 22 ft (Fié.ZOF) ié-
significantly lower than that when’thehbottom is flat. This Wbuld meke the
slope of the propagation loss curve much iess than that fequired to Siﬁﬁlaté-
the experimental results thained.by‘thé RAN'excépt for,one.iiéorfdnf.éveff
sight on our part. We have chosen variables from W(AH(I))‘fandomly. Striéflyw
speaking we ought not do so since fhé bottbm deéth does not véfy in a EEEEQ.
random fashion., The bottom depth is‘a slowly varying function even when we
take into account the 1ong‘propagation path;i Since it is‘thé:relative chéhgeé
in phase which the rays undefgo due to the bottom depth variafibns that are
significant and not the absolute'magnitudes of the phase changes, we can |
adequately allow for the gdod auto?cbrrelation‘with distance of the bbttoﬁ
depth by suitably reducing the magnitude of fluctuation by a factor u.

To assess the maghitude of;t,‘we need the joint probability distri— .
bution of AR(I) and AR(I+J) as well as the autocorrelation function of ‘the
depth variation about the mean.,. Without performing the extenslve calculatlon
we see that u will Be in the range -1 .99. Teking ;;~ .15, the serles(h.8) ‘
was evaluated for twenty dlfferent ranges and three frequenc1es. In each
case the series was evaluated four times using dlfferent sets of random
phases. The energy losses as a function of range obteined thus are-shgwn'

in Fig.21. Not enough points-have beeh plotted to meke a quantitative
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analysis of the results,but we see from a qualitative viewpoint the extent
of fluctuation of the signal intensity.

Conclusions:

Where the bottom depth in one particular area varies statistically
about a mean depth, we see that sound travelling equal distances over different
paths will be attenuated by different amounts. The magnitude of the rms
fluctuation in intensity is several dB.

As the bottom becomes rougher, the rms fluctuation increases from
zero to a maximum value; the mean energy loss decreases from the value
obtained for the case where the bottom is perfectly flat and the intensities
of the rays are added coherently, to the‘vaiue obtained when we add the inten-
sities of the rays incoherently. |

The rms fluctuation of intensity increases slightly with inoreasing‘
range (10 to 20 miles) for low frequencies when the bottom is reasonably
smooth, Otherwise the rms fluctuations are dependent upon bogtom loss‘prim-
arily, increasing bottom loss causing increasing rms fluctuation of the
received signal intensity.

The autocorrelation function of the intensity fluctuation with
respect to frequency indicates the intensity fluctuation is a slowly varying
function of frequency. Thus the expected variation in the siéﬁal‘intensity |
for a 6% bandwidth signal is only oné or twodB less than the expected vari-
ation in the signal intensity for a single frequency signal.

Suggestions for Future Work

As can be seen from this chapter the Monte Carlo technique of
calculating expected variations in intensity lends itself immediately to the

solution of the problem when we use a high speed digital computer, We use
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the same simulation technique to assess the affect on sound propegation of
(i) 1Internal waves
(ii) Perturbations of the velocity/depth profile about a mean value
(iii) Inhomogenities in the propagating medium : local variations
in temperature salinity; fish

(iv) The changing bottom; change of sediment; rocky outcrops

where we can assign a statistical probability for any of the aforementioned
events occurring. We must, of course, know the effect on propagation of

these perturbations quantitatively in order to proceed with the simulation.

References

(3,1) Tolstoy & Clay : "Ocean Acoustics" McGraw-Hill Book Co.



41

4o CALCULATION OF THE RECEIVED WAVEFORM

A feature of the sonagrams of the shots of Fig.23 is that the
propagation is essentially non-dispersive. Consider a ray with grazing angle ¢

striking é flat bottom

77 7 7 (7 7 777777777

Referring to Fig.1, we see that

tan ¢ & sin gz &N - ()
where H is the depth of water

N is the no. of bottom bounces from source to receiver

R is the total path length of the ray from source to receiver.

