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ABSTRACT

Using a ray theory model, the energy transmission loss for sound 

propagating in shallow isovelocity water was calculated. The exact amplitudes 

and phases of all rays at the receiver were computed; these amplitudes were 

then summed coherently and the intensity obtained by squaring the total ampli

tude. The energy transmission loss was found to increase with:

(i) increasing range

(ii) increasing bottom loss

(iii) decreasing frequency

(iv) decreasing height of receiver off the bottom.

When the bottom loss is small the energy loss with range follows a 

cylindrical spreading law. As the bottom loss increases the rate of energy 

loss with range increases approaching a modified Lloyd’s mirror type of 

propagation.

To ascertain the effect on the received energy of a slowly 

varying bottom depth, a type of perturbation theory was used. From the bottom 

depth distribution function, the distribution of the phase distortion caused 

to each ray by the variation in depth was obtained. By adopting a Monte-Carlo 

procedure and hence computing the transmission loss at one range many times 

by selecting phase distortions for each ray randomly from the phase distortion 

distribution, an expected fluctuation in intensity was determined.

The rms fluctuation in intensity due to a variation in the bottom 

depth was found to increase with:



(i) increasing range

(ii) increasing frequency

(iii) decreasing bottom loss

(iv) increasing bottom depth variation.

To verify Tolstoy’s (1,12) comparison between ray and mode theory 

the arrival times of the first four modes as a function of frequency was 

computed by ray theory.
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Historical

INTRODUCTION

Lamb (1,1) in a classic paper, first considered the propagation 

of a disturbance generated in a semi-infinite medium by an impulsive point 

or line source at the surface. He also derived the formal solutions for 

internal sources as integrals.

Pekeris (1,2) 130, developed the normal mode theory of propagation 

of sound in layered media. In 1948 Pekeris (1,3) extended this theory to 

cover the case of explosive sound ,and the predictions of the theory about 

the shape and variation of amplitude in the received pressure pulse were 

verified by comparison with experimental data. As well as solving the two 

layered liquid half-space problem, Pekeris obtained the curves of the group 

and phase velocities for a three layered liquid half-space where the veloc

ities of successive layers increased.

The case where the intermediate layer has a lower sound velocity 

than the water layer was investigated by Press and Ewing (1,4). They were 

interested in the fact that in some areas the ’water wave* consisted of a 

brief burst of high frequency sound which did not show the dispersion and 

Airy phase normally found. They found from the phase and group velocity 

curves that a three layered liquid half-space with a low speed intermediate 

layer could account for this phenomenon. Officer (1,5) has derived the 

frequency equation and solutions for the three-liquid half space by the use 

of rays and plane-wave reflection and transmission coefficients.



The models for shallow water sound propagation mentioned so far 

are idealized. In many circumstances the ideal models are adequate. More 
often they are not. There are many parameters which influence shallow water 
sound propagation. Weston and Horrigan 1967 (1,6) have identified ten 
different mechanisms for the fluctuation of sound propagating over the same 
path. By observing the amplitude and phase fluctuation of 2kHz sound trans

mitted continuously over a 74 mile path in the Bristol Channel the periodicity 
of the fluctuations could be studied. The sound fluctuation was observed 
to be:

(i) seasonal in amplitude
(ii) seasonal in phase

(iii) diurnal in amplitude due to the changing aggregation of fish
(iv) various due to the depth-dependence of the tidal streaming 

velocity
(v) various due to the tidal changes in water depth

(vi) phase effects due to changes in the mean tidal streaming 
velocity

(vii) storm effects 
(viii) surface duct effects
(ix) fluctuations of a few minutes period due to fish, daytime only

(x) fluctions of several minutes period due to internal waves, 
near slack water only.

We see then that sea states, currents, temperature gradients and especially 
the presence of fish cause large fluctuations in the transmitted sound 
intensity. In particular, Weston and Horrigan report a 15&B attenuation due 

to the breaking up of fish shoals at dusk.



We shall, in this paper, not be considering the fluctuation of 

the just-discussed phenomena, we shall consider the effect on sound propa

gation of:
(i) a sound absorbing bottom 

(ii) variation in the bottom depth.

In 1955 Kornhauser and Raney (1,7) derived the attenuation coefficient for 

each mode from the attenuation in the lower medium. They found the attenu

ation coefficient, which is frequency dependent, increases repidly with 

increasing mode order.

Williams and Lewis (1,8) following on from this work used the 

modal attenuation coefficients derived by Kornhauser and Raney and allowed 

for a slowly varying bottom depth to derive average intensity decay curves. 

Two criticisms of Williams and Lewis' report are:- 

(i) It assumes an unreal dependence of attenuation on frequency, 

(ii) It does not allow for modal interference.

Field Work done by the RAN

The RAN has conducted an acoustic trial in shallow water. In 

keeping with current geophysical practice explosive charges were used as 

sources. Hydrophones were laid on the bottom in about 200 ft. of water and 

the trials ship sailed away setting off charges at predetermined ranges. 

Several radial runs were executed in this fashion as well as one circular 

run. The acoustic signals received at the hydrophone were tape recorded. 

These tapes were subsequently analysed and the propagation loss curves, 

that is the curves of transmission loss in dB re 1 ft. vs range, for the 

various frequencies were obtained. Sonagrams were made of many shots.



Figs 16 and 30 show typical propagation loss curves and selected sonagrams 
of shots. A summary of the results obtained is:-

(i) The slope of the propagation loss curves indicate an energy
~3.5 -j .5transmission law of r -> r ^ where r is the distance

from the source. This slope is frequency dependent, the
higher frequencies being attenuated less rapidly.

(ii) The energy loss at a fixed range increases with frequency.
Owing to (i) this increase becomes smaller with increasing
range.

(iii) Intensities along the constant range runs vary by as much as 
15dB. The average water depth remains constant. This 
variation of intensity is a function of bearing and not a 
random fluctuation. This can be seen because the energies 
received from the shots set off on the radial runs corre
late well with the energies received from the shots set 
off on the circular runs at the points where the radial 
and circular runs cross. Since these independent runs 
were made at different times of day, the dominant factor 
influencing the propagation losses is seen to be the bottom. 

Discussion of Experimental Results
In order to determine whether the Pekeris model of water overlying 

a fluid sediment was satisfactory, sonagrams of many shots were studied. If 
normal-modes were propagating, then the sonagrams of the shot arrivals would 
show mode structure due to the dispersive propagation. Denham and Kibblewhite 
(1,9) in their analysis of long range propagation of sound off the New 
Zealand coast give examples of sonagrams of shots where mode propagation
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is apparent. The sonagrams of the RAN shots however, showed no distinct 

mode structure. Nor was dispersion apparent, the shot duration was essen

tially independent of range. The assumptions needed to incorporate the 

Pefceris model therefore were not feasible and hence ray theory was used to 

calculate the acoustic intensity as a function of range.

In previous literature (1,10)(1,11) ray theory had been used 

assuming incoherence or partial coherence only of the signals from the 

separate ray arrivals. However to say that in shallow water the separate 

ray arrivals are randomly distributed in phase is not generally correct.

Most authors dismiss this point lightly with very little justification.

Two situations which show strong coherence between the ray arrivals are:-

(i) Pekeris1 Normal Mode Propagation

Tolstoy (1,12) shows the correspondence between ray theory and 

mode theory. In ray theory the total set of multiply-reflected ray paths 

from an infinite set of images displaced along a vertical line through the 

source as shown in Fig.1. When a shot is fired each of these images simul

taneously transmits a shot impulse. These impulses from the various images 

travel towards the receiver via the shortest route. At discrete points along 

this path the phase and amplitude of the pulses change abruptly corresponding 

to surface or bottom reflections. Because the higher order images are 

further from the receiver than the lower order images, the shot is heard at 

the receiving point for a much longer time than the duration of the shot 

itself. In addition to this, the received shot intensity level varies 

with time. It is this variation with time that indicates the separate rays

arrive coherently,



Let us label the images according to the number of surface and 

bottom reflections a ray, from it to the receiver, undergoes. The group of 

images for which the total number of reflections en route is approximately 

the same will arrive at the receiver almost simultaneously. Depending on the 

distribution of phases within this group, the rays will reinforce or cancel. 

Since the duration of the shot is small compared to the total received shot 

duration and successive image sets are further from the receiver these 

reinforcements and cancellations of the successive image sets manifest them

selves as separate modes of propagation arriving at different times at the 

receiver. If all the rays arrived incoherently, no such mode structure would 

exist and the received intensity would vary only slowly.

(ii) The Propagation Loss Curves obtained by the RAN

Using ray theory, we calculate the propagation loss curves for 

isovelocity water as a function of range. If we assume the separate ray 

arrivals are incoherent, then the slope of the loss curve is between 3 and 

6dB per range doubled, Fig 18. This slope increases with increasing bottom 

loss. A slope of 3dB per range doubled corresponds to lossless reflection 

from the bottom and hence normal modes propagate. A slope of 6dB per range 

doubled corresponds to a perfectly absorbing bottom and hence we have only 

the direct and surface reflected arrival undergoing spherical spreading.

6dB per range doubled is the maximum slope obtainable, assuming the rays add 

incoherently.

