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Abstract 

This thesis presents a unified construction of rank one symmetric spaces of non

compact type. These spaces correspond to hyperbolic geometries of real, complex, 

quaternionic and octonionic types. We extend the approach of Cowling, Dooley, 

Koranyi and Ricci using algebras of Heisenberg type, Clifford algebras and Spin 

groups by emphasising the explicit geometry of these spaces. 

Our concrete approach allows us to give a new proof of a result due to Pansu on 

graded automorphisms of certain Lie algebras. We also prove a conjecture of Koranyi 

concerning metrics on the boundary of the symmetric spaces and demonstrate that 

the classical Cayley transform extends to a 1-quasiconformal map of the boundary. 
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Introduction 

The symmetric spaces of rank one of noncompact type are often grouped into four 

families, corresponding to hyperbolic geometries of real, complex, quaternionic and 

octonionic types. Certain results hold for all four families, yet due to the different 

properties of the underlying division algebra (in particular the nonassociativity of 

the octonions) the proofs of these results often require an examination of several 

cases. Not only does this require more effort, it can also obscure the underlying 

reasons for the truth of the results. An important example is Mostow's rigidity 

theorem, which holds for all four families but is proved (see [Ml) with considerably 

greater difficulty in the octonionic case. 

We therefore seek a more unified way of approaching the symmetric spaces in 

question. In [CDKR] and [CDKR2], the spaces are formulated in a new way using 

algebras of Heisenberg type. In this thesis we continue this formulation and present 

several results which utilise it. 

We begin with a review of elementary hyperbolic geometry. In Chapter 1 we 

construct several models of real and complex hyperbolic space in order to provide 

motivation for the method of construction of the general symmetric spaces. Much 

of this material is derived from the author's Honours thesis [B]. We use a differen

tial geometrical approach in order to highlight the similarities between the special 

cases of real and complex hyperbolic spaces and the general spaces considered in 

Chapter 3. 

In Chapter 2 we develop most of the algebra we shall need. In particular, we re

view some elementary properties of quaternions and octonions. The connection with 

Clifford algebras is highlighted particularly in the case of the triality automorphism 

of Spin(8) which itself is intrinsically linked with the octonions. The mathematics 

in this chapter is well-known, however the presentation is somewhat nontraditional 

and is based on material from [Ps], many of the details of which have been clarified 

and reworked for this thesis. In particular the triality automorphism is constructed 
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from its action on the roots of .so(8) and then used to define the octonions. This 

represents a reversal of the usual order of presentation of these topics, in which the 

octonions are used to define the triality automorphism. 

The definition and properties of algebras of Heisenberg type (H-type algebras) 

are presented in Section 1 of Chapter 3. These algebras are generalisations of the 

Lie algebras of the classical Heisenberg groups. After extending an H-type algebra 

by adjoining a one-dimensional subspace, we isolate two ( overlapping) regions of the 

resulting vector space and equip them with Riemannian metrics. The first region 

is the unit ball whereas the second is a Siegel-type domain. There is a map known 

as the Cayley transform which isometrically identifies the two resulting Riemannian 

manifolds. In [CDKR] and [CDKR2] it is proved that there is a bijection between 

the set of symmetric spaces of rank one of noncompact type and H-type algebras 

satisfying a condition known as the J2 condition. In fact both the unit ball model 

and the Siegel-type model are symmetric spaces if and only if the underlying H

type algebra satisfies the J2 condition. In this case the two models are effectively 

generalisations of the disc (Klein) model and the upper-half-space model of real 

hyperbolic space. In Section 3.3 we show explicitly how all four families of the 

symmetric spaces may be modelled by the unit ball or Siegel-type domains. We also 

exhibit a connection between various subgroups of the group of isometries of the 

symmetric spaces and Spin groups. Using our unified approach, we then give a new 

proof of Pansu's result ([Pu], Proposition 10.1) describing the automorphisms of the 

symmetric spaces belonging to the quaternionic and octonionic families. 

In the final chapter we extend the construction of the symmetric spaces by iden

tifying the geodesics and calculating the distance formulae. Although these are 

well-known, particularly in the real and complex cases, once again we are able to 

highlight the uniformity of the approach by describing distances in all of the rank 

one symmetric spaces of noncompact type using either of two equivalent formulae. 

Having considered the geometry of the symmetric spaces, we examine the bound

ary "at infinity". The properties of certain classes of functions on the symmetric 

spaces are governed by their behaviour of their extensions to the boundary. In 

particular, isometries of the symmetric spaces extend to 1-quasiconformal maps of 

the boundary. This fact is pivotal in the proof of Mostow's rigidity theorem. In 

Section 2 of Chapter 4 we define a function of two variables on the unit sphere of 

an extended H-type algebra, the sphere being considered as the boundary of the 

unit ball model. This function was conjectured by Koranyi to be a distance function 
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when the J2 condition holds in the underlying H-type algebra. We prove that this is 

indeed the case and furthermore that the condition is also necessary. We also show 

that the Cayley transform identifying the unit ball model and the Siegel-type model 

extends continuously to the boundary, where it is 1-quasiconformal with respect 

to Koranyi's metric on the sphere and a standard metric on the boundary of the 

Siegel-type domain. This implies that all properties concerning quasiconformality 

of the boundary may be examined in either model by using the Cayley transform 

to pass from one model to the other. 

3 



Chapter 1 

Hyperbolic Geometry 

The simplest of the four families of symmetric spaces of rank one of noncompact 

type consists of the spaces 0 0 (1, n)/ O(n) for n 2:'.: 1. In this chapter we present a 

geometrical treatment of these spaces, treating them as models of real hyperbolic 

geometry. We also investigate the next most simple family, consisting of the spaces 

U ( 1, n) / U ( n) for n 2:'.: 1, in a similar way. Many of the ideas presented in this 

chapter will be generalised in later chapters. Most of the material in this chapter 

has been adapted from [B]. 

1.1 Real Hyperbolic n-space 

In this section, we examine a model of hyperbolic geometry which we regard as be

ing the definition of real hyperbolic n-space. The underlying space is a hyperboloid 

of revolution, which is equipped with an appropriate Riemannian metric. We in

vestigate the properties of the group of isometries, the geodesics and the associated 

distance function on the resultant manifold. 

Definition The Lorentzian form ( · , ·) on Rn+l is given by 

(x, y) = -XoYo + X1Y1 + · · · + XnYn (1.1) 

for all x = (xo, ... , Xn), y = (Yo, . .. , Yn) E Rn+l. Define real hyperbolic n-space Hn 

by 

Hn = { x E R n+l : ( x, X) = -1 and Xo > 0} . 
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Geometrically, Hn is one of the two sheets of the hyperboloid 

xi - x~ - · · · - x~ = 1 

in R n+l. In order to make Hn into a Riemannian manifold, we shall use the following 

lemma. 

Lemma 1.1 Let x, y E Rn+l \ {0} such that (x, x) < 0 and (x, y) - 0. Then 

(y,y) > 0. 

Proof Since (x, x) < 0, we have 

hence x0 =J 0. The condition (x, y) = 0 may be expressed as 

n 

XoYo = L XiYi· 
i=l 

By the Cauchy-Schwartz inequality, 

~ 0, 

(1.2) 

hence (y, y) ~ 0. Furthermore, if (y, y) = 0, the above inequalities imply that 

:E~=l yf = 0, whence Y1 = · · · = Yn = 0. By (1.2), Yo = 0, contradicting the assump

tion that y =J 0, hence (y, y) > 0 as claimed. D 

The tangent space at the point x E Hn may be identified with the set of all 

vectors y E R n+l such that y is tangential to Hn when y is considered to be based 

at x. In particular, we must have y · V f(x) = 0, where f : Rn+l -----+ R is defined 

by f(x) = (x, x) for all x ER. This condition is trivially equivalent to (x, y) = 0, 

thus we identify the tangent space TxHn at x with 

{ y E R n+l : ( x, y) = 0} , 
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which is an n-dimensional subspace of Rn+l_ Furthermore, for each x E Hn, we 

define an inner product on TxHn by 

(y,y\ = (y,y) 

for all y E TxHn. Lemma 1.1 implies that the associated Riemannian metric is 

positive definite. 

Definition The Lorentz group of R n+l is given by 

0(1,n) ={PE GL(n+ 1,R): (Px,Py) = (x,y) for all x,y E Rn+l} 

= { P E GL( n + 1, R) : pt S P = S} 

where pt denotes the transpose of P, 

S = (-1 0 ) 
0 In 

and In denotes the n x n identity matrix. The positive Lorentz group of Rn+l is 

given by 

PO(l, n) = {PE 0(1, n): (::)o > 0 whenever (x, x) < 0}. 

In fact PO(l, n)IHn = I(Hn), the group of isometries of Hn. That is, if f: Hn--+ Hn 

is any isometry then f is the restriction to Hn of some PE PO(l, n), and conversely, 

if PE PO(l, n), then PIHn E I(Hn). Furthermore, the action of I(Hn) on Hn is 

transitive. To see this, let 

and 

sinht ) } 
0 : t ER . 

cosht 

Clearly Kand A are subgroups of PO(l, n) and K is the stabiliser of (1, 0, ... , 0). 
Given x, y E Hn, we may find k1, k2 EK such that 

k1(x) = (xo,0, ... ,0,x~) and k2(Y) = (Yo, 0, ... , 0, y~), 
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where x5 - ( x~)2 = y5 - (y~)2 = 1. There exists a E A such that 

a(xo, 0, ... , 0, x~) = (yo, 0, ... , 0, y~)-

(In particular, a= at where t satisfies xo cosh t+x~ sinh t = y0 .) Setting g = k21ak1, 

we see that g(x) = y as required. We thus have the Cartan decomposition of I(Hn), 

where it is understood that K and A act on Hn by restriction of domain. (Proofs 

of all unverified claims in the above paragraph may be found in [R] or [C].) 

We now find the geodesics and associated distance function on Hn. 

Lemma 1.2 Ifx = (x0 ,0, ... ,0,xn) E Hn, x0 =/:-1, andy = (1,0, ... ,0), then the 

geodesic through x and y is the intersection of the plane { ( a, 0, ... , 0, b) : a, b E R} 
of Rn+l with Hn. The geodesic may be parametrised as a unit speed curve by 

'"Y(t) = (cosh t, 0, ... , 0, sinh t) 

where t E R. Furthermore, the length of the geodesic arc a: joining x and y is given 

by 

la:I = cosh-1 xo. 

Proof The proof that the geodesic is the intersection with Hn of the given plane 

may be found in Section 1.2.1 (although the fact may seem evident from symmetry 

considerations alone). The given curve ')' is a unit speed curve, since 

( i'(t), i'(t)) = - sinh2 t + cosh2 t = 1. 

Furthermore '"Y(0) = y and '"Y(t0) = x, where to = sinh-1 Xn- It follows that if a: is 

the restriction of '"Y to [0, sinh-1 xn] (or [sinh-1 Xn, 0] as appropriate), then 

la:I = lsinh-1 xnl = cosh-1 x0 

since x5 - x~ = 1. D 

Theorem 1.3 Let x, y E Hn with x =/:- y. The geodesic through x and y is the 

intersection with Hn of the plane through x, y and the origin of Rn+l. The length 

of the geodesic arc a: joining x to y {that is, the associated Riemannian distance 

function) is given by 

d(x, y) = la:I = cosh-1 (-(x, y)). 