The extra path length travelled by this ray from the source to

receiver compared to the path length of the direct rey is approximately:-

AR 2 R(sec ¢-1)
= 3R sin? | | : - (ye2)
22 ' :
2 giy_ | , (ye3)

Now the received shot duration © is proportional to R and hence:

2

o I UL (hesd
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Hence the received shot duration in water of uniform depth is proportional

to the square of the maximum number of bottom bounces. The maximum number of
bottom bounces is determined by our criterionof how much energy a ray must
carry before it is considered to contribute significantly to the received sigpél
intensity. We may arbitrarily choose —-20dB as the threshold energy to be
carried by a ray before it is considered to contribute to the total intensity.
The maximum number of bottom bounces per ray allowed will be determined by the
loss per bounce and the threshold intensity we choose.

The meximum number of bottom bounces will be a function of bottom
loss. Since bottom loss increases with increasing grazing iﬁcidenée, the
maximum number of bottom bounces is not constant, but rather a function of
grazing angle and hence range.

Consider these examples:—

(a) Normel-Mode Propagation

Here all rays with grazing incidence less than critical are reflected
from the bottom without energy loss

Hence NalR

and so TalR ~ (ye5)
and the received shot duration increases linealy with range.

(b) Bottom Loss Independent of Angle of Incidence

N is constant.

Hence 7t « % (h°6)

and the received shot duration is inversely proportional‘to range.

(c) Bottom Loss dependent on Grazing Angle

N = N(¢, R)

Let bottom loss be given by
B = f(¢)
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Then the total bottom loss from source to receiver for a ray undergoing

N reflections is given by

BN = Nf(g)
Let the criterion for the contribution of a ray to be considered sufficient be:-

BN g A
The received

where A is the threshold value.
If Nx A/TG¢) the contribution of this ray will be considered.

shot duration will be defined by

N = Af(9)
Now Ta N sin ¢ |
fe.  vo S G

¢

and for small ¢, sin ¢
(4.8)

i.e. if T is constant

£(¢)a ¢
and so for a constant pulse duration, the bottom loss must be proportional

The constant of proportionality will determine the pulse

to grazing angle.
the larger the constant; the shorter the received shot duration.

duration :
Hence for the assumed bottom loss profiles of Fig.3, we expect the

received shot duration will be constant with range if ST = 1.0 and S # O and

that the received shot duration will decrease with range if ST <1.0.
It is to be noticed that where S is small, the shot durstion will

be proportional to range at short ranges since all rays up to the critical

ray will contribute to the total received intensity. This proportionality
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with range will persist until the criterion:-

Nf(¢) < A can be | | - (3.9)
satisfied by ¢ < ¢6. where ¢4 is the criticel angle, |

Tolstoy (II) points out that: "Travel times and intercept measure-
ments of refracted waves cannot be connected directly to the,conoept of groop
velocity until the complete wave oroblem for the actual sifuation is solwed.
Howevér, for very long ranges, such that fhe spherical wave fronts due to a
point source, have become eéséntially piane, theigroup;#elocity curves may
permit us to estimate the veloclty of the correspondlng wave pockets. -Noto;
that for sufficiently long ranges the effects of a finite 1ntercept w1ll »'f
correspond to a very small relatlve error in the total travel tlme and that;yj
in this sense, the group valocity concept also giVes'én’asymptotically oofroct
answer for travel time, But it oannof provide an accurate valuo for intéfcepf
time, since the latter is the litersl calculation of travel time aiong a
certein refracted ray path. A ptdpér fhéoretical prodicfion‘fot the inﬁe?oept‘
by normal mode methods can only bé obtained from an exact solotion‘of ohe ; »
receiver-plus-transient-source froblem."i' | S |

Pekeris, of course, has soivéd‘the récoiver-plus-tiansiontfsource ‘
problem for normal mode sound propagation invshéllow‘ﬁéter;' We shall in this
section computé the»inforcept‘fime for‘tho casévwhéro the”soufoe'is a Sqoare,:‘
pulse of monochromatic sound. |

We will calculate the contribution at the'receiver due to all rays
which have grazing 1nc1denoe 1ess than critical, Where bottom loss is non-
zero, the highest order rays w111 make negllgible contrlbutlons to the total

received intensity., We will not discriminate against these rays.ﬁ In this: 5
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case the total received shot duration will be:

t = % R sin? (42)

c
We wish to compute the received shot intensity at 100 discrete
uniformly spaced times during <
Consider a shot fired at t=o¢

If t = to is the time of arrival of the direct ray, then

t = to + 7 is the time of arrival of the ray from the highest order image
such that its grazing angle is less than critical. We wish to calculate the
received shot intensity at time:

t =1t + At osAtsna

Assume the duration of the step pulse is ¥ .
The transmitted pulse has the form
I=o0 t< o, t>¥