The fact that the propagation loss curves in the area considered 

exhibit a slope of 10-15dB per range doubled indicates that phase annihilation 

has occurred and hence the rays arrive coherently at the source.
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SYNOPSIS OF mis PAPER
The present paper analyses shallow water propagation allowing for 

phase coherence between the separate rays. An IBM 360/50 computer was 

programmed to calculate the amplitude and phase of each ray at the receiver. 

The amplitude and phase change of each bottom reflection was computed at 

each step from the bottom loss and phase change vs grazing angle data fed 

into the computer. These separate rays were then summed coherently to obtain 

the total intensity at the receiver.

The propagation loss curves were then plotted on a function of:-

(i) frequency

(ii) bottom loss

(iii) depth of receiver

In the area considered the bottom depth changes by a factor of 

two several times in the length of a run. Because these depth changes occur 

over large distances, the bottom is essentially flat with a maximum slope of 

one in fifty.

To ascertain the effect of this variation in depth a type of per

turbation theory was used. To the calculated exact phase of each ray a phase 

correction was added. This correction was selected randomly from a distri

bution of phase correction factors. The distribution of phase correction 

factors was calculated from the change in path length of the ray from source 

to receiver due to the statistical variation of the bottom depth about the 

mean. By running this program repetitively with different sets of random 

numbers an expected variation of the signal intensity at the receiver was

determined,



The theoretical 'sonagram' of the shots was calculated using the 

"bottom loss parameters produced in the first section of the paper. These 

sonagrams show the shot duration over a lossy bottom is small compared to 

the shot duration which would occur if the bottom were lossless and normal 

modes were propagating. To verify Tolstoy's(l ,12) comparison between ray 

and mode theory, the arrival times for the first four modes as a function of 

frequency were computed. The bottom was assumed to be lossless and the range 

was the same as the range used to calculate the theoretical 'sonagrams* of the 

shots.
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2. CALCULATION OF PROPAGATION LOSS CURVES USING- COHERENT RAY THEORY

In this section we set about calculating the transmitted energy- 

loss as a function of range. We will make no assumptions about the randomness 
or pseudo-randomness of the phases of the ray arrivals at the receiver as has 

been done in the past by other authors. We will compute the exact phase of 
each ray at the receiver in order to find the dependence of transmission 
loss on:-

(i) Range

(ii) Bottom Loss
(iii) Frequency
(iv) Depth of receiver.

Since we wish to obtain theoretical curves of transmission loss to match the 
experimental curves obtained by the RAN our model must allow for the impor
tant environmental features in the area where the RAN trial was held.

Relevant G-eophysical, Oceanographic and Experimental Data
(i) Bathythermograms taken at various stations indicate the 

water to be essentially isovelocity in nature.
(ii) The bottom consists of a clayey silt to a fine sand.

(iii) The bottom is essentially flat with an average depth of 200 ft.
(iv) The explosive sources were set so they exploded at about ^0 ft.
(v) The receiving hydrophones were laid on the bottom in 200 ft.

of water.

(vi) Travel time curves (Fig.2) for shots on one run show the 
bottom to have a layered structure.



(vii) The shot duration is essentially independent of range 

(Fig.30).
(viii) There was good experimental correlation between the total 

energy in the shot and the iriienhAiat peak pressure.

Discussion of these results 
The Bottom

Since the bottom is muddy or silty, we can attribute to it a 

density of 1.5 to 2.0 times the density of water (Hamilton(2,1)). Further, 
we can attribute a sound velocity of .97 to 1.2 times the velocity in water 
to the sediment. Hampton 1967(2,2) has conducted experiments to determine 

the attenuation and velocity in water-saturated sediments for a large range 
of sediment concentrations and several sediment types. He showed that 
where the sediment was in suspension, the local sound velocity was lower 
than the sound velocity in water and this velocity increased to the uncon
solidated sediment velocity as the concentration of sediment increased. The 
mechanism that causes the velocity of sound in the suspension to be lower 
than that in the water is easy to see. We have:-

v5To = J
where c is the local sound velocity and K and p are the compressibility 
and density of the water-saturated sediment. When we have sediment particles 
in suspension and hence not intimately in contact, the compressibility K of 
the water is not modified significantly for low sediment concentrations.
The density of the water-saturated sediment increases however and so we see 
that the sound velocity c is reduced. Hence we see that the sound velocity 
in water-saturated sediments decreases with increasing sediment concentration



/a
until the suspension density becomes so great that the compressibility 

increases due to adjacent particles constantly touching and hence transmitting 

stress. Under these circumstances the sound velocity rapidly increases to 

the normal sediment velocity. Not all sediments will form a suspension : 

clay and silt will and so we can expect that when the sea floor consists of 

silty clay, and there is a current, there will be always a layer of sediment 

in suspension. We see then that under these circumstances, which are 

frequently encountered, the sound velocity in the sediment will increase 

from a value below the water sound velocity (at the water/sediment interface), 

to the normal sediment velocity at some depth in the sediment.

The travel time curves of Fig.2 indicate that the normal sediment 

velocity is 1.11 times the velocity of sound in water. Whether the sediment 

arrivals are refracted rays travelling horizontally in the sediment or are 

rays travelling through the sediment and reflected from a deep high speed 

layer is of no consequence. Officer (2,3) shows that for large ranges, the 

slope of the travel time curve of reflected arrivals is asymtotic to the slope 

of the travel time curve of refracted arrivals. That a low speed layer 

exists is seen because:-

(a) The high propagation losses encountered in the HAN trial 

indicate the bottom loss is high even at grazing incidence. A low speed 

layer will give high losses at low grazing angles since rays will be refracted 

towards the normal on passing through the water/low speed layer interface.

Using Fig.9 we see there are two mechanisms which give large attenuations 

in the intensity of the sound following path (ii):
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(i) Attenuation due to propagation in layer 2.

(ii) Attenuation due to imperfect reflection from the low speed

sediment/high speed sediment interface. Figs 6 and 7 give 

curves of reflection coefficient and energy loss of a plane 

wave travelling in a low speed layer being reflected from an 

interface with a high speed layer. The reflection coefficient 

and energy loss are plotted against angle of incidence for 

several wave attenuations in the high speed layer.

Both of the mechanisms (i) and (ii) give an energy loss which 

increases rapidly with frequency. Hence a low speed layer will give a high 

bottom loss which increases with frequency at low and zero grazing angles.

(b) The thin low speed layer acts as a 'high pass' filter and allows 

only the higher frequencies to pass from the sediment to the water. Sonagrams 

(Fig.23) show that the two arrivals before the water wave arrival have a 

central frequency of 600Hz. A low speed layer ft. deep effectively

filters out all low frequency components from a sound wave passing through it. 

The Nature of the Received Shot

That the received shot duration is independent of range can be seen 

from Fig.30. If normal modes were propagating over a lossless bottom, the 

shot duration would be proportional to range (0fficer(2,4)). Lack of disper

sion in the water wave can be explained in terms of ray theory.

When the bottom loss is high, the signal intensity from the higher 

order images (Fig.1) becomes rapidly smaller with increasing image order. 

Dispersion in the received signal however, is due to the late-arriving signals 

from the higher order images. Hence where bottom loss is high, the received 

shot duration is essentially independent of range. Since only the rays



which have low grazing incidence at the bottom carry significant energy 

and there is negligible separation in the time of arrival of these rays, 

the peak intensity at the receiver due to a shot will be the same as the 
peak intensity due to a continuous source. The peak within a shot

is proportional to the total energy when the shot duration is constant.
Hence the energy transmission loss curves for a continuous source will be 

approximately the same as the energy transmission loss curves for an 
explosive source when

(i) Shot duration is short 
(ii) Shot duration is constant with range.

The Model Adopted
The model is that of Fig.1, consisting of a two layer model of 

isovelocity water overlying a sediment base. The water depth is taken as 
200 ft. The source is a continuous point source situated ^0 ft. below the 
surface. The bottom is assumed to be lossy and the bottom reflection and 
phase change on reflection curves of the form given in Fig.3.

A full account of the derivation of the reflection coefficient 
of Fig.3 is given in Appendix 1.

Formulation of the Problem
Considering Fig.1 now, we see that at any instant of time the 

source and all of the images will be in phase, transmitting omnidirectionally 
a uniform intensity signal. The time independent amplitude potential at the 
receiver for the Ray<x(l,j) is given by:- (Officer)
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(2.1)

or Xa
Xo e j (kR + <f) (2.2)

where

Xq is the amplitude at unit distance

a = T or B representing the upper or lower image sets 
respectively as shown in Fig.1

X = ^ (ijj) is the amplitude at the receiver of the Raya (l,j) 

p = (l,j) is the bottom reflection coefficient

I is the number of bottom reflections undergone by Raya (l,J)

J is the number of surface reflections undergone by Raya (l,J)

R = Ra (l,j) is the path length of the Raya (l,J) from
source to receiver, 

k is the wave number.

¥ = (l,J) is the total phase change en route due to surface
and bottom reflections.

Referring again to Fig.1.

W (I,J) = Z-D + 2DJ + 2(H-D) I
(2.3)

W_(I,J) = D-Z + 2DJ + 2(H-D) IJb

and so

R = VW + T2 ) (2.4)
The angle of incidence A of the Raya (l,j) is given by:- 

A = tan 1(T/%) (2.5)



The critical angle of incidence C is given by 

C = sin_1(Cl/C2) (2.6)
From Fig.3 we see that when A <C, the bottom reflection coefficient is 

very low and rays which have an angle of incidence greater than critical 

will be rapidly attenuated.