7 



Proof Let x, y E Hn. Using the Cartan decomposition of I(Hn), there exists 

g E AK such that g(y) = (1, 0, ... , 0). There exists a map k E K such that 

k(g(x)) = (x~, 0, ... , 0, x~), where (x~) 2 - (x~)2 = 1. Since K stabilises the point 

(1, 0, ... , 0), we see that h(y) = (1, 0, ... , 0) and h(x) = (x~, 0, ... , 0, x~), where 

h = k o g E I(Hn). By Lemma 1.2, the geodesic through h(y) and h(x) is the 

intersection with Hn of the plane through h(y), h(x) and the origin of Rn+l_ Now 

h-1 E I(Hn) preserves planes through the origin and also preserves geodesics, thus 

the geodesic through x and y is the intersection with Hn of the plane through x, y 

and the origin, as claimed. Furthermore, Lemma 1.2 implies that 

d (h(x), h(y)) = cosh-1 (h(x)) 0 = cosh-1 (-(h(x), h(y))); 

since h is an isometry, we have 

d(x, y) = d(h(x), h(y)) = cosh-1 (-(h(x), h(y))) = cosh-1 (-(x, y)) 

as required. D 

1.2 Models of Real Hyperbolic Space 

The space Hn endowed with the hyperbolic metric is technically only a model of 

real hyperbolic n-space, which is more correctly defined as the simply connected, 

connected n-dimensional real Riemannian manifold of constant curvature -1, unique 

up to isomorphism. In this section we examine three other models of real hyperbolic 

n-space. 

1.2.1 The Projective Disc Model 

The projective disc model, otherwise known as the Klein model, takes Bn, the unit 

ball of Rn, to be the underlying space for n-dimensional real hyperbolic geometry. 

The geodesics are Euclidean line segments, although the Riemannian metric differs 

markedly from the Euclidean metric except at the origin. 

Definition The gnomonic projection µ : Hn ---+ Bn is defined by 

µ(xo, X1,.,, , Xn) = (XI, ... , Xn) 
xo xo 

8 



for all x = (x0 , .•• , Xn) E Hn. Note thatµ is well-defined, since x5-xf-· · ·-x~ = 1 

implies that xf + · · · + x~ < x5. It is also a bijection (since x0 > 0), with inverse 

given by 

µ-1(Y1, ... 'Yn) = 1 (1, Y1, ... 'Yn) = 1 (1, Y1, ... 'Yn) 
v1 - y~ - ... - y~ v1 - 1y12 

for all y = (y1, ... , Yn) E Bn. Geometrically, µ( x) is the intersection of the line join

ing the origin of Rn+l to x with the hyperplane {(1, Y1, ... , Yn) : Y1, ... , Yn E R}. 
The unit ball Bn may be thought of as being embedded in Rn+l by identifying 

y E Bn with (1,y) E Rn+l_ 

We use µ- 1 to transfer the Riemannian metric of Hn to Bn by requiring thatµ 

be an isometry. A routine calculation shows that the Jacobian of µ- 1 at the point 

X = (x1, ... , Xn) E Bn is given by 

1 
J = ,X3 

where A= -Jl - xf - · · · - x~ = -Jl - lxl2. If y E TxBn, one calculates that 

x-y 1 
Jy = ~(1, x) + ~(O, y) 

and that 

(x. y)2 IYl2 
(Jy, Jy) = _\4 + ,x2 . 

If we transfer the metric using the obvious formula 

(y,y\ = (v(y),v(y))v(x)' 

where v = µ- 1, then we have 

( ) - (1 - lxl2)IYl2 + (x. y)2 
Y, y x - (1 - lxl2)2 

Alternatively, if we express y = Yroo + Ytan, where Yroo II x and Ytan ..l x, then 

( ) 1Yrool2 1Ytanl2 
Y,Y x = (1- JxJ2)2 + 1- 1x12· 
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We call this metric the Klein metric on Bn. In order to find the geodesics of 

Bn endowed with this metric, we first complete the proof of Lemma 1.2 using the 

following lemma. 

Lemma 1.4 If x = (0, ... , 0, Xn) E Bn, with Xn =/:- 0, then the (Kleinian} geodesic 
joining y = (0, 0, ... , 0) and x is contained in the line segment 

{(0, ... ,0,a): a E [-1, 1]}. 

Proof Let f3 : [a, b] -+ Bn be any differentiable curve such that f3(a) = y and 

f3(b) = x. Write f](t) = f31(t)+f32(t), where /31(t) = (0, ... ,0, l/3(t)I) for all t E [a,b]. 

A simple calculation shows that lf3(t)1 = l/31(t)I and f](t) · /3(t) = f31(t) · /31(t) for all 

t E [a, b]; furthermore since 

. ( f3(t) . /3(t)) 
/31 (t) = o, ... , o, lf3(t) I , 

we have 

for all t E [a, b] (by the Cauchy-Schwartz inequality). It follows that 

l/31 = lb (/3(t), /3(t)) ~:)dt 

= lb ((1- l/3(t)l)l/3(t)l2 + (f3(t) · /3(t)) 2) 112 dt 
la (l - l/3(t)l2)2 

> lb ((1 -l/31(t)l)l/31(t)l2 + (f31(t) '/31(t))2) 112 dt 
- la (1- l/31(t)l2)2 

t · · 1/2 = la (/31(t),/31(t))(31 (t)dt 

= l/311-

Since /31 is also a curve such that /31(a) = y and f31(b) = x, the result follows. 0 

The proof of Lemma 1.2 is now completed by noting that v maps the points x 

and y defined in the proof of Lemma 1.4 above to two points of the required form, 

v preserves geodesics and that v maps the line segment {(0, ... , 0, a) : a E (-1, 1)} 
onto the intersection with Hn of the plane {(a, 0, ... , 0, b) : a, b ER} of Rn+l. 
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We now use µ to transfer geodesics and the distance function to Bn. 

Theorem 1.5 The geodesics of Bn with the Klein metric are the intersections of 

Euclidean straight lines with Bn. The associated distance function is given by 

( 1-x·y ) 
d(x, y) = cosh-1 y'l - lxl2 y'l - IYl2 . 

Proof By Theorem 1.3, the geodesics of Hn are the intersections with Hn of 

planes through the origin of Rn+l. The gnomonic projection µ maps points on a 

plane through the origin of R n+l onto the same plane, hence the geodesics of Bn, 

embedded in {1} x Rn as discussed above, are indeed Euclidean line segments. Now 

let x, y E nn. Since v is an isometry, we have 

d(x, y) = d(v(x), v(y)) 

= cosh-1 (- (v(x), v(y))) 

h_1 ( / (1, x) (1, y) )) 
= cos - \ y'l - lxl2' y'l - lyl2 

~ cosh-l ( )1-~xl2 J~ -IYI') 
as claimed. D 

1.2.2 The Conformal Ball Model 

The next model that we examine is the conformal ball model, sometimes known as 

the Poincare model. This model also uses Bn as its underlying space, but the new 

Riemannian metric differs from the Klein metric. The angle between two tangent 

vectors arising from the new Riemannian metric agrees with the Euclidean angle 

between these vectors, however the geodesics are no longer straight line segments 

but are in fact arcs of circles which intersect the boundary sn-l at right angles. 

Definition The {hyperbolic} stereographic projection (: Hn -+ Bn is defined by 

((xo,X1, ... ,xn) = ( Xi , ... , Xn ) 
1 + xo 1 + xo 

for all x = ( x0 , . . . , Xn) E Hn. Note that ( is well defined, since x5 - x~ - · · · - x~ = 1 

implies that x~ + · · · + x~ = x5 - 1 < (1 + x0 )2. It is also a bijection (since x0 > 0), 
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with inverse given by 

-1 (1 + IYl 2 2y1 2yn ) 
( (Yl,···,Yn)= l-lYl2'l-lyl2'···,1-lyl2 

for all y = (y1 , ... , Yn) E Bn. Geometrically, ((x) is the intersection of the line 

joining -e0 to x with the n-dimensional subspace orthogonal to e0 . The unit ball 

Bn may be thought of as being embedded in R n+l by identifying y E Bn with the 

point (O,y) E Rn+l_ 

As in the analysis of the Klein model, we use (-1 to transfer the Riemannian 

metric of Hn to Bn by requiring that ( be an isometry. A simple calculation shows 

that the Jacobian of (-1 at the point x = (x1, ... , Xn) E Bn is given by 

4x1 4x2 4xn 

2.X2 + 4xr 4X1X2 4X1Xn 
1 

4X2X1 2.X2 + 4x~ 4X2Xn J = ,X4 

4XnX1 4XnX2 2.X2 + 4x2 n 

where .X = -/1 - xr - · · · - x~ = -jl - lxl2 as before. Then if y E TxBn, we see 

that 

and that 

4(x·y) 2 
Jy = .X4 (1, x) + .X2 (0, y) 

4lyl2 
(Jy,Jy) = ~-

If we transfer the metric using the obvious formula 

(y,y\ = (e(y),e(y)\(x)' 

where ~ = (-1, then we obtain 

We call this metric the Poincare metric on Bn. 

Recall that a Mobius transformation of Rn is a map which is expressible as a 

composition of reflections in spheres and hyperplanes. 
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Theorem 1.6 The isometries of Bn with the Poincare metric are precisely the re

strictions to Bn of Mobius transformations which preserve Bn. 

Proof It is not difficult to check that every Mobius transformation of Bn (that is, 

a Mobius transformation which preserves Bn) restricts to an isometry of Bn with the 

Poincare metric (see pp. 128-129 of [R] for the calculation). To prove the converse, 

we use ( and ~ to transfer isometries of Hn to isometries of Bn. For each b E ( -1, 1) 

with b =/ 0, define the map Tb: Bn -t Bn by 

for ally = (Y1, ... , Yn) E Bn. In fact Tb is the restriction to Bn of PWb, where Pb 

is the reflection in the (n - 1)-dimensional subspace orthogonal to en, and ab is the 

reflection in the sphere with centre -b-1en and radius jbj-1J1 - b2 . Since Pb and ab 

are both Mobius transformations of Bn, Tb is also a Mobius transformation of Bn. 

A simple calculation shows that 

where 

( cosht 0 
smht) 

a(t) = 0 In 0 EA 

sinht 0 cosht 

and 

b = sinht 
1 + cosht 

(Here we refer to the Cartan decomposition I(Hn) = KAK.) Now if 7/; is any 

rotation of Bn, then 7/; is the restriction to Bn of an orthogonal transformation 

R E O(n). Such a transformation is evidently a Mobius transformation of Bn (by 

composing at most ( n + 1) reflections in hyperplanes; see p. 106 of [R]). Furthermore 

where 
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Since I ( Hn) = K AK and we have demonstrated that A and K act on Bn as the 

restriction to nn of Mobius transformations of nn ( using (), we conclude that every 

isometry of Bn with the Poincare metric is indeed the restriction to Bn of a Mobius 

transformation of nn. D 

It is evident that ( maps geodesics through (1, 0, ... , 0) E Hn to diameters of 

Bn. These diameters are arcs of (degenerate) circles which intersect sn-l at right 

angles. It is well known that the images of lines under Mobius transformations are 

circles or lines. It follows by conformality that any Mobius transformation of nn 

maps the diameters of nn into arcs of circles orthogonal to sn- l. 