(y.10)
I

Io sinwt o<ty
The images which will contribute to the shot intensity at time
t =ty + At are those images which satisfy the condition:

<R <

R + 0t - ¢ R, + At - (3.11)

Where R is the total ray path for the ray which takes to + At - ¥ seconds
to travel from source to receiver,

Equation ().11) can be restated

c.(to+ t - ¥) <Rs c(to + At) (4.12)

By allowing At to assume all values from o to v then, we obtain

the shot intensity at all times during the received shot duration.
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Full details of the program used to evaluate the intensity variation
within the duration of the shot are given in Appendix ).

We wish to obtain some idea of the mode structure within the received
shot where the source is an explosion. The shape of an explosive pulse is the

form:

H
1}

0, t<o ()_,_.13)

I=1 e~ M. ¢ 50

After several surface and bottom reflections however, this pulse
shape becomes broader and flatter so that the assumption of a square tone
pulse will give the correct gualitative information about the mode structure
and intensity within the shot although it will not give the exact shape of
the received pulse. ¥ , the pulse length at the trensmission point, at the
receiver is a measure of how much temporal integration will occur between the
several rays arriving within a short time at the receiver.

The received shot waveform was computed for frequencies of 100, 500,
1000Hz using the bottom loss parameters of Fig.1). The received shot wave-
form is shown in Fig.29. It is interesting to note that when the frequency
within the ¥ sec long burst is 100Hz, two modes are present, the second being
20dB weaker than the first., For the higher frequencies, where the bottom loss .
is considerable, the shot duration is approximately ¢ .

This indicates that only a very few of the lowest order rays are
being trensmitted with significant energy. The high slope of the propagation
loss curves of Fig.16 can then be expected since a modified Lloyd's mirror
type of propagation has occurred. Inherent in the assumptions of para.2 was

the assumption that ¥ is comparable to the total shot duration. From the
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above we see that this is in fact the case and so:
(i) The energy transmitted from high order images can be neglected.
(ii) There is little dispersion and the shot duration is short and

roughly constant.

The verification of these assumptions in terms of the results of
the theoretical sonagrams of Fig.29 and the experimental»éonagrams of Fig.30,
validates our former claim that the peak energy received from a CW source is -
proportional to the peak energy fromba transient source and that the c&nstant

of proportionality is approximately constant over the range interval considered.

To show the correspondencé between ray thebry and mode theofy, the
theoretical 'sonagram' for a square impulsive source wés computed.’ As botfom'>‘
loss was assumed to be zero for all grazing angles less than(fitical, the
intensity over the entire shot duration was éignificaﬁt with a total variation
of 30dB. The peak intensities within the received shot waveform, corresponding
to modes of propagation were atAthe same level # 5ds. . |

There is a trend for the peék infenéity of the seoohd mode to be
higher than the peék intenéity of the'first mode, This trend is‘due to the
fact that a large number of rays contribute to the signal of‘the first mode
and the rays which are antiphase are not separated in érrival ﬁime suffic-.
iently. Hence due to the finite.ihtegration time of ¥ , many antiphase rays
also contribute to the tofal intensity of the first mode. We qould take‘a
smaller value of & to obtain finer discrimination, but this is not physica11y> 
valid since the separate pulses dﬁe to different rays are fairiy broad. For.
any finite ¥ for a sufficiently high.frequehcy, ywill beblargér than the

separation in arrival times of successive modes. For high frequencies then,
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mode structure will not be as distinctive as for the lower freguencies and
in the limit as f - ¢, no modes are apparent, Then the intensity of the
received shot varies only slowly with time,

In order to find the number of possiblé modes of propagation of

sound at a given frequency, we consider the cutoff frequency for a partic-

ular mode,

!
e o (20-1)V <v’ ) 2

n LH Efﬁ -1

The number of possible modes of propagation for a frequency f will be given

by N where fN is the largest value of fn

such that £ > fN

A theoretical sonagram of the received shot waveform for a lossless
bottom is shown in PFig.29. The arrival times of the first four modes is
shown as a function of frequency. The results of Fig.29 demonstrate the 1-1
correspondence between ray and mode theory and verify Tolstoy’s_(4,1)
ascertion that the rays comprising the nth mode in normal mode proéagation
can be thought of as coming from the image sets which have grazing angles ofv

approximately$

REFERENCES

L1 TOLSTOY, I.(1959) "Modes, Rays and Travel Times".