In the summation of X^ and X^ over I and J, we see (Fig.1) that 

since we will be summing successively higher order images, it is useful to 

redefine X and X .
jD 1

Let

and

XB (2K-1)

XB (2K)
XT (2L-1) 

XT (2L)

Xg(K, K-1)

xb(k, K) 

xt(l-i, L) 

xt(l, L) )

(2.7)

The total amplitude at the receiver will be given by

M N

X = X(o) + j ) (XB(K) + VL))
K=1, L=1

(2.8)

We are summing successive orders of images and hence W is an 

increasing function of K and L. This means A is an increasing function of 

K and L.

Using the changed notation of equation 7. , we define M and N 

Ag(M) > C > Ag(M+1)

Aj(N) > C > Aj(N+1)
(2.9)



M and N are then the values of the dummy parameters K and L 

which give the highest order images below cutoff.

From equation 2.2, the total change in amplitude and phase due 

to all of the bottom and surface reflections from source to receiver is 

given by:-

tu1 e ^ (2.10)

The reflection from the surface is assumed lossless with a phase 

change of II. Associated with each bottom reflection, there is an amplitude 

change of p and a phase change of e . p and e are selected from the 

family of /i and e vs A given in Fig.3.

The total reflection coefficient from source to receiver for the 

Raya (l,J) is given by:-

= /a(l>J) e J[(I1 J + = ^o(l,j) e

Hence ^ (l,j) = II J + el (2.12)

Computation

Using the form of reflection coefficient and phase change given 

in Fig.3, we now evaluate the series(2.$) by a computer program (Appendix 2). 

The propagation loss as a function of range, frequency, receiver depth and 

bottom loss can be obtained by varying each of these parameters separately 

while keeping the others constant. Figs 10-15 plot the theoretical propa

gation loss curves as a function of range, frequency bottom loss and 

receiver depth.



(a)

00

(o)

These graphs show:-
The slope of the propagation loss curve increases with:-

(i) decreasing frequency Fig.10(b)
unless hottom is lossless Fig.10(a)

(ii) increasing bottom loss Fig.11
(iii) increasing range Figs.10-15

The propagation loss (dB re 1 ft) decreases with
(i) decreasing bottom loss Fig.11

(ii) Increasing height off bottom Fig.14 
unless bottom lossless Fig.12

d-ecr&k&i ^
(iii) ''distance from sound source Figs. 10-15.

The difference between hydrophone response on the bottom and ^0 ft. 

off the bottom increases with
(i) increasing frequency Fig.15

(ii) increasing bottom loss Fig.13

(iii) increasing range for low frequencies ) 

decreasing size for higher frequencies)
Fig.13

3. INTERPRETATION AND DISCUSSION OF THE RESULTS
(a) That the slope of the propagation loss curves increase with

are found ^0
increasing range we expect. Indeed all of the curves^have envelopes of the
form: -1 - u r re (2.12)
and we immediately see the 1-1 correspondence between this decay lav/ and the 
one obtained when we use normal mode propagation.

NZ1 = r e (2.13)



In the latter case is the attenuation coefficient of the i mode.

Where the bottom is lossless, so many rays are transmitted from

the source to the receiver without loss that the phases of these are arbit-
—'Jrary and so from geometrical considerations alone the spreading law is r 

irrespective of the propagating frequency. Where there is a bottom loss, 

only the rays with small grazing angles at the bottom and hence few bottom 

bounces from source to receiver, carry significant energy. Each low grazing 

incidence ray has an approximately antiphase surface reflected pair, the 

degree of out-of-antiphase increasing with increasing grazing angle of the 

ray. The degree of out-of-antiphase, being due to path length differences 

between the ray and its surface reflected pair, increases with increasing 

wave number and hence frequency.

We expect that phase cancellation will be more complete as the 

frequency decreases and the bottom loss increases and so the rate of energy 

loss with range will be correspondingly higher. In equation 2.12 n can now 

be seen to increase with bottom loss and decrease with frequency. Bottom 

loss is a function of frequency and so H can be expressed as a function of 

frequency only.

(b) Where the bottom loss is non-zero, there is an improvement of the 

order of 10dB in the receiver response by raising the receiver off the 

bottom. Very close to the bottom each ray has a bottom reflected pair that 

has traversed almost exactly the same path length but has undergone a phase 

change of approximately n radians at the bottom reflection. Thus the sound 

intensity in the near vicinity of the bottom is considerably reduced. 

However, while there is strong phase cancellation close to the bottom, the 

phase coherence, and hence cancellation, several wavelengths above the
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bottom is not nearly so strong, and so the receiver response is greater 
off than on the bottom.

If the bottom is lossless, a ray with large grazing angle will 
not be antiphase with its bottom reflected pair. The phase change at a 
bottom reflection is dependent on the grazing angle of the ray : the phase
change decreasing from n radians at zero grazing incidence to zero at 
critical grazing incidence. Thus the effect of the lossless bottom is to 

allow the rays with high grazing angles, large numbers of surface and 
bottom reflections, and hence effectively random phases, to propagate with 
the result that the receiver response is not depth dependent.

"Alien we compare the family of theoretical curves with the experi
mental curves of Fig.16 we find bottom reflection parameters can be found 

to make the theoretical curves 'fit' the experimental curves. The theoret
ical curves thus found are given in Fig.17 and the predicted bottom reflection 
curves are given in Fig.A* It is useful to note that the bottom reflection 
parameters used to make the theoretical curves fit the experimental curves 
are very frequency dependent. This is in accordance with the experimental 
results of Marsh (2,5) and is in fact generally accepted to be the case.
The high bottom loss at grazing incidence is explained using the model of 

Fig.2 in Appendix 1.
It is interesting to note the theoretical curves obtained, using 

the bottom reflection parameters found above, for the case where no coherence
of rays is allowed. These curves Fig.18 exhibit:

(i) No frequency dependence
(ii) A max slope of 6dB per octave doubled

(iii) No depth dependence of receiver response.



4.. CONCLUSIONS

We see that to account for the high rate (r^*^->r^*^) of 

transmitted energy loss in shallow isovelocity water and the dependence of 

receiver response on receiver depth, we must allow for the phase coherence 

of the rays. It is maintained that it is only in exceptional circumstances 

that the phases of the propagating rays can he considered random.

In chapter 3 we will he considering the effect on transmission 

loss of a perturbation in the bottom depth. The results of chapter 3 show 

that the propagation loss curves obtained in this chapter are stable under 

a small perturbation of the parameters and hence these propagation loss 

curves are not singularities in a mathematical solution but are physically 

realizable.
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3. THE VARIATION IN SIGNAL INTENSITY DUE TO THE ROUGH BOTTOM
Recent Work in the Field

Tolstoy and Clay (3,1) discuss the variation in intensity due to 

inhomogenities in the medium. They treat :
(a) The Reflection of acoustic signals at a rough boundary.
(b) The reflection from a slightly irregular stratified medium.

(c) Propagation in a waveguide with slightly irregular interfaces.

In the treatment of (c), Tolstoy and Clay assume :
(i) The eigenvalues of the characteristic equation corres

pond to the local stratification.
(ii) The stratification varies slowly from one local region 

to another.
(iii) There is no reflection or appreciable scattering of 

energy from one mode to another in the transition 

regions.
The model assumed then,is one of normal mode propagation, assuming 

the modes 'accommodate' themselves to a slowly changing bottom depth with 
no interaction between the separate modes.

Since normal modes consist of wave packets of 'stationary phase' 
propagating down the waveguide, we see that the largest single cause of 
intensity fluctuation is mode interference. A small change in the phase of 

each mode can result in a large change in the received intensity. These 
small phase fluctuations can be caused by inhomogeneties in the propagating 

medium or by irregularities in the waveguide interface. Tolstoy and Clay 

evaluate the effect of the irregular waveguide on mode propagation by



considering the phase perturbations of each mode introduced by a small 

variation in the bottom depth. Their line of argument is as follows:-

Z 3

Consider the wave equation,

2 GO2
v 0 + 72 0 = 0c

put 0 = R(r). 0(z)

then V^f R(r) + k2R(r) = 0

g"p(0(z)) + ^20(z) = 0

where c

Now the solution 0(z) can be expanded into normal modes 0(m,z) and these 

functions are discrete for trapped modes.

The acoustic pressure at depth z and range r can be expressed as

P(t) n - i (k r - wt - n/h) - Sr. P e v m ^' mm

(Tolstoy 
& Clay )

where is a factor taking into account the effect of transmitter depth,

receiver depth, source strength and the horizontal component of the wave

number on the received pressure due to the m*^1 mode, p is the density of

"fchthe propagating medium and 5^ is the attenuation coefficient of the in mode.