Theorem 1. 7 The geodesics of nn with the Poincare metric are arcs of circles 

intersecting sn-l at right angles. The associated distance function is given by 

-1 ( 2lx - Yl2 ) 
d(x, y) = cosh 1 + (1 - lxl2)(1 - IYl2) 

for all X, y E Bn. 

Proof The geodesics have already been identified. To find the distance formula, 

we use the fact that e is an isometry, obtaining 

d(x, y) = d(e(x), e(y)) 

= cosh-1 (-(e(x),e(y))) 

-1 ((1 + lxl2)(l + IYl2) ~ 4XkYk ) 

= cosh (1 - lxl2)(1 - IYl2) - {=: (1 - lxl2)(l - IYl2) 

_ h-1 ((1 - lxl2)(l - IYl2) + 2(lxl2 + IYl2) - 4(x · y)) 
- cos (1 - lxl2)(1 - IYl2) 

-1 ( 2lx - Yl2 ) 
= cosh 1 + (1 - lxl2)(1 - IYl2) 

for all x, y E Bn, as claimed. 

Let y, z E TxBn. By polarisation, we see that 

4(y · z) 
(y, z\ = (1 - lxl2)2' 

thus we have 
4(y · z) 

(y, z)x (1 - lxl2)2 y. z 
-(y-, y-)-:1-2 (-z,-z-) :-12 - -----:-2IY__,..l-.......,21___,,.zl- - IYI lzl · 

1 - lxl2 1 - lxl2 
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If we interpret the left hand side as the hyperbolic (Poincare) angle between y and 

z, then this equation shows that the Poincare angle agrees with the Euclidean angle, 

regardless of the choice of x E Bn. This justifies the name "conformal ball model". 

1.2.3 The Upper Half-Space Model 

The final model that we examine is the upper half-space model. The upper half

space un = { (x0 , . .. , Xn-i) E Rn : x0 > O} is the base space for this model, which 

is essentially the Poincare model transferred to un using a Mobius transformation. 

This model has the advantage that the metric has a particularly simple form. 

Let rJ: Bn ~ un denote the Mobius transformation from Bn to undefined by 

X = (xo, X1, ... , Xn-1) t-t l 2 (1 - lxl 2 , 2X1, ... , 2Xn-1). 
1- 2xo + lxl 

Treating rJ as an isometry, we may transfer the Poincare metric from Bn to un by 

defining 

Theorem 1.8 The Poincare metric on un is given by 

IYl2 
(y,y\ = -2 

Xo 

for all X = (xo, ... , Xn-1) E un and ally E Txun. The associated distance formula 

is given by 

d(x, y) = cosh-1 (1 + Ix - Yl 2
) 

2xoyo 

for all x = (xo, ... , Xn-1), y = (Yo, ... , Yn-1) E un. The geodesics are circular arcs 

and rays intersecting the boundary Rn-I= {(O,xi, ... ,Xn-1): X1, ... ,Xn-1 ER} 

orthogonally. 

The calculations involved in the proof of this theorem are straightforward and 

may be found on pp. 136-139 of [R]. Note that this metric is also conformal. 
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1.3 Complex Hyperbolic Geometry 

The construction of complex hyperbolic geometry proceeds along similar lines to the 

real case, however there are intrinsic differences which arise from the properties of 

complex numbers. Complex hyperbolic n-space is not isomorphic to real hyperbolic 

2n-space for n > l, for in the definition of the Lorentzian form ( 1.1), one particular 

direction is distinguished from the others by virtue of the minus sign in the expres

sion. On the other hand, in the complex Lorentzian form given below (1.3), one 

complex direction is distinguished. This direction corresponds to two real directions. 

The most obvious indication that the projective disc models of complex hyperbolic 

n-space and real hyperbolic 2n-space are different is that the geodesics in the latter 

space are straight lines whereas the geodesics in the former space are arcs of circles. 

The material in this section, particularly the proof of Lemma 1.9, is based on [E). 

Definition The Lorentzian form ( · , ·) on cn+i is given by 

(z, w) = -ZoWo + Z1W1 + · · · + ZnWn (1.3) 

for all z = (z0 , •.. , Zn), w = ( w0 , ... , wn) E cn+i. Define complex hyperbolic space 

Hn(C) by 

Hn(C) = {[z) E pn+l(C) : (z, z) < O}. 

Here pn+l(C) denotes projective complex (n + 1)-space. The class of z, denoted 

by [z], is the equivalence class containing z under the equivalence relation"', where 

z ,.._, w if and only if there exists A E C* = C \ {O} with z = AW. Note that 

Hn(C) is well-defined, for if z E cn+i such that (z, z) < 0 and A E C*, then 

(Az, Az) = IAl2(z, z) < 0. 

The following result is the analogue of the Cauchy-Schwartz inequality for com

plex vector spaces. 

Lemma 1.9 Let z, w E cn+l such that (z, z) ::; 0 and (w, w) ::; 0. Then 

(z,z)(w,w)::; (z,w)(w,z). 

Proof If (w,w) = 0, the result is trivial, so assume (w,w) < 0. We claim that 

the set 

S = {A EC: (z + Aw, z + Aw) 2: 0} 
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is compact. It is certainly closed, and if A E S, then 

2 IA( w, z) I ~ 2Re (A(w, z)) ~ -(z, z) - IAl 2 ( w, w), 

so 

-IAl2 (w,w)-2IAI l(w,z)I- (z,z)::; 0 

which ensures that IAI is bounded above. Furthermore, Sis nonempty, for we must 

have w0 =/- 0 (or else (w,w) ~ 0), so if A= -zo/wo, then 

n n 

(z + Aw, z +Aw)= -lzo + Awol 2 + L lzi +Awl= L lzi +Awl~ 0, 
i=l i=l 

that is, A E S. The function f : A i---+ (z + Aw, z + Aw) is continuous on S, thus 

it attains its maximum at some Ao E C. Considering f as a function of two real 

variables, we have 

J(x, y) = (x2 + y2)(w, w) + 2(ax - f3y) + (z, z) 

where (w, z) = a+ i/3 for some a and /3 in R. Setting Ao = Xo + iyo, we have 

~(xo, Yo) = U(xo, Yo) = 0, so 

Solving for xo, Yo, 

That is, 

thus we have 

2x0(w, w) + 2a = 0 

2yo(w, w) - 2/3 = 0. 

Re(w,z) 
Xo = __ (_w_, w-)-

Im( w, z) 
Yo=---

(w,w) 

Ao= - (z,w) 
(w, w)' 

/ (z,w) (z,w) ) 
\z- (w,w)w,z- (w,w)w ~O. 

Multiplying through by -(w, w), expanding and rearranging gives the result. D 
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Let z E cn+i with (z, z) < 0. The tangent space to [z] E Hn(C) may be 

identified with z1- = { w E cn+1 : ( z, w) = 0}. Here z1- is itself identified with 

(,Xz)1- by multiplication by .X E C*. That is, if w is a tangent vector at z, then 

.Xw is the equivalent tangent vector at the equivalent point .Xz, .X E C*. Then if 

z, w E Cn+l, we may define 

( ) (z,z)(w,w)- (z,w)(w,z) 
w,w z = ( )2 - z,z 

to be the inner product of w with itself at the point z. Lemma 1.9 implies that this 

inner product is positive definite on the tangent space at each point of Hn(C). 

We now define the complex analogue of the Lorentz group by 

where 

U(l,n) = {A E GL(n+ 1,C): (Az,Aw) = (z,w) for all z,w E cn+1} 

= { A E GL( n + 1, C) : A* SA = S} 

S = (-1 0 ) . 
0 In 

Define an equivalence relation on U(l, n) by A1 ,...., A2 if and only if there exists 

.X E C, I.XI = 1 such that A1 = .XA2 . Let PU(l, n) denote the corresponding factor 

group U(l, n)/ rv. Then the group I(Hn(C)) of isometries of complex hyperbolic 

n-space is given by 

I(Hn(C)) = PU(l, n) U a PU(l, n), 

where A E PU(l, n) acts on [z] E Hn(C) by A([z]) = [Az] and a is component

wise complex conjugation a([z]) = [z]. As in the real case, we have the Cartan 

decomposition U(l, n) = KAK, where (up to equivalence) 

and 

A= {a(t) = ( co~ht In~l 

cosh t 0 

sinht) } 
0 : t ER . 

sinht 
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This implies that U(l, n) acts transitively on Hn(e). The proof is identical to the 

proof of the real case given in Section 1.1. 

Given [z] E Hn(e), we note that z0 =/:- 0, or else we would have (z, z) 2::: 0. If 

we set ,\ = z01 E e*, then (..\z)o = 1. That is, we can always choose a (unique) 

representative of [z] such that z0 = 1. The condition that (z, z) < 0 implies that 

lz11 2 + · · · + lznl 2 < 1, that is, (z1, z2, ... , Zn) E Bn(e), the unit ball in en. If 

w E TzBn(e), we may regard z as the point (1, Z1, ... 'Zn) E en+l and w as the 

point (0, W1, ... , Wn) E en+l; we have 

(w w) = (-1 + lzl2)lwl2 - l(z,w)l2 
' z -(-l+lzl2)2 

where lvl 2 = lv11 2 + · · · + lvnl 2 and (u, v) = U1V1 + · · · + UnVn for any U, V E en. 
In particular, the formula for the element of arc length is given by setting w = dz, 

obtaining 

ds2 = (1- lzl2)ldzl2 + ~(z, dz)l2 

(1 - lzl 2) 

The space Bn(e) with this metric is referred to as the (complex) projective disc 

model. It is the complex analogue of the Klein model of real hyperbolic geometry. 

In order to find the geodesics of Hn(e), we first establish a connection between 

real and complex hyperbolic geometry. 

Lemma 1.10 Suppose n 2:'. 2. Let [z] E Hn(e) and [w] E pn+l(e) \ {0}. Then the 

intersection of Hn(e) with the projective complex line L = {[..\z + µw] : ..\, µ E e} 
may be identified with H 2 • In particular, the (non-empty) intersection of Bn(e) 

with any complex line is isomorphic to B2 with one-quarter of the (real} Poincare 

metric. 

Proof Since z0 is nonzero, we may choose z such that z0 = 1. We may replace w 

with w -w0z without affecting L; then w0 = 0. Passing to the projective disc model, 

we now relabel z = (1, z) and w = (0, w) with z E Bn(e) and w E en\{0}. We may 

replace wand z with (w, w)-112w and z - (w, w)-1(z, w)w respectively and thereby 

insist without loss of generality that lwl = 1 and (z, w) = 0. Since the metric on 

Bn ( e) is invariant under unitary transformations, we may choose an orthonormal 

basis such that z = (0, t, 0, ... , 0) and w = (1, 0, ... , 0), where 0 ::; t < 1, so that 
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L is represented by the complex line {(.X, t, 0, ... , 0) : .X E C}. Let p E L with 

p = (.X, t, 0, ... , 0}, .X E C, and let v E Tp(L n Bn(C); then v = (µ, 0, ... , 0) for 

some µ E C. We have 

Define f : C ~ R 2 and F : L ~ R 2 by 

f(.X) = (Re(.X), Im(.X)) and F(.X, t, 0, ... , 0) = f (.X) 

for all A E c. If X E R2, set p = p-1(x) and V = u-1(dx), 0, ... '0) to obtain 

2 r2ldxl2 
ds = 2 

(r2 - lxl2) 
(1.4) 

where r = v'f'=t2. We have shown that LnBn(C) is isometrically isomorphic (using 

F) to B(0, r) C R2 with the above metric (1.4). The transformation g: x 1-+ x/r of 

R2 maps B(0, r) isomorphically onto B(0, 1) and transforms (1.4) into 

ds2 = ldxl2 2 
(1 - lxl2) 

which is one-quarter of the Poincare metric on B(0, 1) C R2. 