J. Geophysics Res. Vol 6) No 7.
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APPENDIX I

THE BOTTOM REFLECTION COEFFICIENT

The reflection of a sound wave from an attenuating bottom which
varies from 'slow' at the water interface, to 'fast' at some depth, is
complex. With no detailed knowledge of the velocity profile or the atten-~
uation in the sediment no exact model for bottom reflection can be proposed.
We can, however, use a simple model which gives the overall effect of the
complex situation,

To obtain a qualitative idea of what the reflection from the
bottom will be like we investigate the reflection from:-

(i) A perfect bottom

(ii) A lossy bottom
(iii) A two layer bottom where the top layer is 'slow'.

We follow Brekhovshikh (5,1) closely in this section.

(i) Two-Liquid Model without Attenuation

The reflection coefficient for a plane wave reflected from an

interf'ace separating two liquids is:-

v = Dcos 0 -(n%- sin®¢6 ) 1
m cos 6 +(n2- sin26 )
where m = L2 , n= S 2.
pj_ 02

and 0 is the angle of incidence.
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We see that when n < sin 6 total internal reflection occurs with
an associated phase change ofﬁ-

€ = =2 tan-i (M)> 3.,

m cos 6

The Rayleigh wave reflection coefficient for the case
%1 =1.11, %; = 1.5 is given by the curve corresponding to S=0, ST=1 of
1 1 ) :

Fig‘ 30

Two Layer Liquid Model with Attenuation in the Lower Layer

If there is abéorption in the lower medium,in will be complex:

n =n (1+ie) L L
We consider the casea <« 1, so
n? = nj (1 + 2ia ) o o . 5.

and use the notation

sin%6 - n® = A, 2n2% =B 6.
o o , , :

Then teking into account that

V(& -iB) = M+ M, | .
My = 5 C [V&+ 32) + A]) M= V;—( [ V(&+ 32) - A]) 8.

and using equation 1
v o |cos 6+ M- il 9.

m cos 0- Ma+ iMj_



s

-/ - M -1 M ' :
= 1 i - : —_— 10,
and € tan K — +M) | tan ( ey ng) v |

The family of V and € vs grazing angle for several Values of the
attenuation are shown in Figures 6, 7, 8. Note that @ = o corresponds to
no absorption and gives the Rayleigh Reflection Coefficient.

Where a low speed layer exists:(Fig.9),'rays'travelling'in the
water and striking the low speéd‘layer4at‘very low grazingfénglés Will be
reflected from layer 3 at an angle that is significantly 1argef than_zerq;
For %f = .97, the ray travelling parallel to the 1/2 ihtgrfacé Wi11 strike
the 2/3 interface with a grazing?anglebof 14? From Fig.? we seeﬁthe'réflec—

tiog loss from 2/3 interface can be as high as 44B for a = .1.

Tt.isiwell known tha# the»absorpfion coefficieﬁtVincrééSéS With 
frequency. We see that where a low speed layer exists;‘thé b6ttom‘l6ss ét~
low grazing angles in non-zero and increéSes’with'grazing'aﬁglé and freéuendy‘

It is réasonable to adopt a bottom reflectionﬁcoefficient of the -

form given in Fig.3 such that:

V = Sr-S§ ( §1-> SR AR L TR T 1.
c , . . .

€ = T . -1 12.

<9<@:  12

where 61 is the grazing angle of the ray in water

fc is the critical grazing éhgley

REFERENCES

(5,1) BREKHOUSKIKH (1960) "Waves in Layered Media":'Academic Press
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APPENDIX 2

COMPUTATION OF THE RECEIVED INTENSITY

To evaluate the series of equation iﬁ Chaptér 2, we ﬁust‘use a
digital computer. The procedure adopted is as follows::
(i) A range is selected. |
(11) The amplitudes of the signals dus to all the lower images
are summed observing phase coherénge.f'
(1ii) The amplitudes of the signals due to all the upper imeges
are summed observing phasé coherence. |
(iv) The complex sum of thé results of (i) and (ii):ié‘computed-
and the total intensity at the receiver is found by multi-
plying this total amplitude by its coméléi édnjugate._ The
energy loss in dB re 1£t; is obtained by tékiﬁé'10 loéu) of
the total intensity., | 7
(v) The process is repeated for a larger range,uﬁiess_the range
exceeds 2 x 10° £t. when we proceed to (vi). ‘ |
(vi) The graph of energy loss in dB on a Iineaf‘scale is:plbtted  

against range on»aklogarithmic scale by the computer,
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THE PROGRAM

(a) The Parameters Used.