If now there is a perturbation in the bottom depth, the pressure 

at the receiver will be given by:-
M

P(t) = -ia- L Pe'i(V ~nA + ASm)
Vr~ m=1 m

S r m
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where P is VP (source). F (receiver) m m 7 m 7

and k = < k (r) >in m r

and AS is the total phase change of the m mode over the distance r duem
to a perturbation in the wave number k of e (r)mm7

i.e. k (r) = k + e (r)m 7 m m 7fand so AS = f drm J mo

Hence Tolstoy and Clay derive the formulae for the intensity
fluctuation to be expected in waveguide propagation due to mode interference.
To be useable we must know the distribution e and hence the distribution ofm
AS . m

The above analysis of Tolstoy and Clay is limited in its appli
cation because

(i) All the rays comprising the 'stationary phase’ of a mode do 
not travel identical paths. If they did the intercept time of each mode 
would be very short. That the intercept time is not short can be seen from 
typical sonagrams of shallow water propagation. (Tolstoy and Clay pg.111). 

Hence the several paths which constitute one mode will have phase correction 
factors which can differ markedly.
Consider Fig.1. The rays undergoing approximately the same total number 
of reflections will strike the bottom at points which can be large distances 
apart. If these rays in the unperturbed case constituted the coherent wave 

packet of a mode, we could hardly say all these rays in the perturbed case 

had their path lengths altered by the same amount due to a varying bottom



depth. Consider, for example, the two rays having a total number of surface 
and bottom reflections of 10; unless the source and receiver are both near 
one of the interfaces we can expect the positions of bottom bounce of these 

two rays to be separated by up to 2,000 feet where the source/ receiver 
separation is 10,000 ft.

We see then that and hence AS^ can vary substantially depen
ding on which ray we are considering and hence

r
AS = / e (r) dr

m / m '

Jo

is a good approximation to the phase correction to be applied to each mode 
only for the higher order modes which interact strongly with the bottom.

(ii) No account is taken of the variation in the slope of 
the bottom.

(iii) No scattering of sound 'out’ of a mode is allowed,
(iv) Since mode interference is assumed to cause the fluctu

ations in intensity the analysis is only applicable to a C.W. source. When 
we have an explosive source of short duration the separate modes have differ
ent arrival times and no mode interference can occur. The fluctuation in 
received intensity does occur however and so the analysis of Tolstoy and 
Clay is not applicable to the case where the source is an impulsive one. 

Procedure Followed in this Paper
In order to evaluate the rms fluctuation in the received intensity 

of transmission and hence in the transmission loss,caused by the variation 

in the bottom depth, we must allow for the phase distortion caused by the



path lengths of the several rays, which in the unperturbed case constituted 

a mode, being altered by varying amounts. Once again we use the model of 

Fig.1 and make the assumption that, since the bottom loss is high, only 

those rays with low grazing incidence contribute significant amounts of 

energy. This assumption is verified in the next chapter where we plot the 

intensity within the received shot as a function of time,
"bliThe amplitude of sound at the receiver due to the K ' image on 

the a (top or bottom) side is given by (2.2) (2.7)

Xa (K)

where

Xo I j(kR + *)
~u e

i.b + j.n
(3.1)

The bottom depth varies about some mean value H and so the ray 

path lengths from source to receiver will vary about some mean value also

Put R = R + AR (3.2)

where R = + T2 (2.4)

Hence Xa(K)= 2° uIe ^ +'t + 6 } (3.3)
R

where 6 = k. A R (3.^)

and so when AR « R

3L (K) = uTe + 0*5)
• R

= Xa(K) e (3.6)

, TT fv\ Xo I j (k 1 + ^ )where X^ (K) = ^ u e '
R

(3.7)



Thus, when A R « R , the effect of a small increase in path 
length is to alter the phase of the received image by 6.

The total intensity at the receiver will be given by:-
M _ N__

X = X(0) + (X(K)eiS W + ^ (L)e iS(L) ) (3.8)
K=1 L=1 '

In order to evaluate (3.8) we must know all the S’s. We see 
that the phase distortion 5 for a particular ray will be described by a 
distribution the standard deviation of which increases with:-

(i) T he magnitude of the fluctuation in bottom depth.
(ii) The grazing incidence of the ray upon striking the bottom,

(iii) The total number of bottom bounces from source to receiver.

The Perturbation of Phase 6.

Typical bottom profiles for several runs in the area where the 
RAN acoustic trial was held are shown in Fig.19. From these and more 
detailed records of echo soundings we see that the bottom depth, although 
varying by a factor of two, does so in such a large distance that the bottom 
in any small area can be considered flat and horizontal. Depth/frequency 
curves for all of these runs were drawn Fig 20 (a-> e) and a representative 
depth distribution curve was determined Fig.20f. We can assume then that 

when the bottom depth fluctuates about a mean depth, the depth/distribution 
curve has the bimodal form of Fig.20f. We shall use Fig.20f, with a change 
of origin, as the depth distribution function W( Ah) about the mean.



Referring to Fig.2^, we see that the increase in path length per
bounce due to a perturbation in the depth of Ah is

Ar = -2 x Ah x cos (0) to the first order (3.9)

If the surface of the water is smooth, the total variation in path length 
due to the bottom depth variation for a ray undergoing I bottom bounces is 
given by:- T

RU) = ^ Ar.
i = 1

(3.10)

-2 cos 0 Ah. (3.11)
t = 1

where the Ah. are selected from the distribution W( Ah), 
ience of computation, we define a variable AH(l)

I

For the conven-

AH(I) L
i= 1

Ah.L (3.12)

where the Ah^ are selected from W( Ah).

Then AR(l) = -2 cos 0A H(l) (3.13)
where H(l) is selected from W( AH(l)), the distribution of AH(l).

Since W(Ah) is a symmetrical finite distribution, W(AH(l)) is a 
normal distribution (for sufficiently large I) with standard deviation 
given by

o = ooV~ (3.14)

where a is the standard deviation of W( Ah).



To confirm that (3.I4) is a good approximation to a a Monte Carlo 
procedure was adopted where the distribution and standard deviation of 

W( AH(l)) was obtained by summing sets of I variables selected from W( Ah) 
randomly. This was done for several values of I and hence the distribution 
curve and standard deviation as a function of I could be graphed as in 
Fig.23a. From the distribution curves we see that W( AH(l)) is approximately 
a normal distribution even for I as small as twenty and we also see that 
a = 22 vT"" is a good fit to the points of avs I shown in Fig. 23b oq was 
taken as 22 for the purposes of computation and so equation 3*14 was verified.

To obtain a random variable AoH(l) from approximately the distri
bution W( AH(l)), we first generate a normal random variable AqH(1) with 
mean zero and standard deviation and then we’ multiply the variable so 
obtained by vT~. We now have a normal random variable with an approximate 
distribution of W( Afi(l)).

To evaluate equation (4.8) we obtain all of the S(K) by noting:-

6^ (i.j) using ( E 1.7) (3.15)

-2k cos <f> A H(l) (3.16)
-2k cosA H(l) (3.17)

Thus by generating at each step a normal variable with mean 0 
and standard deviation o we can compute using (3.17) a pseudo -random 
phase correction for each ray.

The fact that for small I, say I <5 the distribution of W( Ah(i))
is not normal concerns us very little since:-

(i) The grazing angle for the lowest order rays is so low that

the change in path length due to a perturbation in bottom 
depth is very small.
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(ii) The very lowest order rays arrive at the receiver antiphase
and hence there is very little contribution to the received 

intensity from the rays with very few bottom bounces.

Evaluation of the Sound Intensity Variation.
The series (Equation 4.8) was evaluated by the same computer 

program as that given in Appendix 2 using the reflection parameters of 
Fig.a except that to the arrival phase of each ray a pseudo-random phase 8 
was added. W(S), the distribution of 5, as we can see from above is a 
function of the angle of incidence of the ray, the no. of bottom bounces 
the ray undergoes and the bottom roughness. The details of the subroutine 
which computes a pseudo-random phase 8 for each ray are given in Appendix 3. 
By repeating this entire process over and over, we generate by a Monte-Carlo 
technique the distribution function of the received intensity X.

We wish to find the behaviour of:-
(i) The rms fluctuation of received intensity.

(ii) The mean received intensity 

as we vary:-
(i) the frequency

(ii) the magnitude of the bottom perturbation 
(iii) the range.

Summary of results obtained
Figs 2^-28 show that

(a) the rms fluctuation in received intensity:- 

(i) Increases with frequency 

(ii) Increases with range
(iii) Increases with increasing bottom roughness.
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In each of the above cases the rms fluctuation increases to a 

maximum finite value for some value of the frequency, range and bottom 

roughness.

(b) The mean signal intensity increases with increasing bottom roughness.

(c) The intensity fluctuation is a slowly varying function of frequency.

Discussion and Interpretation of Results

The bottom loss parameters assumed are those of Fig.^ and the mean 
bottom depth is 200 ft. By using the exact depth distribution curve of 
Fig.20F having a standard deviation of bottom depth variation of 22 ft. about 
the mean, we ought to be able to predict the variability of the received 
intensity, of sound propagating in the shallow water area of the RAN trial.
The propagation loss curves of Fig.17 then, are those obtained where the 
bottom depth is constant at 200 ft. If the bottom is not flat but fluctu
ating in depth, we can expect that the propagation loss over a given distance 
in any one area will vary by as much as 10dB. This variation arises because 
the bottom depth variation causes the several propagating rays to undergo 
phase distortion and so the total coherent intensity also varies. The present 
theory gives that successive transmissions over the same path will undergo 
the same transmission loss. However, a small change in transmission path by 
means of a change in position or bearing will cause the transmission loss 
to vary. This is because the bottom profile varies extensively for changes 
in position and bearing and hence is best described statistically.