Lemma 1.10 allows us to describe the geodesics in complex hyperbolic space. 

D 

Theorem 1.11 If z, w E Bn(C), z =/ w, then there is a unique geodesic containing 

z and w. It lies in the unique complex line L containing z and w. Furthermore, if z, 

w, Bn(C) and Lare identified with z E R2n, w E R 2n, B 2n and a real plane 1r c R 2n 

respectively under the natural identification of en with R 2n, then the geodesic joining 

z and w is identified with the unique circular arc in B 2n through z and w which lies 

in the 2-disc 1r n B 2n and intersects the boundary of this disc at right-angles. 

Proof We have seen that U(l, n) acts transitively on Bn(C) and maps geodesics 

to geodesics. We may therefore choose A E U(l, n) such that A(z) = 0. By an 

argument similar to the one used in the proof of Lemma 1 .4, the intersection of 

the real line { tA( w) : t E R} with Bn ( C) is the unique geodesic containing 0 and 

A(w). This geodesic evidently lies in the complex line {.XA(w) : .X E C}. Now 

A-1 maps the corresponding projective line {[.XA(l, w)] : .X E C} into the complex 
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projective line L' through [(1, z)] and [(1, w)]. If representatives v of points [v] on L' 

are chosen to have v0 = 1, then L' may be represented in Bn(C) as the complex line 

L containing z and w. This proves the first assertion. By Lemma 1.10, L n Bn(C) 

is isometrically isomorphic to a dilation of B 2 with metric equal to one-quarter of 

the Poincare metric. As seen in Section 1.2.2, the geodesics in this model are arcs 

of circles which intersect the boundary of B 2 at right-angles; this remains the case 

even if the metric is multiplied by 1/4 (although the lengths of geodesic arcs are 

different). D 

We conclude this chapter by deriving the distance function on Hn(C). 

Theorem 1.12 Let [z], [w] E Hn(C). Then 

d([z], [w]) = cosh-1 
(z,w) (w,z) 
(z,z) (w,w)· 

Equivalently, if z, w E Bn(C), then 

d(z w) = cosh-1 ll - (z, w)I . 
' (1 - lzl2)1/2(l - lwl2)1/2 

Proof As noted previously, U(l, n) acts transitively on Hn(C) and preserves dis

tances. Choose A E U(l, n) such that A([z]) = [(1, 0, ... , 0)] and let [v] = A([w]). 
Then by Theorem 1.11, if v is the representative of [v] such that v0 = 1, then the 

geodesic arc from [(1, 0, ... , 0)] to [v] is given by 

L = {[(1, tv1, ... , tvn)] : t E [O, 1]}. 

This is represented in Bn(C) by the curve "Y : [0, 1] ---+ Bn(C) given by 

"Y(t) = (tv1, ... , tvn)-

The length of this curve is given by 

l"YI = 1l ('y(t), -y(t)) ~:)dt = 1I ( V, V) ~:v:, ... ,tvn)dt 

= /01 (1 - t21vl2)1vl2 + l(tv, v)l2 dt = 11 lvl dt 
Jo (1 - t2lvl2)2 o 1 - t21vl2 

=~log G: :~:) = cosh-' ( J1 ~ lvl') 
1 ( (1, 0, ... , 0), v) (v, (1, 0, ... , 0)) 

= cosh-
((1,0, ... ,0),(1,0, ... ,0))(v,v)' 
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(Here we have abused notation slightly: the last line refers to v = (1, v1, ... , vn) 

as an element of cn+i whereas the other lines treat v = ( v1 , ... , vn) as being in 

nn(c).) It follows that 

d([z], [w]) = d([Az], [Aw]) 

= cosh-1 

= cosh-1 

(Az, Aw) (Aw, Az) 
(Az,Az) (Aw,Aw) 

(z,w)(w,z) 
(z,z) (w,w) 

as required. Note that this formula is well-defined, that is, it is independent of the 

representatives of [z] and [w]. The equivalent expression for z, w E Bn(C) follows 

easily from the above formula. D 
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Chapter 2 

Clifford Algebras, Spin Groups 

and Octonions 

Our construction of symmetric spaces of rank one of noncompact type utilises Clif

ford algebras and the associated so-called Spin groups. In this chapter we describe 

these objects and explore the relationship between certain Clifford algebras and the 

division algebras of quaternions and octonions. The emphasis is on the aspects of 

Clifford theory which relate to the construction of symmetric spaces. For a more 

general approach, see Porteous [Ps], from which much of the material in this chapter 

is derived. 

2.1 Quaternions 

The algebra Hof quaternions is the space R4 with product defined by 

i2 = j2 = k2 = -1 

and 

ij = k = -ji, jk = i = -kj, ki = j = -ik, 

where {1, i, j, k} is the standard (orthonormal) basis for R4 . This product is asso

ciative and respects the norm I· I : H---+ R given by 

la+ bi+ cj + dkl = va2 + b2 + c2 + d2 

for all a, b, c, d E R, that is, lxyl = lxl IYI for all x, y E H. This implies that H is a 

division algebra, with 

-1 I 1-2-x = X X, 
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where x = a - bi - cj - dk for all x = a + bi + cj + dk E H. It also implies that the 

3-sphere 

S3 = { x E H : lxl = 1} 

is a group under quaternionic multiplication. For x = a + bi + cj + dk E H, define 

Re(x) = a and Im(x) =bi+ cj + dk, so that 

R ( ) x+x e X =-2-, 
x-x 

Im(x) = - 2-. 

We call Re(x) and Im(x) the real and imaginary parts of x respectively. The set of 

imaginary quaternions Im(H) = {h EH: h = Im(h)} is clearly isomorphic to R3 . 

(Note that we treat O as both real and imaginary.) When there is no ambiguity, the 

space R 3 will denote the imaginary quaternions. It is easy to see that 

R3 = {h EH: h2 ~ O}. 

The map x 1-t x is referred to as conjugation and satisfies 

for all x, y E H. We also have 

x · y = Re(xy), w x z = Im(wz) 

for all x, y EH, w, z E R3 , where the dot product is taken in R4 and the cross prod

uct is taken in R 3 . In particular, two imaginary quaternions w and z anticommute 

if and only if they are orthogonal. 

Lemma 2.1 For q E H* = H\ {O}, x E R3, the quaternion qxq-1 is imaginary; 

furthermore if q E R 3 \ { 0}, the map 

is the reflection in {Rq}.1 ~ R3, the plane through O with normal q. 

Proof Since x 2 is real and nonpositive, 

hence pqx E R 3 . Furthermore pqq = -q, whereas if r E R 3 is orthogonal to q we 

have 

-1 -1 pqr = -qrq = rqq = r 

since r and q anti-commute. The result follows by the linearity of Pq· D 
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Corollary A map g E S0(3) if and only if it is of the form -pq for some q EH*. 

Proof This follows from the fact that any element of S0(3) is generated by two 

reflections in planes through the origin and pqpr = -pqr for all q, r E R3\{0}. D 

Definition If A is an algebra then a map u : A ---+ A is an automorphism ( anti

automorphism) if it is linear and u(ab) = u(a)u(b) (respectively u(ab) = u(b)u(a)) 

for all a, b E A. A map u : A ---+ A is an involution (anti-involution) if it is an 

automorphism (respectively anti-automorphism) satisfying u2 = I. 

Lemma 2.2 A map u : H ---+ H is an automorphism ( anti-automorphism) if and 

only if there exists R E SO ( 3) ( respectively R E O ( 3) \SO ( 3)) such that 

u(x) = Re(x) + R(Im(x)) 

for all x EH. 

Proof If u(x) = Re(x) + R(Im(x)) for R E S0(3), then we may write R = -pq 

for some q EH*, so 

u(x) = qxq-1 

which is an automorphism of H. Alternatively if u(x) - Re(x) + R(Im(x)) for 

RE 0(3)\S0(3), then-RE S0(3), and we have 

u(x) = Re(x) - R(Im(x)) = qxq-1 

for some q E H*, implying that u is an anti-automorphism. 

Conversely, suppose that u is an automorphism or anti-automorphism of H. 

Since u(a) = u(l)u(a) for all a EH, we must have u(l) = 1. Furthermore, if x E R3 

then u(x) 2 = u(x2) = x2 ~ 0, so u(x) E R3 and lu(x)I = lxl. It follows that u is of 

the required form with R E O ( 3) equal to the restriction of u to R 3 . By the above 

remarks, u is an automorphism if RE S0(3) and an anti-automorphism otherwise. 

D 

Corollary A map u : H ---+ H is an involution if and only if it is the identity or 

it corresponds to the rotation of R 3 through 1r about some line through the origin. 

The map u is an anti-involution if and only if it is the composition of an involution 

with conjugation, that is, if and only if it corresponds to the reflection of R3 in the 

origin or the reflection of R 3 in some plane through the origin. 
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We call the involution-:--: H---+ H; x 1--+ x = jxj- 1 = -jxj the main involution 

and its associated anti-involution:- : H ---+ H; x 1--+ x = ~ = £ the reversion anti

involution. 

2.2 Tensor Products of Algebras 

For K = R, C, H, let K( n) denote the real algebra of n x n matrices with entries 

in K, and let 2K( n) denote the space (K( n)) E9 (K( n)) endowed _with the product 

(a, b) · (c, d) = (ac, bd) 

for all a, b, c, d E K(n). Then 2K(n) may be regarded as a subalgebra of K(2n) by 

(a, b) >-+ ( ~ ~ ) E K(2n). 

Definition Suppose that A is a finite-dimensional real associative algebra with 

unit element 1, and that B, Care subalgebras satisfying the following conditions: 

1. for any b E B, c E C, we have cb = be; 

2. A is generated as an algebra by Band C; and 

3. dim A= dimBdimC. 

Then we say that A is the (real) tensor product B@ C of Band C. For any finite

dimensional real associative algebras B, C, there exists an algebra A containing 

subalgebras B', C' isomorphic to B, C respectively such that A = B' ® C'; fur

thermore A is unique up to isomorphism. We may therefore define B ® C up to 

isomorphism for any such B, C. 

Lemma 2.3 If we regard C and H as real algebras, then we have C ® H,....., C(2) 
andH®H,.....,R(4). 

Proof We may identify C2 with H as a right complex vector space using the 

isomorphism (z, w) 1--+ z + jw, where C is identified with span{l, i} CH as before. 

For any z E C, q E H, the maps 

ZR : H ---+ H; X 1--+ xz and QL : H---+ H; x 1--+ qx 
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are right complex linear; the maps 

C - C(2); z r--+ ZR and H - C(2); qr--+ QL 

are algebra monomorphisms. Denoting the images of these monomorphisms by 

B = CR and C = HL respectively, it is not difficult to show that C(2) = B @C. 