A Angle of Incidence of Ray

AT Grazing Angle of Ray

ATTEN Reflection Coefficient at each Bottom Bounce

B Phase Change at each Bottom Reflection

C Critical Angle of Incidence

CI Critical Grazing Angle

D Source Depth

E Total Phase Change of Ray due to Bottom and Surface Reflections
FREQ. Frequency of Sound Propagation

H Depth of Water

I No. of Bottom Bounces

J No, of Surface Bounces

N Total No. of rays.

P Wave Number (2m/\ )

PI 3.14159265

R Total Distance of Ray Path from Source to Receiver
S Bottom Reflection Parameter

SIGNAL Total Received Intensity at Receiver

ST Bottom Reflection Parameter

Distance (in feet) from Source to Receiver

H



Parametérs used (cont'd)

U

v

W

U = pa/by, = 1.5

V =oc/ca = .89

Vertical Distance between Receiver and Image

Cumulative Total of Real Part of Signal at Receiver
Cumulative Total of Imaginary Part of Signal at‘Receiver

Receiver Depth.



1R XENT RAY THEORY FLOW CHART PART. 1.
| o 55
: | ( swrt )
\ K
- READ DATA -
\ FREQ. D,Z,H,U,V,S,S,T/
1

SET CONSTANTS P PIC,CI

| . Y
> DO K =1T0 20
1
CALCULATE INIT VAWES WRXY
INIT:  LJLN=0 -
* R

SET VAWE T=10000K

;‘ CALCULATION OF CONTRIBUTION
' OF LOWER!|MAGES

, i ,

i GO TO NEXT IMAGE BY:-
[= 1+1

W= W+2(H-D)

C = tan“ W)

Y

| . [ CALCULATE Al ATTEN,RBE
i 1 THEN CALCULATE'

~ e X & Y

N= N+1

!

GO TO NEXT IMAGE BY:-
J=J4+1
W W+ 2D
= tan"' (TA\W)

FROM PART 2
TO PART 2

A:C .

>

CALCULATE AI,ATTEN,R,B.E !

THEN CALCULATE
X&Y N =N+




(b) COHERENT RAY THEORY FLOW CHART  PART 2. Y 6|
; FROM_PART 1 |

CALCULATION OF CONTRIB-
UTION DUE TO UPPER IMAGES

[
-

GO TO NEXT IMAGE BY:-
' J=J+1
W= W:2D
C = tan'(Thy)

.
[0 4
& CALCULATE AL ATTEN,RB,E
THEN CALCULATE
2 CX&Y
N= N+1

Y
v GO TO NEXT IMAGE BY:-

oW 2(H-D) |
oAty Y

[

A:C >

>

CALCULATE AL ATTEN, RBE
THEN CALCULATE
X&Y
N= N+

A

SIGNAL = 10log_(x* y9
~ STORE |

Y

~ XX PRINT SIGNAL
N\ RANGE

B 2
| END OF DO |
- » LOOP -
1 |

N\\_PRINT GRAPH OF SIGNAL_/
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(¢) Formulae Used in the Program

Symbol in Program Value Symbol in Chapt.2
. . A\ L) L
(1) B - 1’(09 (CI 1) - €
(ii) ATTEN = ST - S x CA#I-I- = v
(iii) E = IxB+JxPI = 17
(iv) R = V(TZ + W3) = R
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APPENDIX 3

THE GENERATION OF PSEUDO-RANDOM PHASE DISTORTIONS

Using the model of Fig(1), we wish to find the rms fluctuation
in received signal intensity due to a perturbation in the bottom depth. As

indicated in Chapter 3, a pseudo random phase:

&

2 cos(A).k.’vﬁT:_AbH(1)

where 8 dis the phase perturbation |
A is the angle of incidence of the ray ‘at ~the bottomi'fci
k is the wave number | |
I is the number of bottom bounces‘from source to‘recelver _

A H(1) is a random normal varlable w1th mean o and. standard deviation 22
is added to the phase of each ray arrival We need then to select a‘random |
varieble with mean zero and standard dev1ation>22 ft. We do this by gener~
ating a random number in the range 0= 2°% with Subroutlne Randu.