The intensity of the received energy fluctuates to an extent which 
increases with increasing bottom roughness. This intensity fluctuation does 
not increase indefinitely but assumes a maximum value when the bottom is
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rougher than a given value. The way in which the standard deviation of the 
intensity fluctuation increases with increasing bottom roughness for 100Hz 

is shown in Fig.2^. Notice that Fig.25 shows that the rms fluctuation
increases with range for fairly smooth bottoms. When the bottom is suffic-

*
iently rough we can no longer consider the received energy to be a pertur
bation of the energy received when the bottom is smooth. The phase 
distortions caused by the extra path lengths travelled by the several 
propagating rays become very large and so the rays can be considered to 
arrive with totally random phases. It is more appropriate in these circum
stances to add the intensities of the several ray arrivals to obtain the 
total received intensity. When the bottom becomes so rough that this happens 
the fluctuation in received intensity will be a function of the number of 
rays which contribute to the total intensity.

Notice here that when we say the bottom is 'rough' we mean 'rough 
enough to cause an appreciable phase difference to a low grazing incidence 
ray'. We specify low grazing incidence because for a high loss bottom only 
these rays carry enough energy to be of significance. Hence 'roughness' 
increases with frequency and range. For high frequencies even a small pertur
bation in bottom depth can cause large phase fluctuations at the receiver 
and the phase fluctuation increases with increasing range.

Bottom loss also affects the apparent 'roughness' of the bottom.
In an area where the bottom loss is high, the only rays which carry signifi

cant energies are those which have very low grazing incidences. Since the 
phase variation for any one ray is proportional to the number of bottom 
bounces and the grazing angle as well as the standard deviation of variation



in the bottom depth, we see that rays with few bottom bounces and hence low

grazing angles will not have their phases greatly modified. Where bottom

loss is low however, rays which undergo a large number of bounces contribute
significantly to the received signal intensity. Because these rays interact
with the bottom so frequently, their phases become random in very short ranges
and so the total received intensity is best obtained by summing the intensity

of the several received ray intensities. Notice that any mode structure,
especially for the higher modes would be destroyed although the spreading law

would be a cylindrical spreading law. This is because the rays add in intensity 
-2which gives r spreading, but in addition to this the total received shot 

duration is proportional to r and hence the overall spreading law is
I a r 1

We expect then that:-
(i) For small bottom 'roughness' the extent of received intensity 

fluctuation increases with increasing range.

(ii) 'Roughness' increases with:-
(a) increasing frequency
(b) increasing range
(c) decreasing bottom loss.

From the previous discussion we expect that as the roughness of 

the bottom increases, the phases of the rays carrying significant energy at
-3.5 -.>5the receiver will become more random. The energy loss rate of r * r ■ * 

we obtained in Fig.17 is due to the fact that each arriving ray which under
goes 'x' bottom reflections has a corresponding pair which has undergone 'x' 

bottom reflections also and has traversed the same distance from source to 
receiver. This latter ray has undergone one more surface reflection and so
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the received amplitudes due to these two rays are approximately antiphase 

because there is a phase change of 180° associated with each surface reflec
tion. Hence by causing the phases of the separate rays to fluctuate, the 

signals from an image and its surface reflected pair will not be exactly 

antiphase.
As the phase distortion increases, so the rays will tend to become 

more and more incoherent, and more and more will the propagation loss approxi
mate that obtained by adding the intensities only of the separate ray arrivals 
(Fig.18). A plot of the mean of the received intensity fluctuation vs 
standard deviation of bottom roughness (Fig.2^) for 100Hz shows that for a 

standard deviation of bottom roughness greater than 50 ft. the separate ray 
signals can be thought to be incoherent while for a bottom variation of less 
than five feet, there is little change in the level of received signal 
intensity due to phase distortion.

We include Table 1, a typical table giving tabulated results of 
ten values of intensity for ranges 100,000 ft. and 200,000 ft. and frequencies 
100, 500 and 1000.



TABLE 1

Variability in the Intensity(dB re 1 ft) 

a = 10 ft.

Range 100,000 ft.

Frequency 100 500 1000

( 94.17 - 99.65 -109.71
( - 93.38 -106.00 -107.42
( - 98.25 -102.19 -109.76

- 100.85 -100.62 -1 21.01

Samples ^ 97.86
100.31

-100.18
-100.00

“ 99.54 
-101.93

(
(

- 106.83 -101.19 - 98.63
- 103.34 -100.52 - 99.64

( - 95.27 -101.38 -100.42
( — 95.27 -104.78 -111.O4

Mean - 98.55 -101.65 -105.91

Standard 
Dev11 of 
Sample

4*1 2.1 6.8

Range 200,000 ft.

Frequency 100 JOO 1000

( 112.43 -110.25 -114.65
( - 111.07 -111.72 -1 20.65
( -107 .37 -109.93 -118.49

Samples | 117.44
119.05

-107.59
-108.10

-110.92
-116.27

( - 114.10 -IO4.O4 -114-55
( - 99.13 -107.42 -122.55
( - 105.56 -106.03 -H4.30
( - 108.13 -IO8.4I -H4.13
(
(

Mean

— 125.71 -111.37 -112.92

- 112.00 -108.49 -115.92

Standard 
Dev11 of 
Sample

7.5 2.3 3.6



The standard deviation of bottom depth variation is assumed to be 

10 ft. Notice that while at 100HZ the intensity fluctuation increases with 
range, it is difficult to make such a prediction at 500 or 1000 Hz.

So far, we have considered the intensity fluctuation of a single 
frequency sound. The question arises. If we have a discrete bandwidth of 
sound, how well does the intensity at one frequency correlate with the inten
sity at another frequency, over the same propagation path? (viz the same 
bottom profile). If the variation of intensity is rapid with frequency, 
then the total intensity from a finite bandwidth of sound will fluctuate 

very little.
To ascertain the affect of altering the propagating frequency 

slightly, equation 5.8 was evaluated for the central frequencies 100, 500, 
1000Hz and also for six equally spaced frequencies about the central frequency 
using the same set of random numbers in each case. This corresponded to 
finding the received intensity for several closely spaced frequencies for 
sound propagating over the same bottom. The intensity variations with freq
uency are shown in Fig.26 for many different ranges. Since the intensities 
at different ranges are calculated using different sets of random numbers, 

we see that Fig.26 gives us a good idea of how the intensity fluctuates with 
frequency.

The normalized autocovariance functions of the intensity variation 
with frequency are given for several cases Fig.27. The intensity variations 
are taken compared to the mean intensity at that range as determined from 
Fig. 8 . We see from the autocovariance functions that the intensity varies

only slowly with frequency. In addition to this we see that the rate of 
variation is proportional to the frequency.
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That the intensity is a slowly varying function of frequency can 
be seen since

(i) The mean propagation loss at any one range varies very little 

indeed for a small change in frequency if all other param
eters stay constant.

(ii) The phase changes caused by perturbations in the bottom depth 
differ only slightly when the frequency changes. In fact, 
the phase change differs at a rate which is proportional 

to the rate of change of frequency.
Consider a perturbation in path length of AR. The associated 

phase change due to this perturbation isl

and so the phase changes by the same fractional amount as the frequency.
Where df « f then d e « e and hence a small frequency perturbation results 
in only a small variation in the phase perturbation. Equation 4.17 also 
tells us that the intensity varies slowly with respect to small fractional 
changes in the frequency of propagation.

Hence the fact that the intensity at 1000Hz varies slowly compared 
with changes in frequency of 10Hz while the intensity at 100Hz varies slowly 
when we change the frequency by 1Hz is expected.

From Fig.26 we can say now that if we are considering the intensity

(3.16)

AR . f. 2n 
C

df
f (3.17)

fluctuation as received from a broadband signal, the expected variation in
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intensity for a 6% filtered signal is only 1 or 2dB less than the expected 
variation when we filter out a single frequency. The intensity fluctuation 
we can expect is still of the order of 6dB when we use a 6/S filter. Notice 

also that this fluctuation is constant for a 6% filter for frequencies in 

the range 100-1000Hz.
When we look at Fig.2^. we see that the average transmission loss 

where the standard deviation of bottom depth variation is 22 ft (Fig.20F) is 
significantly lower than that when the bottom is flat. This would make the 
slope of the propagation loss curve much less than that required to simulate 

the experimental results obtained by the RAN except for one important over
sight on our part. We have chosen variables from W(AH(l)) randomly. Strictly 
speaking we ought not do so since the bottom depth does not vary in a rapid 
random fashion. The bottom depth is a slowly varying function even when we 
take into account the long propagation path. Since it is the relative changes 
in phase which the rays undergo due to the bottom depth variations that are 
significant and not the absolute magnitudes of the phase changes, we can 
adequately allow for the good auto-correlation with distance of the bottom 
depth by suitably reducing the magnitude of fluctuation by a factor /i.

To assess the magnitude of n , we need the joint probability distri
bution of AR(l) and AR(l+j) as well as the autocorrelation function of the 
depth variation about the mean. Without performing the extensive calculation 
we see that/i will be in the range .1 -> .99. Taking ,1^5, the series(i<..8) 
was evaluated for twenty different ranges and three frequencies. In each 
case the series was evaluated four times using different sets of random 
phases. The energy losses as a function of range obtained thus are shown 
in Fig.21. Not enough points have been plotted to make a quantitative



3

analysis of the results,"but we see from a qualitative viewpoint the extent 
of fluctuation of the signal intensity.