For any q E H, define 

QR : H - H; x r--+ xq 

and QL as above. These maps may be considered as (real) linear maps on R4 . The 

maps 

and H - R(4); r r--+ TR 

are algebra monomorphisms. Denoting the images of these monomorphisms by 

B = HL and C = HR respectively, it is once again easy to show that R(4) = B@C. 

D 

2.3 Clifford Algebras and Spin Groups 

2.3.1 Universal Clifford Algebras 

Given a finite-dimensional real vector space Q with nondegenerate bilinear form q, 

we define the ( universal} Clifford algebra C ( Q, q) to be the real associative algebra 

of largest dimension generated by Q and { 1} satisfying 

x2 = -q(x, x)l (2.1) 

for all x E Q, in such a way that Q and R are embedded isomorphically in C ( Q, q) 
as linear subspaces. In particular, we abbreviate C (Rn,(·,·)) to C(n), where(·,·) 

is the standard inner product on Rn. By polarisation of (2.1), we see that if x, y E Q 

with q(x, y) = 0, then 

xy = -yx. 

In particular, if the standard basis of Rn is { e1, ... , en} then in C(n) we have the 

relations 

2_ 1 
ei - - ' 
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for 1 ~ i,j ~ n, i # j. It follows that the dimension of C(n) is 2n; a basis is given 

by 

{e· e· · · · e· : 0 < k < n l < i1 < i2 < · · · < ik < n}. i1 i2 ik - - l - -

We define on C(Q, q) the algebra involution ':'by 

,,.._ 
x=-x 

for all x E Q ( and extended by ~ = ab). In particular, in C ( n), 

(e . e· · · · e· ),,.._ = (-l)k(e· e· · · · e· ) i1 i2 ik i1 i2 ik 

for all O ~ k ~ n, l ~ i 1 < i 2 < · · · < ik ~ n. We define the even Clifford algebra 

C0 (Q, q) by 

C 0 (Q, q) = {a E C(Q, q): a= a}; 

this is clearly a subalgebra of C(Q,q). A basis for C 0 (n) is 

If 

C 1(Q, q) = {a E C(Q, q): a= -a}, 

then every element a E C(Q, q) is uniquely expressible as 

with a0 E C 0 (Q, q) and a1 E C 1(Q, q). The elements a0 and a1 are called the even 

and odd parts of a respectively. We also define on C( Q, q) the algebra anti-involution 

-:-by 

x=-x 

for all x E Q ( and extended by ab = b a). In particular, in C ( n), 

e· e· · · · e· = (-l)k(e· · · · e· e· ) = (-l)k(k+l)/2(e· e· ... e· ) i1 i2 ik ik i2 i1 i1 i2 ik 

for all O ~ k ~ n, l ~ i1 < i2 < · · · < ik < n. This anti-involution is called 

conjugation. 
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2.3.2 The Clifford Group 

For any invertible g E C(Q, q), define the map p9 : Q -t C(Q, q) by 

for all x E Q, and let 

r(Q,q) = {g E C(Q,q): g invertible,p9 (x) E Q for all x E Q}. 

If g E r( Q, q), the map p9 is orthogonal, as 

q(pg(x),pg(x)) = - (gx(g)-1) (gx(g)-1) = (gx(g)-lr (gx(gfl) 

= gxg-1gx(g)-1 = -gx2(g)- 1 = gq(x, x)(g)-1 = q(x, x) 

for any x E Q. Furthermore, p9 is bijective, for if p9 (x) = 0 then the invertibility 

of g implies that x = 0, whereas the surjectivity of p9 follows from the fact that Q 

is finite-dimensional and from the rank-nullity theorem. In fact f(Q, q) is a group 

called the Clifford group for Q in C(Q, q). If a E Q\ {0}, then a is invertible and 

any x E Q is expressible as x =..\a+ b with..\ ER and q(a, b) = 0. It follows that 

Pa(>.a + b) = a(..\a + b)(a)-1 = -a(..\a + b)a-1 

= -..\a - aba-1 =-..\a+ baa-1 =-..\a+ b, 

that is, a E f(Q, q) and Pa is the reflection in the hyperplane orthogonal to Ra. Since 

every orthogonal map is the product of a finite number of reflections in hyperplanes, 

we see that p : f(Q, q) -t O(Q, q); a t---t Pa is a surjective homomorphism and 

that every element of r(Q, q) is representable as the product of a finite number of 

elements of Q. In fact ker(p) = R* = R \ {0}. 

2.3.3 Pin and Spin 

For any a E C(Q, q), define the norm of a, N(a), by 

N(a) = aa. 

If g E r(Q,q), then g = x1 ·· ·Xk for some x 1, ... ,xk E Q. It follows that 
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since N(xi) = -x; = q(xi, xi) ER* for all i = 1, ... , k. This implies that the norm 

N: r(Q, q)---+ R* is a homomorphism. We define 

Pin(Q, q) = {g E r(Q, q) : N(g) = ±1} 

and 

Spin(Q, q) = {g E r0 (Q, q): N(g) = ±1} 

where r 0(Q, q) = f(Q, q) n c0 (Q, q) is the "even" subgroup of f(Q, q). When 

Q = Rn and q is the standard inner product, we abbreviate f(Q, q), Pin(Q, q) and 

Spin(Q, q) to f(n), Pin(n) and Spin(n) respectively. It is evident that Pin(Q, q) 

(Spin(Q, q)) is a normal subgroup of f(Q, q) (respectively r0 (Q, q)) and that 

f(Q,q)/Pin(Q,q) ""r0 (Q,q)/Spin(Q,q) ""R+. 

Furthermore, the maps 

Pin(Q, q)---+ O(Q, q); gr--+ P9 and Spin(Q, q)---+ SO(Q, q); gr--+ p9 

are surjective, the kernel in both cases being isomorphic to s0 = {±1}. Note that 

Spin(Q,q) C {g E C0(Q,q): N(g) = ±1}, 

but the reverse inclusion is not true in general. Topologically, if n > l then Spin( n) 

is compact and connected (see [Ps], pp. 226-8) and is thus the connected two-fold 

covering space of SO(n). 

2.3.4 Embedding Spin(n + 1) in C(n) 

Define 0: C(n) ---+ c0 (n + 1) by 

for i = 1, ... , n, extended to be an algebra homomorphism. Then 0 is in fact an 

isomorphism, with 

0-1(e· · · -e·) = e· · · ·e· i1 'k i1 ik 

for all 1 ~ i 1 < · · · < ik ~ n, k even, and 

0-1(e· · · · e· e +1) = e· · · · e· i1 ik n i1 ik 
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for all 1 ~ i 1 < · · · < ik ~ n, k odd. Since Spin(n + 1) c C0(n + 1), we may 

regard Spin(n + 1) as a subgroup of C(n) using the isomorphism 0. Under this 

identification, we have 

Spin(n) = {g E Spin(n + 1): g = g}. 

(This follows from the fact that 0 is norm-preserving on Q = Rn.) 

Lemma 2.4 If h E Spin(n + 1), then hx(h)-I E Q' for all x E Q', where Q' 

denotes the subspace Rl EB Rn C C ( n) . 

Proof We may write h = ho + h1 where ho and h1 are the even and odd parts of 

h respectively. We then have 

so 

Fix x E Q'; then x = x0 + x1 , where x0 E Rl and x1 E Rn = span{ e1, ... , en}

Since 0(h) E Spin(n + 1) c C0(n + 1), 

0(h)(-xoen+l + x1) = x'0(h) 

for some x' E Rn+l C C(n+l), since -xoen+l +x1 E Rn+l C C(n+l). Consequently 

0(h)0(x) = 0(h)(xo + X1en+1) 

= 0(h)(-xoen+l + xi)en+l 

= x'0(h)en+l 

= x'en+10(h) 

= 0(x")0(h) 

for some x" E Q'. It follows that hx(h)-I E Q' for all x E Q', as claimed. Note 

that, since Spin(n + 1) preserves norms, the map 

is a rotation of Q'. D 
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Lemma 2.5 Any element of Spin(n + 1) C C(n) is expressible in the form zg for 

some z E sn = {x E Q': xx = 1} and some g E Spin(n). 

Proof If h E Spin(n + 1), then h(h)-l E Sn since 1 E sn. Let z E Q' satisfy the 

condition z2 = h(h)-1 (noting that (Q') 2 = Q') and let g = zh. Clearly z E sn, so 

z= z = z-1 and 

that is, g E Spin(n) and h = zg. D 

Consider the sequence 

Spin( n) ~ Spin( n + l) ~ sn, 

where l is the inclusion map andµ is the map Spin(n + 1)--+ sn; hi--+ h(h)-1
. 

We claim that the fibres of µ are the left cosets of Spin(n) in Spin(n + 1). In

deed, if X1, X2 E Q' satisfy XI = xt then it is easy to see that x1 = ±x2. If 

h1 , h2 E Spin(n + 1) satisfy µ(h 1 ) = µ(h 2 ) = z2 for some z E sn, then writing 

h1 = z1g1 and h2 = z2g2 for z1, z2 E sn and 91, 92 E Spin(n), we see that z1 = ±z, 

z2 = ±z and h11h2 E Spin(n). Since µ is surjective, we may view Spin(n) as 

the stabiliser subgroup of any given element of sn under the transitive action of 

Spin(n + 1), that is, h(x) = hx(h)-1
• 

2.3.5 Construction of Low-Dimensional Clifford Algebras 

and Spin Groups 

Lemma 2.6 The Clifford algebras C(n), n = 0, l, 2, 3, 4 are isomorphic to R, C, 

H, 2H, H(2) respectively. 

Proof C(O) ,...., R is obvious. For the other cases, 

1. In C, set e1 = i. 

2. In H, set e 1 = i, e2 = k. 
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It is easy to verify that the result holds with these identifications. D 

Lemma 2.7 For all n ~ 4, C(n) "'C(n - 4) 0 C(4) "'C(n - 4) 0 H(2). 

Proof Consider C = C(4) as a subalgebra of C(n), generated by the elements 1, 

e1 , e2 , e3 , e4 of C(n). Let a = e1e2e3e4 and let B denote the subalgebra of C(n) 

generated by the elements 1, ae5 , • • • , aen of C ( n). It is evident that B is isomorphic 

to C(n-4), since (aei)(aei) = eiei for any 5 ~ i,j ~ n. Furthermore, every element 

of B commutes with every element of C, since ei anticommutes with a for 1 ~ i ~ 4 

and commutes with a for 5 ~ i ~ n. Clearly C ( n) is generated by B and C, and 

dimC(n) = 2n = 2n-424 = dim(C(n - 4)) dim(C(4)). 

The result follows immediately. D 

Lemmas 2.3 and 2.7 enable us to identify the following low-dimensional Clifford 

algebras. 

Corollary 

C(5) !::,,! C @H(2) !::,,! C(4); 

C(6) !::,,! H@H(2) !::,,! R(8); 

C(7) !::,,! 2H 0 H(2) f"V 2R(8); and 

C(8) !::,,! H(2) @H(2) !::,,! R(16). 