Subroutine Randu produoes‘2’°vpdd integers evenly dlstributed‘t
in the range 0 = 231, 'Each execution. of Subreutine Randu uSeS'ae:dntut an
integer and produces a new tseudo-randem inteéer. fhls new. 1nteger becomes f
the input for the next exeoutlon of Randu, and s0 we generate up to 2’8.

pseudo-random integers. - We need then select only an in1t1a1 value for the

input of Randu.



We include details of Subroutine Randu.

SUBROUTINE RANDU

Iz = IzZ*¥ 65539

YFL = Iz

YFL = YFL* .),656613 E-9
RETURN

END

IZ is given an initial value at an appropriate position in
the program.

We can generate conveniently normelly distributed random
variables using two methods. | ‘

(a) 'RANDU,as well as giving a uniformly distributed integral
random number in the renge 0— 2°! also gives YFL, a uniformly-distﬁbﬁ’ced
real number in the range 0 - 1. | |

Consider now the distribution of YFL, W(YFL). W(ﬁL) has
mean % and a vaﬁiande of 1/12. If we consider sums of twelve variablbesj

selected randomly from W(YFL), the distribution W(YFL12) thus obtained has

59

a-

mean of 6 and variance of 1. Thus by summing twelve successive values of YFL

we obtain a normal random variable with standazfd deviation 1 and mean 6..

Hence to obtain a normal variable Ah with mean zero and standard deviation 0

we compute twelve values of YFL, sum them, subtra‘ct six and multiply the

result by o

i.e. AH = o[(ZYFL,L> -6]‘ (71

)



and so the total perturbation in path length AR for a ray undergoing

I bounces is given by
AR = oVI [( YFL.L> -] o - (1.2)

(b) We can also generate normaelly distributed random variébles-by
selecting randomly from»abfrequency distributionICurve. Indéed,,if the -
distribution from which we wish to select variables is not gaﬁésién;:nor
simply defined mathematically as in thé case of the‘distributioh of Fig.ZOF;f
then we are left with no élternatige‘buf to.sampié direétly fiom the
distribution. | | :‘ |

Coﬁsider a disfribution défiﬁed b&

w(x)

f(x) a< x<b

w(x) 0 x<a ,x >bg L | o | <7-3) |

The distribution we consider is‘finite,.sincé we can only‘cﬁnsider é'finit¢ .
distribution if we sample discreetly. :Many distriﬁgtibﬁs Whibh‘gre—infinite
in the range of x can be adequatélj appréiimated to By‘ﬁegleétiﬁg Valﬁes;of‘

x which have lessAthan a fixed (small)»prObability of occurrende.: if W(x) |

is a normal distribution, we can define -

» w2 v
‘ g _x2 : - Sl
W(X) = N(X) = — e 202 -30%< X% 30) . v :
oVar | T aw
W(x) = 0 X '< =30 ,"x>v30 ' o

and so here Wé consider the»finite fange of é’normalrdisﬁribufioh betweeh

the 3 o limits.
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To select a maximum of n different random variables from the

distribution (7.3) we divide the internal ab into n equal segments

Let X be the mid-point of the ith segment and so

x, = s+ 2D (o) | (7.5)

i

and we see that the probability of x lying in the range:

1
X, - 2%;'(b—a)‘< XS X + o= (b=a) - (7.6)

that is in the i 0 segment; is approximately f(xi ).

Suppose now we generate uniformly distributed random numbers
¥, in the range c¢c < y € d. If we divide the interval cd into n segments
so that the length {; of the it segment is proportiopél to f(xi );

e, f = == f(x ) @

Then the probability of a random varieble x from the distribution W(x)
having a value which lies in the range of the ith segment of ab, is equal
to the probability of a uniformly distributed random variable having a’
value y which lies in the range of the tth segment of cd.