Conclusions:
Where the bottom depth in one particular area varies statistically 

about a mean depth, we see that sound travelling equal distances over different 

paths will be attenuated by different amounts. The magnitude of the rms 
fluctuation in intensity is several dB.

As the bottom becomes rougher, the rms fluctuation increases from 
zero to a maximum value; the mean energy loss decreases from the value 
obtained for the case where the bottom is perfectly flat and the intensities 
of the rays are added coherently, to the value obtained when we add the inten
sities of the rays incoherently.

The rms fluctuation of intensity increases slightly with increasing 
range (10 to 20 miles) for low frequencies when the bottom is reasonably 
smooth. Otherwise the rms fluctuations are dependent upon bottom loss prim
arily, increasing bottom loss causing increasing rms fluctuation of the 
received signal intensity.

The autocorrelation function of the intensity fluctuation with 
respect to frequency indicates the intensity fluctuation is a slowly varying 
function of frequency. Thus the expected variation in the signal intensity 
for a bandwidth signal is only one or twodB less than the expected vari
ation in the signal intensity for a single frequency signal.

Suggestions for Future Work
As can be seen from this chapter the Monte Carlo technique of 

calculating expected variations in intensity lends itself immediately to the 
solution of the problem when we use a high speed digital computer. We use



the same simulation technique to assess the affect on sound propagation of

(i) Internal waves

(ii) Perturbations of the velocity/depth profile about a mean value

(iii) Inhomogenities in the propagating medium : local variations 

in temperature salinity; fish

(iv) The changing bottom; change of sediment; rocky outcrops

where we can assign a statistical probability for any of the aforementioned 

events occurring. We must, of course, know the effect on propagation of 

these perturbations quantitatively in order to proceed with the simulation.
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4. CALCULATION OF THE RECEIVED WAVEFORM
A feature of the sonagrams of the shots of Fig.23 is that the 

propagation is essentially non-dispersive. Consider a ray with grazing angle 0 

striking a flat bottom

7 / 7 7 7 / 7 / / // /'' / / x

Referring to Fig.1, we see that

tan 0 = sin 0= ~~ (4*1)

where H is the depth of water
N is the no. of bottom bounces from source to receiver 
R is the total path length of the ray from source to receiver.

The extra path length travelled by this ray from the source to 
receiver compared to the path length of the direct ray is approximately:-

AR = R(sec 0-1)

JR sin20
h2n2

^ R

(4-2)
(4.3)

Now the received shot duration t is proportional to R and hence:

t o aE (4*4)



Hence the received shot duration in water of uniform depth is proportional 

to the square of the maximum number of bottom bounces. The maximum number of 
bottom bounces is determined by our criterion of how much energy a ray must 
carry before it is considered to contribute significantly to the received signal 

intensity. We may arbitrarily choose -2odB as the threshold energy to be 
carried by a ray before it is considered to contribute to the total intensity. 
The maximum number of bottom bounces per ray allowed will be determined by the 
loss per bounce and the threshold intensity we choose.

The maximum number of bottom bounces will be a function of bottom 
loss. Since bottom loss increases with increasing grazing incidence, the 
maximum number of bottom bounces is not constant, but rather a function of 
grazing angle and hence range.
Consider these examples

(a) Normal-Mode Propagation
Here all rays with grazing incidence less than critical are reflected 

from the bottom without energy loss 

Hence N a R
and so x ct R (4.5)

and the received shot duration increases linealy with range.
(b) Bottom Loss Independent of Angle of Incidence

N is constant.

Hence xa^ (4*6)

and the received shot duration is inversely proportional to range.
(c) Bottom Loss dependent on Grazing Angle

N = N(0, R)
Let bottom loss be given by

B = f(0 ) ______________



Then the total bottom loss from source to receiver for a ray undergoing 

N reflections is given by 

BN = Nf (0)

Let the criterion for the contribution of a ray to be considered sufficient be:- 

BN ^ A

where A is the threshold value.

If N < A/f (0) the contribution of this ray will be considered. The received 

shot duration will be defined by 

N = A/f (0)

Now

i. e.

t a

t a

N sin 0 
sin 0f&T

and for small 0, sin 0=0 

i.e. if 1 is constant 

t(<t>) a (6

(4-7)

(4-8)
and so for a constant pulse duration, the bottom loss must be proportional 

to grazing angle. The constant of proportionality will determine the pulse 

duration : the larger the constant; the shorter the received shot duration.

Hence for the assumed bottom loss profiles of Fig.3, we expect the 

received shot duration will be constant with range if ST = 1.0 and S / 0 and 

that the received shot duration will decrease with range if ST <1.0.

It is to be noticed that where S is small, the shot duration will 

be proportional to range at short ranges since all rays up to the critical 

ray will contribute to the total received intensity. This proportionality



with range will persist until the criterion:-

Nf(0) ^ A can "be (4*9)
satisfied by 0 < 0C where 0C is the critical angle.

Tolstoy (il) points out that: "Travel times and intercept measure

ments of refracted waves cannot be connected directly to the concept of group 

velocity until the complete wave problem for the actual situation is solved. 

However, for very long ranges, such that the spherical wave fronts due to a 

point source, have become essentially plane, the group-valocity curves may 
permit us to estimate the velocity of the corresponding wave pockets. Note 
that for sufficiently long ranges the effects of a finite intercept will 
correspond to a very small relative error in the total travel time and that, 
in this sense, the group valocity concept also gives an asymptotically correct 
answer for travel time. But it cannot provide an accurate value for intercept 
time, since the latter is the literal calculation of travel time along a 
certain refracted ray path. A proper theoretical prediction for the intercept 
by normal mode methods can only be obtained from an exact solution of the 
receiver-plus-transient-source problem."

Pekeris, of course, has solved the receiver-plus-transient-source 
problem for normal mode sound propagation in shallow water. We shall in this 

section compute the intercept time for the case where the source is a square 
pulse of monochromatic sound.

We will calculate the contribution at the receiver due to all rays 
which have grazing incidence less than critical. Where bottom loss is non
zero, the highest order rays will make negligible contributions to the total 

received intensity. We will not discriminate against these rays. In this



case the total received shot duration will be:

t = -§- R sin20c (if 2)

We wish to compute the received shot intensity at 100 discrete 
uniformly spaced times during t

Consider a shot fired at t=o

If t = t0 is the time of arrival of the direct ray, then

t = tQ + t is the time of arrival of the ray from the highest order image 

such that its grazing angle is less than critical. We wish to calculate the 

received shot intensity at time: 

t = t0 + At o ^ A t $ t

Assume the duration of the step pulse is X .

The transmitted pulse has the form

I = o t 3 o, t > r )
) (4-1°)I = I sinwt o < t $ X ) 

o '

The images which will contribute to the shot intensity at time 

t = t0 + At are those images which satisfy the condition:

to + At - X ^ + At

Where R is the total ray path for the ray which takes t0 + At - X seconds 

to travel from source to receiver.

Equation (4*11) can be restated

c.(to + t - X) < R ^ c(to + At) (4.12)

By allowing At to assume all values from o to t then, we obtain

the shot intensity at all times during the received shot duration.



Full details of the program used to evaluate the intensity variation 

within the duration of the shot are given in Appendix
We wish to obtain some idea of the mode structure within the received 

shot where the source is an explosion. The shape of an explosive pulse is the 

form:
I=o, t < o
_ T - Xt .I = I e , t £0

After several surface and bottom reflections however, this pulse 
shape becomes broader and flatter so that the assumption of a square tone 
pulse will give the correct qualitative information about the mode structure 
and intensity within the shot although it will not give the exact shape of 
the received pulse. V , the pulse length at the transmission point, at the 
receiver is a measure of how much temporal integration will occur between the 
several rays arriving within a short time at the receiver.

The received shot waveform was computed for frequencies of 100, 500, 
1000Hz using the bottom loss parameters of Fig.1^. The received shot wave
form is shown in Fig.29. It is interesting to note that when the frequency 
within the If sec long burst is 100Hz, two modes are present, the second being 
20dB weaker than the first. For the higher frequencies, where the bottom loss 
is considerable, the shot duration is approximately .

This indicates that only a very few of the lowest order rays are 
being transmitted with significant energy. The high slope of the propagation 

loss curves of Fig.16 can then be expected since a modified Lloyd’s mirror 
type of propagation has occurred. Inherent in the assumptions of para.2 was 

the assumption that )f is comparable to the total shot duration. From the



above we see that this is in fact the case and so:

+ 7

(i) The energy transmitted from high order images can be neglected, 
(ii) There is little dispersion and the shot duration is short and 

roughly constant.

The verification of these assumptions in terms of the results of 
the theoretical sonagrams of Fig.29 and the experimental sonagrams of Fig.30, 
validates our former claim that the peak energy received from a CW source is 
proportional to the peak energy from a transient source and that the constant 
of proportionality is approximately constant over the range interval considered.