By induction, the spaces C(n) are isomorphic to K(2m) for some m and K = R, 

C, H, 2R or 2H depending on n. The corresponding space K 2m is called the spinor 

space of C(n). It is not difficult to see that conjugation on C(n) "' K(2m) is in 

fact the adjoint operation on K(2m). This is a potential source of confusion, for ei 

( conjugation in C( n)) corresponds to ( ei/ ( conjugation in K(2m) ). (In [Ps], Porteous 

uses x- for the Clifford algebra conjugation in order to avoid this ambiguity.) 

Lemma 2.8 For n ~ 5, Spin(n) "'{g E C0 (n) : N(g) = ±1}. 

The proof of this result may be found in [Ps], p. 147. 
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Corollary 

Spin(l) rv 0(1) rv s0 , 

Spin(3) ~ Sp(l) ~ S3, 

Spin(5) rv Sp(2), 

Spin(2) rv U(l) rv S1, 
Spin(4) rv Sp(l) X Sp(l) rv S 3 X S 3 , 

Spin(6) C U(4). 

(We recall that Sp(n) denotes the group of isometries of Hn with respect to the 

standard norm l(x1, ... , Xn)I = Vlx11 2 + · · · + lxnl2 -) 

We now give an explicit description of Spin(2) and Spin(4). In the case of 

Spin(2), we have Q' = R2 which is identified with C. The unit complex number 

g E U(l) rv Spin(2) acts as a rotation of Q' by 

y I-+ gy(g)-1 = gyg = g2y. 

In the ca,e of Spin(4), we have Q' - R', identified with { ( ~ ; ) : y EH} 

Under this identification, if ( ~ ~ ) E 2H then 

The element ( ~ ~ ) E Spin( 4), where q, r E S3, acts orthogonally on ( ~ ; ) 

by 

that is, y 1---+ qyr. 

2.4 Octonions and Triality 

2 .4.1 Fundamental Properties of 0 

The octonion algebra O is usually defined to be H2 equipped with the product 

(x, y)(x', y') = (xx' - y'y, yx' + y'x) 
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and conjugation 

(x, y) = (x, -y) 

for all x, y, x', y' E H, however we do not follow this route but instead present an 

equivalent formulation which does not require the use of quaternions and more im

portantly clarifies the link between octonions, Clifford algebras and Spin(8). 

Consider the Lie algebra .so(8) of Spin(8) (and S0(8)) spanned by 

{Xik: 0 ~ j < k ~ 7}, where Xik = Eik - Eki E R(8). 

Here Eik is the elementary 8 x 8 matrix with 1 in the (j, k)-position and O elsewhere. 

A maximal torus t is spanned by {Yj}J=o where 

The (complex infinitesimal) roots are 

where Y4 = Y0 • An ordered basis is given by 

we denote these roots by a 0 , a 1, a 2 , a 3 respectively. The associated Dynkin diagram 

is depicted in Figure 2.1. 

In Appendix A we describe the construction of a map 8, known as the triality 

automorphism of .so(8). This map is a Lie algebra automorphism of order 3 whose 

Figure 2.1: Dynkin diagram for .so(8) 
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dual map preserves a 0 and cyclically permutes a1, a2, a3. Let { ei }J=o denote the 

standard basis for R 8 . Define a map v : R 8 ---+ R 8 by setting 

v(eo) = I and v(ek) = 28(Xo,k), k = l, ... , 7 

and extending to make v linear. Based on the calculations in Appendix A, we find 

that 

Xo -X1 -X2 -X3 -X4 -X5 -X5 -X7 

X1 Xo -X3 X2 X5 -X4 X7 -X5 

X2 X3 Xo -X1 X5 -X7 -X4 X5 

v(xo, X1, X2, X3, X4, X5, X5, X7) = 
X3 -X2 X1 Xo X7 X5 -X5 -X4 

X4 -X5 -X5 -X7 Xo X1 X2 X3 

X5 X4 X7 -X5 -X1 Xo X3 -X2 

X5 -X7 X4 X5 -X2 -X3 Xo X1 

X7 X5 -X5 X4 -X3 X2 -X1 Xo 

for all (xo, ... ,x7) E R8 . Furthermore 

1 
e(xj,k) = 2v(ek)v(ej) (2.2) 

for all 0 ::; j < k ::; 7. Let Y = v(R8). We shall investigate further properties of 8 

in Section 2.4.4. (As an aside, we note that R(8) may be regarded as a non-universal 

Clifford algebra with Q = R 7• The term non-universal means that the Clifford al

gebra has dimension less than the maximal 27 = 128. Conjugation in the Clifford 

algebra corresponds to transposition in R(8) and the subspace Q' corresponds to 

Y. For a more detailed discussion, see Chapter 19 of [Ps].) 

We now construct the octonion algebra. For x, y E R8, define the (bilinear) 

product xy E R8 by 

xy = v(x)y. 

If e = e0 = (1,0,0,0,0,0,0,0) E R8, we have 

ex= v(e)x =Ix= x = v(x)e = xe, 

so e is the identity element of the algebra R 8 • It is easy to verify that 

(v(x)lv(x) = JxJ 2 I (2.3) 
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for all x E as. If x,y E as we have 

implying that as is a normed division algebra. We henceforth refer to as with the 

above product as the octonion or Cayley algebra and denote it by 0. We also define, 

for x E 0, the element x E O given by 

x = (v(x)le. 

Explicitly, if x = (xo, x1, ... , x1 ), then x = (xo, -xi, ... , -x1 ). We call xo the real 

part of x and (0, x1, ... , x 7) the imaginary part of x, denoted by Re(x) and Im(x) 

respectively. Note that e = e, x = x, Re(x)e = (x + x)/2, Im(x) = (x - x)/2 for all 

x E O and that x = -x if and only if x = Im(x). We claim that 

1 
(x, y) e = 2(xy + yx) 

for all x, y E O; this follows from 

xy + yx = x(ye) + y(xe) = (v(x))tv(y)e + (v(y))tv(x)e = 2 (x, y) e (2.4) 

by polarisation of (2.3). Since (v(x))tv(x) = lxl 2 I= v(x)(v(x))t, we have 

I 12 - -
X e = XX = XX. 

It follows that 

-1 I 1-2-x = X X 

for all x E 0. Furthermore, if x and y are imaginary then they anticommute if and 

only if they are orthogonal. 

Definition For x, y, z E 0, we define the scalar triple product of x, y and z to be 

{x, y, z} = (x, yz). 

Lemma 2.9 The quantity { x, y, z} is invariant under even permutations of the en

tries, that is, 

{x,y,z} = {y,z,x} = {z,x,y} 

for all x,y,z E 0. 

37 



Proof We have 

{x,y,z} = (x,yz) =xtv(y)z =xt(v(y))tz = (v(y)xlz = (yx,z) = {z,y,x}. 

If x = x0e + x1 where x0 = Re(x) and X1 = Im(x), then 

{y, z, xoe} = (y, zxoe) = Xo (y, z) = (z, y xoe) = {z, y, xoe} 

and 

{y,z,x1}-{z,y,x1} = {x1,z,y}-{x1,Y,z} 

= {x1, z,y} + {x1, y, z} 

= (x1, zy + yz) 

= (x1, 2 (z, y) e) 

=0. 

By linearity it follows that 

{y,z,x} = {z,y,x} = {x,y,z}, 

and by repeating the same argument we also have { x, y, z} = { z, x, y}. D 

There appears to be nothing of interest to say about odd permutations of the 

entries of the scalar triple product. 

Corollary For all x, y E O, 

xy = yx. 

Proof Set z = e. By Lemma 2.9, we have {e,x,y} = {x,y,e}. By (2.4), 

e(xy) + (xy)e = x(ye) + (ye)x, 

that is, xy + xy = xy + yx. The corollary follows. 

We also have 

x(xy) = v(x)v(x)y = (v(x))tv(x)y = lxl 2 y = (xx)y 

for all x, y E 0, implying that 

x(xy) = (x + x)xy - x(xy) 

= ((x + x)x)y - (xx)y 
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that is, 0 is an alternative algebra. 

Pick i,j E Im(0) such that Iii= IJI = 1 and (i,j) = 0. Then if k = ij, we have 

k = Im(k), for we must have ij + ji = 0, implying that 

k = (ijf = "jz = ji = -ij = -k. 

Furthermore, 

(i, k) e = ~ (z(ij) + (ijf i) = ~ lil 2 (j + J) = 0, 

whence (i, k) = (j, k) = 0 by a similar argument. Since lkl = Iii IJI = 1, we see that 

the elements { i, j} generate a subalgebra of O isomorphic to H which is therefore 

associative. Nevertheless, the algebra 0 is not associative, for if i, j are as above 

and l E Im( 0) \ { 0} is chosen such that l is orthogonal to i, j and ij, then 

ij + ji = il + li = jl + lj = (ij)l + l(ij) = 0, 

whence 

i(jl) + (ij)l = -i(lj) - l(ij) = (i2 + l2 )j - (i + l)(ij + lj) (2.5) 

= (i + l) 2j - (i + l)((i + l)j) = 0 (2.6) 

by the alternativity of 0. If O were in fact associative, (2.5) would imply that 

( ij)l = 0 which contradicts the fact that O is a division algebra. 

We have noted that Re(x)e = (x + x)/2 for all x E 0, thus by (2.4), 

1 1 
Re(xy) = 2 (xy + (xy)l = 2(xy + yx) = (x, y) e. 

A simple calculation shows that (x, y) = (x, y) for all x, y E 0, so 

Re(xy) = (x, y) = (x, y) = (y, x) = Re(yx) 

for all x, y E 0. Also 

Re(x(yz)) = (x,yz) = {x,y,z} = {z,x,y} = (z,xy) = Re(z(xy)) = Re((xy)z) 

for all x, y, z E 0. Another useful fact is that if x E O satisfies xy = yx for ally E 0 

then x E Re. To see this, choose a subalgebra A of O containing x isomorphic to 

Hand use the analogous (easily verified) result for H. 
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Lemma 2.10 

(i} For all a, b E 0, (ab)a = a(ba) = aba. If b is imaginary, then so is aba. If a 

is also imaginary and lal = 1, the map R7 ---+ R7 : b 1--+ -aba is the reflection 

in the hyperplane {Ra }J_. 

(ii} For all a, b E 0, (ab)a = a(ba) = aba. 

(iii} (Moufang identity) For all a, b, c E 0, a(bc)a = (ab)(ca). 

(iv} If r E O satisfies r(xy) = (rx)y for all x, y E 0, then r E Re. 

Proof For any a, b, c E 0, define their associator by 

[a, b, c] = (ab)c - a(bc). 

The alternativity property of O may then be expressed as [a, a, b] = 0 for all a, b E 0. 

We have also shown that [a, a, b] = 0 for all a, b E 0. For any a, b, c E 0, the 

trilinearity of [ · , · , · ] implies that 

0 = [a+ c, a+ c, b] = [a, a, b] + [c, c, b] + [a, c, b] + [c, a, b], 

so [a, c, b] = -[c, a, b]. Since 

[a, b, c] = - [c, b, a] , 

we have [b, c, a] = -[b, a, c] (after replacing a, b, c with their conjugates). As a result, 

the associator is invariant under even permutations of its arguments and changes 

sign under odd such permutations. It follows immediately that [a, b, a] = 0 and 

[a, b, a] = 0, establishing (ii) and the first part of (i). To prove the rest of (i), 

suppose that b is imaginary; then 

Re(aba) = Re((ab)a) = Re(a(ab)) = Re (lal 2 b) = lal 2 Re(b) = 0, 

so aba is imaginary. If a is also imaginary and lal = 1, then defining Pa : R 7 ---+ R 7 

to be the linear map b 1--+ -aba we have 

and 

Pa(a) = -aaa = -a 

Pa(b) = -aba =baa= b 
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for all b E R7 orthogonal to a. This completes the proof of (i). 