So to select one of n different variables from the distributipn
W(x), we first generate a uniformly distributed variable y. Next we find the
segment in cd within the range of which y lies. Then, supposing y lies in.
the range of the jth segment, thé corresponding éseudo~random variablé ffom

W(x) is given by x..
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This latter procedure was the one followed to obtain a normal variable with
standard deviation and mean zero. The uniformly distributed random variables
were obtained in a range 0= 999 by computing a new random variable IX in
the range:

0s IX < 999 (7.13)

by letting IX = Iz MOD (1000) , (7.12)

where IZ is the integer calculated by Ré,ndu.‘

IX here then is our previous y;
The li were calculated to give a normal distribution between the 30 limits
and the X were chosen so that W(x) has a stgndard deviation of 22 ft an_d
a mean of zero. It is essential to the whole procéss that IX be unifbrmly‘

and randomly distributed in the range
0§ IX< 999

The distribution of IX was tested by observing the distribution of.twenty
classes each of fifty numbers. The distributioh‘was plotted:for sevefal
sample sizes and the results are shown in Fig.22a. The auté correiatidn
functions of one set of sixty random values of IX was also determined and
shown in Fig.22b. |
We see then that the distfibution of IX is quite'unif§fm'in '

the range 0-999 and that the IX are sufficiently‘,r‘andom for our p'urpos“es“. ,

Having thus computed Ah v}é obtain
2 cos(A). AhVI

AR. f. 27 /o

AR

]

and )

I}



The flow chart of the sub-routine which is called for at each stage to

apply a phase perturbation to the phase of each ray is included in this

appendix.

PSEUDO RANDOM PHASE GENERATOR SUBROUTINE RANDU 1

(a) Symbols Used

IX

DEL 1

FACTOR

Normal Random Variable, Mean O, Standard Deviation 22

Random Integer Selected from Distribution.Uniform in the
Range 0-999 |

Random Integer Selected from Distribution Uniform in the -
Range 0-23% |

Pseudo-random Phase Correction

Wave Number (2 w/A )

Discreet Samples from Normal Distribution Mean O Standard
Deviatipn 22 A

An Input Varieble to altér,the Magnitude of the Bottom Depth

Variation.

63



PSEUDO RANDOM PHASE GENERATOR

SUBROUTINE RANDU 1

)

b) FLOW DIAGRAM,

( START )

\

V4

RA

RAX 65539 |
(RA) MOD (1000)

AB=X,

1"
>

AB

Y

|

AB=Xy

IX: Ly

|

Y

—4AB=Xn-1
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APPENDIX )

COMPUTATION OF THE RECEIVED WAVEFORM

Using the model of Fig (1), we aim to compute the received
waveform when a short burst of sound of one frequency is transmitted from O.

The transmitted wave has the form:=—
I = o bt g o0, tsr o
} ’ (8.1)

I sin wt O<tsvy ) R

=
I

where ¥ is the duration of the burst. . ‘
We see that simultaneously all of the images of Fig (1) will
transmit coherent 'tone Bursté' of equal‘émplitude. If the arriﬁal time‘at
the receiver of the direct ray is t = to,'then atvtime t = to +:At; ﬁhq‘ ‘
images which will contribute to the total received intehsity satisfy,the
condition:~- v
R, +At-¥ < B, ‘sR"+At | o (8..2‘)“

t t
(¢} o

where Rt is the distance travelled by fhe ray with arrival time of t.
)8.2) cen be rewritten
c(to + At - ¥)< Rt§ c(tO f At) ~ ; (8.3)
where ¢ is the velocity of sound in water.

Td-compute the received shot intensity as a function of time,
we must compute the amplitude and phase of the arrival signal due to each

image as well as compute the path length from each image to the receiver.
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We wish to compute the intensity at 100 equa}ly spaced vaiue of A t where
A tmax = % To do this we notice the rays which contribute to the intensity
at time t + At satisfy (8.2). The signal from all of these contributing rays
are added coherently and the resultant intenéity of the signal is hence
obtained by squaring the total amplitude. |

The details of the computer program used to evaluate the

intensity of the received wave as a function of time follow.