To show the correspondence between ray theory and mode theory, the 
theoretical 'sonagram' for a square impulsive source was computed. As bottom 
loss was assumed to be zero for all grazing angles less than critical, the 
intensity over the entire shot duration was significant with a total variation 
of 30dB. The peak intensities within the received shot waveform, corresponding 
to modes of propagation were at the same level * 5dB,

There is a trend for the peak intensity of the second mode to be 
higher than the peak intensity of the first mode. This trend is due to the 
fact that a large number of rays contribute to the signal of the first mode 
and the rays which are antiphase are not separated in arrival time suffic
iently. Hence due to the finite integration time of X , many antiphase rays 
also contribute to the total intensity of the first mode. We could take a 
smaller value of X to obtain finer discrimination, but this is not physically 
valid since the separate pulses due to different rays are fairly broad. For 
any finite X for a sufficiently high frequency, X will be larger than the 
separation in arrival times of successive modes. For high frequencies them,



mode structure will not be as distinctive as for the lower frequencies and 
in the limit as f -*• co, no modes are apparent. Then the intensity of the 
received shot varies only slowly with time.

In order to find the number of possible modes of propagation of 

sound at a given frequency, we consider the cutoff frequency for a partic
ular mode.

f = (£ -1n 4H c±

The number of possible modes of propagation for a frequency f will be given 
by N where f is the largest value of f^

such that f > f._N

A theoretical sonagram of the received shot waveform for a lossless 
bottom is shown in Fig.29. The arrival times of the first four modes is 
shown as a function of frequency. The results of Fig.29 demonstrate the 1-1 

correspondence between ray and mode theory and verify Tolstoy's (^,1) 
ascertion that the rays comprising the n"^1 mode in normal mode propagation 
can be thought of as coming from the image sets which have grazing angles of 
approximately  ̂n

REFERENCES

4,1 TOLSTOY, 1.(1959) "Modes, Rays and Travel Times".
J. Geophysics Res. Vol 6^ No 7.



APPENDIX I

THE BOTTOM REFLECTION COEFFICIENT

The reflection of a sound wave from an attenuating bottom which

varies from ’slow’ at the water interface, to 'fast' at some depth, is 

complex. With no detailed knowledge of the velocity profile or the atten

uation in the sediment no exact model for bottom reflection can be proposed. 

We can, however, use a simple model which gives the overall effect of the 

complex situation.

To obtain a qualitative idea of what the reflection from the 

bottom will be like we investigate the reflection from:-

(i) A perfect bottom

(ii) A lossy bottom

(iii) A two layer bottom where the top layer is 'slow'.

We follow Brekhovshikh (5*0 closely in this section.

(i) Two-Liquid Model without Attenuation

The reflection coefficient for a plane wave reflected from an 

interface separating two liquids is:-

m cos 6 -(n2- sin2 6 ) 
m cos 6 +(n2- sins e )

1.

where 2.

and 6 is the angle of incidence.



S~6

We see that when n < sin 8 total internal reflection occurs with 

an associated phase change of:-

e = -2 tan-1 {' (sin2 8 -n2 )
m cos 8

The Rayleigh wave reflection coefficient for the case 
Co P b-a- = 1.11, t*- = 1.5 is given by the curve corresponding to S=0, ST=1 of Cl P±

Fig.3.

Two Layer Liquid Model with Attenuation in the Lower Layer

If there is absorption in the lower medium, n will be complex:

n=nQ(l+ia)

We consider the case a « 1, so

n2 = n2 (1 + 2ia ) 5-o '

and use the notation

sin20 - n2 = A, 2n 2a = B 6.o o

Then taking into account that

VTA -iB) = \+ M2 7.

M± = t '/C& + B2) + A]j, M2= ^ [ VT^+ B2) - A]j 8.

and using equation 1

m cos 8+ M2- 114V = m cos 8- Vi2+ iM± 9
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and * -i f - Mi \
* ^ m oosS+My - tan-i

/ M,
m cos 0 -M. 10.

The family of V and e vs grazing angle for several values of the 

attenuation are shown in Figures 6, 7> 8. Note that a = o corresponds to 

no absorption and gives the Rayleigh Reflection Coefficient.

Where a low speed layer exists (Fig.9), rays travelling in the 

water and striking the lov/ speed layer at very low grazing angles will be 

reflected from layer 3 at an angle that is significantly larger than zero. 

For ^ = .97, the ray travelling parallel to the 1/2 interface will strikeCi
the 2/3 interface with a grazing angle of 1^? From Fig.7 we see the reflec

tion loss from 2/3 interface can be as high as ^dB for a = .1.

It is well known that the absorption coefficient increases with 

frequency. We see that where a low speed layer exists, the bottom loss at 

low grazing angles in non-zero and increases with grazing angle and frequency 

It is reasonable to adopt a bottom reflection coefficient of the 

form given in Fig.3 such that:

where #i is the grazing angle of the ray in water 

0c is the critical grazing angle,

REFERENCES

(5,1) BREKHOUSKIKH (i960) "Waves in Layered Media" Academic Press



APPENDIX 2

COMPUTATION OF THE RECEIVED INTENSITY

To evaluate the series of equation in Chapter 2, we must use a 

digital computer. The procedure adopted is as follows:

(i) A range is selected.

(ii) The amplitudes of the signals due to all the lower images 

are summed observing phase coherence.

(iii) The amplitudes of the signals due to all the upper images 

are summed observing phase coherence.

(iv) The complex sum of the results of (i) and (ii) is computed

and the total intensity at the receiver is found by multi

plying this total amplitude by its complex conjugate. The 

energy loss in dB re 1ft. is obtained by taking 10 log10 of 

the total intensity.

(v) The process is repeated for a larger range unless the range 

exceeds 2 x 10 ft. when we proceed to (vi).

(vi) The graph of energy loss in d3 on a linear scale is plotted 

against range on a logarithmic scale by the computer.



S' 3
THE PROGRAM

(a) The Parameters Used.

A Angle of Incidence of Ray
AI Grazing Angle of Ray
ATTEN Reflection Coefficient at each Bottom Bounce
B Phase Change at each Bottom Reflection
C Critical Angle of Incidence
Cl Critical Grazing Angle
D Source Depth
E Total Phase Change of Ray due to Bottom and Surface Reflections
FREQ. Frequency of Sound Propagation
H Depth of Water
I No. of Bottom Bounces
J No. of Surface Bounces
N Total No. of rays.
P Wave Number (2ir/k )

PI 3.14159265
R Total Distance of Ray Path from Source to Receiver
S Bottom Reflection Parameter
SIGNAL Total Received Intensity at Receiver
ST Bottom Reflection Parameter
T Distance (in feet) from Source to Receiver



Parameters used (cont’d)

U U = pa/pj. ,=1.5

V V = ci/ca = .89

W Vertical Distance between Receiver and Image

X Cumulative Total of Real Part of Signal at Receiver

Y Cumulative Total of Imaginary Part of Signal at Receiver 

Receiver Depth.Z
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COHERENT RAY THEORY FLOW CHART PART. 1.
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( START ^

READ DATA 
FREQ. DZ,H,U,V,S,ST

SET CONSTANTS P,PI,C,Cl

r 1 TO 20 \

CALCULATE INIT VALUES WR.X.Y

SET VALUE T = 10000K

CALCULATION OF CONTRIBUTION 
_______OF LOWER IMAGES

GO TO NEXT IMAGE BY:-
I I - 1+1 
Wr W + 2(H-D)

CALCULATE AI, ATTEN.R B.E 
THEN CALCULATE 

UY 
N= N+1

GO TO NEXT IMAGE BY:- 
[ J= J +1 
<W=W+2D

CALCULATE AI, ATTEN, R,B,E
THEN CALCULATE

X & Y N - n

TO
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R
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(c) Formulae Used in the Progran

Symbol in Program 

(i) B

Value

.9 (§) -1

Symbol in Chapt.2

(ii) ATTSN ST - S x

(in) = IxB + JxPI

(iv) + W2)



APPENDIX 3

THE GENERATION OF PSEUDO-RANDOM PHASE DISTORTIONS

Using the model of Fig(l), we wish to find the rms fluctuation 
in received signal intensity due to a perturbation in the bottom depth. As 

indicated in Chapter 3> a pseudo random phase:

8=2 cos(A).k. vT. AqH(1)

where 8 is the phase perturbation
A is the angle of incidence of the ray at the bottom 
k is the wave number
I is the number of bottom bounces from source to receiver 

AqH(1) is a random normal variable with mean o and standard deviation 22 
is added to the phase of each ray arrival. We need then to select a random 
variable with mean zero and standard deviation 22 ft. We do this by gener
ating a random number in the range 0 -* 231 with Subroutine Randu.

Subroutine Randu produces 229 odd integers evenly distributed 
in the range 0 231 . Each execution of Subroutine Randu uses as input an
integer and produces a new pseudo-random integer. This new integer becomes 
the input for the next execution of Randu; and so we generate up to 228 
pseudo-random integers. We need then select only an initial value for the 
input of Randu.
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We include details of Subroutine Randu. 

SUBROUTINE RANDU

IZ = IZ* 65539

YFL = IZ

YFL = YFL* .2,656613 E-9

RETURN

END

IZ is given an initial value at an appropriate position in

the program.

We can generate conveniently normally distributed random 

variables using two methods.