Now c(aba) = ((ca)b)a for all a, b, c E 0, for 

c(aba) - ((ca)b)a = c(a(ba)) - ((ca)b)a 

= -[c, a, ba] + (ca)(ba) - (ca)(ba) - [ea, b, a] 

= [c, ba, a] + [b, ea, a] 

= (c(ba))a - c (ba2) + (b(ca))a - b (ca2) 

= [c, b, a2] - (cb)a2 + [b, c, a2] - (bc)a2 + (b(ca) + c(ba))a 

= (b(ca) + c(ba) - (cb)a - (bc)a)a 

= - ([c, b, a] + [b, c, al) a 

=0. 

Then 

a(bc)a - (ab)(ca) = ((ab)c)a - [a, b, c]a - ((ab)c)a + [ab, c, a] 

= -[a, b, c]a - [c, ab, a] 

proving (iii) . 

= -[a, b, c]a - (c(ab))a + c(aba) 

= -[a, b, c]a - (c(ab))a + ((ca)b)a, by the above claim 

= ([c, a, b] - [a, b, cl) a 

=0 

In order to establish (iv), we first show that the image of the associator contains 

Im(O), that is, Im(O) ~ [0, 0, 0]. Suppose that we are given n E Im(O); write 

n = am with a E Rand 1ml = 1. Choose l E Im(0) with l 1- m and Ill = 1 and 

set k = lm. Pick i E Im(0) with i 1- l, i 1- m, i 1- k and Iii = 1 and set j = ki. It 

is easy to show that j, k E Im(0), lkl = IJI = 1 and that k 1- l, k 1- m, i 1- j and 

k 1- j. Also, by the Moufang identity (iii), we have 

(j, l) e = -jl - lj = (ki)(mk) + (km)(ik) = k(im + mi)k = 0, 

that is, j 1- l. By (2.5), (ij)l + i(jl) = 0, so [i, j, l] = 2(ij)l = 2kl = 2m. Finally, 

[%i, j, l] = am = n, so that Im(O) ~ [0, 0, 0] as claimed. (In fact the reverse 

inclusion holds as well, for we have seen that Re([a, b, cl) = 0 for all a, b, c E 0.) 
Now we note that polarisation of the Moufang identity (iii) gives 

(ca)(bd) + (da)(bc) = (c(ab))d + (d(ab))c. (2.7) 
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We now prove that 

d[a, b, e] - [a, b, e]d + [ab, e, d] + [be, a, d] + [ea, b, d] = 0 (2.8) 

for all a, b, e, d E 0. In fact 

d[a, b, e] = d((ab)e) - d(a(be)) 

= -[d, ab, e] + (d(ab))e + [d, a, be] - (da)(be) 

· -[ab, e, d] - [be, a, d] - (e(ab))d + (ea)(bd) by (2.7) 

= -[ab,e,d]- [be,a,d] + [e,a,b]d- ((ea)b)d+ (ea)(bd) 

= -[ab, e, d] - [be, a, d] + [a, b, e]d - [ea, b, d]. 

Now suppose that [r, x, y] = 0 for all x, y E 0. Setting d = r in (2.8) we have 

r[a, b, e] - [a, b, e]r = 0 

for all a, b, e E 0. Since Im(0) ~ [0, 0, 0], it follows that r commutes with all 

imaginary octonions, hence all octonions. By the remarks preceding the statement 

of this lemma, r E Re. D 

2.4.2 Spin(8) 

In the corollary to Lemma 2.7 we saw that the Clifford algebra C(7) is isomorphic to 
2R(8). As in Section 2.3.4 we may consider 8pin(8) as being embedded in C(7). In 

this section we realise 8pin(8) as a subgroup of 2R(8). In fact, by the orthogonality 

of the Clifford groups (see Section 2.3.2) and the fact that 8pin(8) is connected, we 

may realise 8pin(8) as a subgroup of 80(8) x 80(8). 

Let { e, e1, ... , e7} denote the standard basis of R8 . It is easy to verify that 

{v(ei)}T=i is a set of pairwise anticommuting matrices of determinant 1. (This is 

consistent with the interpretation of R(8) as a nonuniversal Clifford algebra de

scribed in Section 2.4.1; it is also consistent with equation (2.2).) When Y is 

embedded in 2R(8) rv C(7) by 

for y E Y, it is clear that the subspace Q' = R EB Q of C(7) may be identified with 
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Y C 2R(8). The element ( ~ ~ ) of 2R(8) satisfies 

hence the element ( ~ ~ ) E Spin(8) acts orthogonally on Y by 

since g and hare necessarily in S0(8). That is, 

Spin(8) = {(g, h) : g, h E S0(8), gyht E Y for ally E Y}, 

however for technical reasons we now make a slightly different characterisation of 

Spin(8). Define the companion involution R(8) -+ R(8); g ~ g by 

g = Jg] 

where 

J = ( l O ) E R(8); 
0 -]7 

we call g the companion of g. It is obvious that 

gx=gx 

for all g E R(8), x E 0. This implies that if g E S0(8), then g E S0(8). It also 

implies that g = g if and only if ge = e, in which case 

for some h E S0(7). We then write 

Spin(S) - { ( ~ :. ) : go, g1 E S0(8), 9oY!i) 1 E Y for all y E Y} C R(16). 

The homomorphism Spin(8) -+ S0(8); ( 90 ~ ) ~ g0 is one of the possible 
0 91 

projections of Spin(8) onto S0(8), thus has kernel 

{ ( ~ 1 ) . ( ~ -~. ) }-
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2.4.3 Triality 

The orthogonal action of Spin(8) on S7 is given by 

( 90 ~ ) x = gov(x)!11·1e 
0 91 

for all x E S7 ~ {x E O: lxl - 1}. Consequently, for ( ~ 
exists a unique g2 E S0(8) such that 

--1 -9oY91 e = 92Ye 

0 ) . _ E Spm(8), there 
91 

for ally E Y. We call the ordered triple (go, 91, 92) a 0-triad of S0(8), and define 

0 : Spin(8) --+ Spin(8) by 

0 ( 9o ~ ) = ( 91 ~ ) . 
0 91 0 92 

Then as Lemma 2.11 below implies, 0 is a well-defined automorphism of order 3. It 

is known as the triality automorphism of Spin(8). In fact 0 is closely related to the 

map 8 defined in Section 2.4.1; we shall investigate this connection in Section 2.4.4 

below. 

Lemma 2.11 Let (go, 91, 92) be a 0-triad of S0(8). Then (91, 92, go), (92, 9o, 91) and 

(g01, g11, g21), (g11, g21, g01), (g21, g01, g11) are 0-triads of S0(8). Furthermore, 

Uh, [Jo, [/2) is also a 0-triad of S0(8). 

Proof If y, z E Y then 

since goy[/11 E Y. Now if x E Y, then 

(ye, (g11ze)(xe)) = {ye,g11ze,xe} = {xe,ye,g11ze} = (xe,yg11ze) 

= (goxe, 9oY!J11 ze) = (goxe, (!J2ye) (ze)) = (!Joxe, g2ye(ze)) 

= {!Joxe, g2ye, ze} = {g2ye, ze, !Joxe} = (g2ye, z[Joxe) 

= (ye, 921 z[Joxe) 

by the orthogonality of go and g2• Since this is true for ally E Y we have 
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for all z, x E Y. It follows that g21zg0 E Y for all z E Y and, by setting x = I, that 

(g21,g01,g11) is a 0-triad of 80(8). (Note that (g)-1 = (g-1f for all g E 80(8).) 

Repeating this argument (four times) completes the proof of the first claim. Now 

Y is closed under transposition, so 

for all y E Y; it follows that 

( v-l)t V t -1 y 9oY91 = 91Y 9o E 

v t -1 ( v-l)t v-1 -v - - t 91Y 9o e = 9oY91 e = 9oY91 e = 92Ye = 92Ye = 92Y e, 

establishing the second claim. 

By virtue of this theorem we may now describe 8pin(8) as 

8pin(8) = {(go, 91, 92) a 0-triad of 80(8)}. 

The standard orthogonal action of 8pin(8) on 87 is given by 

(go, 91, 92)x = {/2v(x)e = {/2x = g2x 

for all x E 87 • Recall that we embedded Y in 2R( 8) by 

Y-(~ ;, } 
we may thus embed x E 87 in 2R(8) by 

( v(x) 0 ) 
x ~ 0 v(xl · 

D 

We claim that, for any x E 87 , this embedding gives an element of 8pin(8). This is 

an immediate consequence of Lemma 2.11 and the following result. 

Lemma 2.12 For any x E 87 , the triple (v(x)t(v(x)f, v(x), (v(x)tn is a 0-triad of 

80(8). 

The proof of this lemma appears in Section 2.4.4. 

We now relate the group of automorphisms of Oto 8pin(8). Let 

G2 = {g E 80(8) : g(xy) = g(x)g(y) for all x, y E O} 

denote the group of automorphisms of 0. If g E G2, then g(e) = e, so g is of the 

form ( 1 O ) where g' E 80(7) and g = g. 
0 g' 
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Lemma 2.13 Let g E 80(8). Then (g, g, g) is a 0-triad of 80(8) if and only if 

g E G2. 

Proof Suppose g E G2 . If y, z E Y are arbitrary, then 

g((ye)(ze)) = g(ye)g(ze) {::} gyg-1gze = (gye)(gze) 

{::} gxg-1 E Y and gxg-1e = gxe for all x E Y, 

so (g, g, g) is a 0-triad. Conversely, if (g, g, g) is a 0-triad of 80(8), then for any 

y E Y, we have gyg-1 E Y and gyg-1e = gye. Set y = I E Y; then he = e, 

where h = g-199-1. It follows that h = h; this may be rewritten as (g1) 3 = I, 

where g1 = g[r1 E Y. By Lemma 2.11, (g-1,g-1,g-1) is a 0-triad of 80(8), hence 

(91, 91, 91) is also a 0-triad. That is, 91YfJ11e = f11ye for all y E Y. Since 91 = g11 

and (g1) 3 = I, this simplifies to g1ye = yg1e, or (g1e)(ye) = (ye)(g1e), for ally E Y. 