(a) Parameters Used

A Angle of Incidence of Ray

AT Grazing Angle of Ray

ATTEN Reflection Coefficient at Bottom Reflection
B Phase Change at each Bottom Reflection |

C Critical Angle of Incidence

cI Critical Grazing Angle

D Source Depth

DELTA Increment in Path Length

E Total Phase Chgnge of Ray due to Reflections
FREQ Frequency of Sound within the 'Burst' i

H Depth of Water |

I No. of Bottom Reflections

IX Duration of Pulse in DELTA's

J No.,bf Surface Reflections S

K 'Do’ Variable used to Compute the Inténsity at 100 Discrete

Times during the Shot Arrival
N Cumulative No. of Rays/Subscript for Ray Identification

P Wave Number (2w A )



Parameters Used (cont'd)

PAG
PI
R(N)
REL

RX)
RY)

S
SIGNAL

ST

W
X(N)

Y(N)

Imaginary part of the Received Amplitude
3.1),159265
Path Length of Ray(N) from source to Receiver

Real Part of the Received Amplitude
Upper and Lower Distance Limits for any One K

Bottom Reflection Parameter

Total Intensity Received for a Value of K
Bottom Reflection Parameter

Horizontal Distance (ft) from Source to Receiver

U

:“"f = 1. = '
p/P 5=m
v = & = ,89 =n

Ca
Vertical Distance between Receiver and Image
Real Part of Signal due to Raya (N)
Imeginary Part of Signal due to Ry (N)

Receiver Depth



| RECEIVED INTENSITY VARIATION WITH TIME FLOW CHART 4%

( sTART )

READ DATA
il FREQ D,ZHUV,S,ST, IX

!
N PRINT OUT INPUT DATA /.
{
SET  CONSTANT
R
INITIAL VALUES
WRXY,LIN
1
SET RANGE
Y

CALCULATE
RIN), X(N),Y (N)

FOR THE LOWER IMAGES

1

CALCULATE
R(N), X(N), Y (N)
FOR THE UPPER IMAGES

]

CALCULATE DELTA

!
DO K= 1 TO 100

Y

Y

CALCULATE RX & RY
INITIAL VALUES REL=PAG=0

-~ DO K=1TONEF

TAKE CUMULATIVE TOTAL
REL= REL+ X(I)
PAG= PAG+ Y(I)

Y
END OF DO LOOP ———

!
SIGNAL = 10 LOG,, (REL* PAG)

¥
N PRINT SIGNAL K~/
i

|

END OF DO LOOP : END




Formulae Used in the Program

(1)

(i1)

(iii)

(iv)

(v)

(vi)

- AL _
B =PI (.9xCI 1)

- AT
ATTEN = ST - S x &=

E =IxB+JxPI
R = (T2 + W?)

RX = R(1) +(K-1) x DELTA
RY =

RX - IX x DELTA

DELTA = (R(N) -‘-'R‘(1)) /100

69



SUMMARY AND COMMENTS

Using the model of coherent ray theory:

(1) The propagation loss curves obtained by the RAN can be simulated,
(ii) The dependence of receiver response on receiver depth is
predicted.
(1ii) The variation in the received intensity from one transmission

to the next, where the acoustic transmission paths are of
equal lengths, are in the same geophysical area but are over

different sea paths, can be explained.

The theory tells us that, owing to the large variation in the
bottom depth, we cannot hope to predict the received intensity to a greater

accuracy than "plus or minus several dB",

Further theoretical work is being done and experiments are
envisaged to verify:
(1) the existence of the low-speed layer of ooze in shallow water
areas. Experiments will shortly be carried out in‘harbour

sediments using detonators as sources.

(ii) (assuming the low=speed layer does exist), that the low-speed
layer causes high bottom losses even at‘smgll grazing angles
and acts as a high-pass filter allowing only the high
frequencies to propagate in the sediment. This would then
explein the phenomenoﬁ illustrated in the sonagrams of Fig.30
that all sediment arrivals were high frequency arrivals

centred about a . frequency of 600Hz.



FIG.1.
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FIG.4.
COMPUTED BOTTOM REFLECTION COEFFICIENT.
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REFLECTION COEFFICIENT FOR DIFFERENT. FIG. 6.
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FIG.©

REFLECTION FROM ‘FAST’ BOTTOM OQOVERLAIN
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FIG.13
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DEPTH PROBABILITY
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FIG.21
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FIG.28

VARIABILITY OF INTENSITY AS A FUNCTION
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FIG 29(@)
INTENSITY OF SHOT AS A FUNCTION OF TIME.
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