(a) RANDU,as well as giving a uniformly distributed integral

random number in the range 0 -> 231 also gives YFL, a uniformly distributed 

real number in the range 0 -► 1.

Consider now the distribution of YFL, W(YFL). W(YFL) has 

mean ^ and a variance of 1/12. If we consider sums of twelve variables 

selected randomly from W(YFL), the distribution W(YFL12) thus obtained has a 

mean of 6 and variance of 1. Thus by summing twelve successive values of YFL 

we obtain a normal random variable with standard deviation 1 and mean 6.

Hence to obtain a normal variable Ah with mean zero and standard deviation o 

we compute twelve values of YFL, sum them, subtract six and multiply the 

result by a
12

i.e. A h = a (7.1)



and so the total perturbation in path length AR for a ray undergoing 

I bounces is given by

A R (7.2)

(b) We can also generate normally distributed random variables by

selecting randomly from a frequency distribution curve. Indeed, if the 

distribution from which we wish to select variables is not gaussian, nor 

simply defined mathematically as in the case of the distribution of Fig.20F, 

then we are left with no alternative but to sample directly from the 

distribution.

Consider a distribution defined by

V/(x) = f (x) a ̂  x <b )
) (7W(x) =0 x < a , x >b) Kl'J)

The distribution we consider is finite, since we can only consider a finite 

distribution if we sample discreetly. Many distributions which are infinite 

in the range of x can be adequately approximated to by neglecting values of 

x which have less than a fixed (small) probability of occurrence. If W(x) 

is a normal distribution, we can define

x2
W(x) = N(x) - —"•— e 2a2 ~3o ^ x^ 3a )

a \/2v~ ) (7.4)
W(x) = 0 x < ~3a , x> 3o '

and so here we consider the finite range of a normal distribution between

the 3 cr limits.



To select a maximum of n different random variables from the

distribution (7*3) we divide the internal ab into n equal segments

Let x. be the mid-point of the i segment and so
1/

(2t -1) ,, \x. = a + ■*—------  (b-a)
l 2n ' '

and we see that the probability of x lying in the range:

(7.5)

ci - 2r(b_a) < x s xi + (b_a> (7.6)

that is in the i segment; is approximately f(x. ).
1/

Suppose now we generate uniformly distributed random numbers 

y, in the range c ^ y =$ d. If we divide the interval cd into n segments 

so that the length l. of the tsegment is proportional to f(x. );
L "L

i. e. d-c f(xi ) (7.7)

Then the probability of a random variable x from the distribution W(x) 

having a value which lies in the range of the i segment of ab, is equal 

to the probability of a uniformly distributed random variable having a 

value y which lies in the range of the i segment of cd.

So to select one of n different variables from the distribution 

W(x), we first generate a uniformly distributed variable y. Next we find the 

segment in cd within the range of which y lies. Then, supposing y lies in 

the range of the segment, the corresponding pseudo-random variable from

W(x) is given by x..
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This latter procedure was the one followed to obtain a normal variable with 

standard deviation and mean zero. The uniformly distributed random variables 

were obtained in a range 0 -► 999 by computing a new random variable IX in 
the range:

0 s IX « 999 (7.13)

by letting IX = 12 MOD (1000) (7. lit)

where IZ is the integer calculated by Randu.
IX here then is our previous y .

The i^ were calculated to give a normal distribution between the $a limits 
and the x. were chosen so that W(x) has a standard deviation of 22 ft and 
a mean of zero. It is essential to the whole process that IX be uniformly 
and randomly distributed in the range

0 S IX < 999

The distribution of IX was tested by observing the distribution of twenty 
classes each of fifty numbers. The distribution was plotted for several 
sample sizes and the results are shown in Fig.22a. The auto correlation 
functions of one set of sixty random values of IX was also determined and 

shown in Fig.22b.
We see then that the distribution of IX is quite uniform in 

the range 0-999 and that the IX are sufficiently random for our purposes.

Having thus computed Ah we obtain 

AR = 2 cos(a). Ah-v/5”
and 6 = AR. f. 2ir /c



The flow chart of the sub-routine which is called for at each stage to 

apply a phase perturbation to the phase of each ray is included in this 

appendix.

PSEUDO RANDOM PHASE GENERATOR SUBROUTINE RANDU 1

(a) Symbols Used

AB Normal Random Variable, Mean 0, Standard Deviation 22

IX Random Integer Selected from Distribution Uniform in the

Range 0-999

RA Random Integer Selected from Distribution Uniform in the

Range 0-231

DEL 1 Pseudo-random Phase Correction

P Wave Number (2 rr/k )

X Discreet Samples from Normal Distribution Mean 0 Standard

Deviation 22

FACTOR An Input Variable to alter the Magnitude of the Bottom Depth

Variation.



PSEUDO RANDOM PHASE GENERATOR
SUBROUTINE RANDU 1

b) FLOW DIAGRAM.



APPENDIX h.

COMPUTATION OF THE RECEIVED WAVEFORM

Using the model of Fig (1), we aim to compute the received 
waveform when a short burst of sound of one frequency is transmitted from 0. 

The transmitted wave has the form:-

I = o t s o, t > Jr )) (8.1)
I = I sin wt 0 < t ^ JT )

where K is the duration of the burst.

We see that simultaneously all of the images of Fig (l) will 
transmit coherent 'tone bursts' of equal amplitude. If the arrival time at 
the receiver of the direct ray is t = t , then at time t = t + At. the 
images which will contribute to the total received intensity satisfy the 
condition

Rt + At - ir < Rt S Rt + At (8.2)
o o

where R is the distance travelled by the ray with arrival time of t.

)8.2) can be rewritten

c(tQ + At - jr) < R^ c(tQ + At) (8.3)

where c is the velocity of sound in water.

To compute the received shot intensity as a function of time, 

we must compute the amplitude and phase of the arrival signal due to each 
image as well as compute the path length from each image to the receiver.



We wish to compute the intensity at 100 equally spaced value of A t where
At = % To do this we notice the rays which contribute to the intensitymax
at time t + At satisfy (8.2). The signal from all of these contributing rays 
are added coherently and the resultant intensity of the signal is hence 
obtained by squaring the total amplitude.

The details of the computer program used to evaluate the 
intensity of the received wave as a function of time follow.

(a) Parameters Used 
A Angle of Incidence of Ray
AI Grazing Angle of Ray
ATTEN Reflection Coefficient at Bottom Reflection
B Phase Change at each Bottom Reflection
C Critical Angle of Incidence
Cl Critical Grazing Angle
D Source Depth
DELTA Increment in Path Length
E Total Phase Change of Ray due to Reflections
FREQ Frequency of Sound within the 'Burst'
H Depth of Water
I No. of Bottom Reflections
IX Duration of Pulse in DELTA'S
J No. of Surface Reflections
K 'Do' Variable used to Compute the Intensity at 100 Discrete

Times during the Shot Arrival
N Cumulative No. of Rays/Subscript for Ray Identification

P Wave Number (2w A )



Parameters Used (cont'd)

(o 7

PAG-

PI

R(N)

REL

RX)
RY)

S

SIG-NAL

ST

T

U

V

W

X(N)

Y(N)

Z

Imaginary part of the Received Amplitude 

3.1 A-159265

Path Length of Ray(N) from source to Receiver 

Real Part of the Received Amplitude

Upper and Lower Distance Limits for any One K

Bottom Reflection Parameter

Total Intensity Received for a Value of K

Bottom Reflection Parameter

Horizontal Distance (ft) from Source to Receiver

U = p/p = 1,5 = m2 1
V = - .89 = n

C2
Vertical Distance between Receiver and Image 

Real Part of Signal due to Raya (N)

Imaginary Part of Signal due to R^ (n)

Receiver Depth



RECEIVED INTENSITY VARIATION WITH TIME FLOW CHART



Formulae Used in the Program

G 9

(i) B = PI (.9x^-1)

(ii) ATTEN = SI - S x Û J-

(iii) E = IxB + JxPI

(iv) R = (T2 + W2)

(v) RX = R(1) +(K-1) x DELTA
RY = RX - IX x DELTA

(vi) DELTA = (R(N) - R(1)) /100



To

SUMMARY AND COMMENTS

Using the model of coherent ray theory:

The propagation loss curves obtained by the RAN can be simulated. 

The dependence of receiver response on receiver depth is 

predicted.

The variation in the received intensity from one transmission 

to the next, where the acoustic transmission paths are of 

equal lengths, are in the same geophysical area but are over 

different sea paths, can be explained.

The theory tells us that, owing to the large variation in the 

bottom depth, we cannot hope to predict the received intensity to a greater 

accuracy than "plus or minus several dB".

Further theoretical work is being done and experiments are 

envisaged to verify:

(i) the existence of the low-speed layer of ooze in shallow water 

areas. Experiments will shortly be carried out in harbour 

sediments using detonators as sources.

(ii) (assuming the low-speed layer does exist), that the low-speed

layer causes high bottom losses even at small grazing angles 

and acts as a high-pass filter allowing only the high 

frequencies to propagate in the sediment. This would then 

explain the phenomenon illustrated in the sonagrams of Fig.30 

that all sediment arrivals were high frequency arrivals 

centred about a frequency of 600Hz.

(i)
(ii)

(iii)
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-60 VARIABILITY OF INTENSITY AS A FUNCTION 
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