It follows that 91 e E Re, so by the orthogonality of 91 and the fact that 91 E Y, 
we have g1 = ±I. It is easy to verify that (-J, -I, -I) is not a 0-triad of 80(8), 

implying that g1 = J and g = g. Consequently gyg-1 E Y and gyg-1e = gye for all 

y E Y. Now if x, z E 0, then let x' = v(x), z' = v(z); we have 

g(xz) = g(x'z'e) = gx'g-1gz'e = (gx'g- 1e)(gz'e) = (gx'e)(gz'e) = g(x)g(z), 

that is, g E G2. D 

For i = 0, 1, 2, define Hi = {(go, 91, 92) E 8pin(8) : gie = e }. Clearly H2 is the 

stabiliser subgroup at e E S7 of the standard orthogonal action of 8pin(8), hence 

H2 rv 8pin(7). Furthermore, the automorphism 0 : 8pin(8) -t 8pin(8) permutes 

the groups Hi cyclically, so Hi rv 8pin(7) for i = 0, 1, 2. If (go, 91, 92) E H1 n H2, 

then g2e = e implies that fJ2e = e, whence 9ofJ11 = I and go= f11. Similarly, g1e = e 

implies that 92 = fJo. It follows that (go, 91, 92) = (go, fJo, fJo) is a 0-triad, whence 

so is (go, {Jo, go) by Lemma 2.11. We have shown that go = fJo, so (go, go, go) is a 

0-triad. By Lemma 2.13, H1 n H2 = G2. Since G2 is preserved by 0, we see that 

Hon H1 = H1 n H2 = H2 n Ho = G2. 

2.4.4 Further Remarks on Triality 

In this section we link the two triality automorphisms E> and 0 of so(8) and 8pin(8) 

respectively, present an equivalent characterisation of 0-triads and use this charac

terisation to give a proof of Lemma 2.12. 
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Let Z denote the centre of Spin(8). It is easy to see that Z is given by 

Z = { (I, I, I), (I, - I, - I), ( - I, I, -I), ( - I, - I, I)} rv Z2 x Z2. 

The triality automorphism 0 preserves (I, I, I) and cyclically permutes the other 

three elements of Z. It follows that 0 projects to an automorphism of the space 

Spin(8)/Z of order 3. The map 8 is the derivative of this automorphism. (Note 

that .so(8) may be regarded as the Lie algebra of Spin(8)/Z.) In fact 0 does not 

project to an automorphism of SO(8), for we have 

and 0 ( -I O ) = ( -I O ) . 
0 -I O I 

The arguments project to the same element of SO(8) (namely I) but their images 

do not. 

The group Spin(8) is the only one of the groups Spin(n) to admit a triality 

automorphism. That this is true is indicated by our method of construction using 

the threefold rotational symmetry of the Dynkin diagram for .so(8). The Dynkin 

diagrams for other Lie algebras .so ( n), n =f 8 do not possess this type of symmetry. 

Details may be found in [L]. 

The standard definition of a 0-triad is a triple (g0 , g1, g2) of elements of SO(8) 

satisfying 

for all x, y E 0, or equivalently 

go(xy) = {12(x)g1(Y) 

for all x, y E 0. We show that this definition is equivalent to the one given in 

Section 2.4.3. Suppose that (g0 , g1, g2) satisfies g0kg11 E Y for all k E Y with 

gokg11e = g2ke for all k E Y. Fix x, y E O and set k = v(x) E Y. There exists 

z E O such that gov(x)g11 = v(z). We have 

and 
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as required. Conversely, suppose that go(xy) = 92(x)g1(y) for all x, y E 0. Fixing 

x E O and setting z = g2(x) gives 

gov(x)y = v(z)g1y 

for ally E 0, whence g0v(x)g11 = v(z) E Y and gov(x)g11e = z = 92(x) as required. 

Proof of Lemma 2.12 We use the standard definition of a 0-triad. The map v(x) 

corresponds to left multiplication by x E 0, whereas the map (v(x)f corresponds to 

right multiplication by x, since 

(v(x)f a= xa = ax 

for all a E 0. Consider the triad (go, 91, 92) = (v(x)t(v(x)L v(x), (v(x)tn for some 

x E S 7 . For any a, b E 0, we have 

go(ab) = x((ab)x) 

= (x(ab))x 

= (xa)(bx) 

= 91 (a) 92 ( b) 

by the Moufang identity (Lemma 2.10 (iii)). Since 9o,g1,g2 E S0(8), the result 

follows. D 

48 



Chapter 3 

The Construction of Symmetric 

Spaces 

In order to formulate the new construction of symmetric spaces of rank one of non

compact type, we first require some properties of a special class of Lie algebras 

known as H-type algebras, introduced by Kaplan [K]. Of particular interest is the 

subclass of these algebras satisfying a condition known as the J 2 condition, a con

dition first described in [CDKR]. We use these algebras in conjunction with Clifford 

algebras to construct the symmetric spaces, examining each of the four families indi

vidually. We also examine a result due to Pansu [Pu] involving graded isomorphisms 

of H-type algebras. 

3.1 H-type algebras 

In this section we define H-type algebras and give some of their important properties. 

We also examine some associated Riemannian manifolds, generalising the Klein and 

upper half-space models of hyperbolic space. Most of the material in this section 

appears in [CDKR2], although some of the results were originally proved in [K]. 

3.1.1 The J2 condition 

Let n denote a Lie algebra equipped with an inner product ( · , ·) and associated 

length I· I- Suppose that n = u EB J with [n,3] = {O} and [n, n] ~ J, so that n is 

two-step nilpotent. Define the map J: 3---+ End(u) by 

(JzX, Y) = (Z, [X, Y]) (3.1) 
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for all Z E 3 and all X, YE t.l. If J satisfies 

IJzXI = IZI IXI (3.2) 

for all Z E 3, X E ll then n is said to be of Heisenberg type, or alternatively n is said 

to be an H-type algebra. The associated simply connected Lie group N = exp(n) is 

called an H-type group. 

The map J possesses several important properties. Equation 3.1 implies that J z 

is skew-symmetric for all Z E 3. Repeated polarisation of (3.2) gives 

(JzX, JzY) = (Z, Z) (X, Y) 

(JwX,JzX) = (W,Z) (X,X) 

(JwX, JzY) + (JzX, JwY) = 2 (W, Z) (X, Y) 

for all X, YE ll, W, Z E 3. By the skew-symmetry of Jz and (3.3) we have 

hence 

JzJw + JwJz = -2 (Z, W) I 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

by polarisation, for all Z, WE 3. This implies that when Zand Ware orthogonal, 

JzJw = -JwJz. 

By (3.1) and (3.4), 

(W, [X, JzX]) = (JwX, JzX) = (W, Z) (X, X) 

for all X Ell, W, Z E 3, implying that 

[X, JzX) = IXl 2 z 

for all X E ll, Z E 3. Finally, for any X, Y E ll, W, Z E 3, we have 

(W, [JzX, JzY]) = (JwJzX, JzY) 

= - (JzJwX, JzY) - 2 (W, Z) (X, JzY) 

= - (Z, Z) (JwX, Y) + 2 (W, Z) (JzX, Y) 

= - (w, (IZl2 [X, Y) - 2Z (Z, [X, Y]))) 
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by (3.1), (3.7), (3.3), the skew-symmetry of Jz and (3.1) again, thus 

[JzX, JzY] = - IZl2 pz[X, Y] (3.10) 

for all X, Y E tJ and Z E 3, where pz : 3 ---+ 3 is the reflection in the hyperplane 

orthogonal to Z. 

Given X E t>\{0}, we let j(X) = {JzX: Z E 3}. 

Definition Given an H-type algebra n, we say that n satisfies the J2 condition if 

for all X E tJ, Z1 , Z2 E 3 \ {0} with (Z1, Z2) = 0, there exists Z3 E 3 such that 

(3.11) 

Equivalently, n satisfies the J 2 condition if Jz preserves RX E0 j(X) for all Z E 3, 

X E tJ, or if 

(R+j)(R+j)X = (R+j)X 

for all X E tJ. By (3.2) and (3.8), if X =/= 0 and dim(3) > 2, then the element Z3 in 

(3.11) is unique and orthogonal to both Z1, Z2. 

Suppose that dim(J) = q > 0 and let {Zi}r=1 be an orthonormal basis for 3. The 

map C(q)---+ End(t>); ei i---+ Jzi extends by linearity to a representation of C(q) on tJ. 

Now let n satisfy the J2 condition. If X E t>\{0} and X' E (RX E0 j(X))·1, then the 

representations of C ( q) on the mutually orthogonal J3-invariant subspaces RX E0j ( X) 

and RX' E0 j(X') are equivalent. To see this, suppose for some Z, Z', W, W' E Z we 

have (Z, Z') = 0, JzJz,X = JwX and JzJz,X' = Jw,X'. By the J2 condition, there 

exists Wo E 3 with JzJz,(X + X') = Jw0 (X + X'), implying that JzJz,X = Jw0 X 

and JzJz,X' = Jw0 X', that is, W = W0 = W'. Consequently the linear map that 

sends X to X' and JzX to JzX' for each Z E 3 is an intertwining operator as 

required. It follows that 
m 

tJ = E9(RXk E0 j(Xk)) 
k=l 

for some X 1, ... , Xk E tJ, where each summand is an equivalent irreducible Clifford 

submodule. 

3.1.2 Some Associated Riemannian Spaces 

Suppose n = tJ E0 3 is an H-type algebra satisfying the J2 condition. Let a denote a 

one-dimensional normed vector space with unit vector H and let s = n E0 a. In order 
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to make s into a Lie algebra with inner product, we extend the inner product on n 

by requiring that a be orthogonal to n; we extend the Lie bracket by bilinearity and 

the conditions 

[H,X] = ~X and [H,Z] = Z (3.12) 

for all X E l1, Z E 3. We write (X, Z, t) for the element X + Z + tH of s, where 

X E l1, Z E 3, t E R. Define the height Junction h : s ~ R by 

h(X, Z, t) = t - i IXl2 

for (X, Z, t) E s, and let 

D = {p Es : h(p) > O}. 

The space D is the analogue of the upper half-plane model of hyperbolic space. 

It also generalises the well-known Siegel domain for SU(2, 1). Let exp(s) denote 

the connected, simply connected Lie group with Lie algebra s. This group may be 

identified with S = l1 x 3 x R+ by identifying the point exp(X + Z) exp(logtH) of 

exp(s) with (X, Z, t) E S. Define e: S ~ S by 

8(X,Z,t) = ( X,Z,t+ i IX1 2) (3.13) 

for all (X, Z, t) E s. It is trivial to see that 8 is injective and 8(S) = D. It follows 

that there exists a simply transitive action of exp(s) on D given by conjugating 

left multiplication in the group S by 8. We obtain an invariant metric on D by 

transporting the left-invariant metric of exp(s) to D, requiring that 8 be an isometry. 

We now define the Cayley transform C: B ~ D, where Bis the unit ball ins, by 

C(X, z, t) = l 2 (2(1 - t + Jz)X, 2Z, l - t2 - 1z12) (3.14) 
(1- t)2 + IZI 

for all (X, Z, t) E B. The inverse of C is given by 

c-1(x' z' t') = 1 ((1 + t' - J ,)X' 2z' -1 + (t') 2 + 1z'12) 
' ' (1 + t')2 + IZ'l2 z ' ' 

(3.15) 

for all (X', Z', t') E D. We obtain a metric on B by transporting the metric on D to 

B, requiring that C be an isometry. Note that we may identify the tangent space 

at a point p of either D or B with s since D and B are subsets of the vector space 
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.s. Any isometry g of D may be transported using C to give an isometry g of B: 

explicitly, g = c-1 gC. 

Define the inversion a : D ---+ D by 

1 
a(X, Z, t) = IZl2 + t 2 ((-t + Jz)X, -Z, t) 

for all (X, Z, t) ED. The equivalent map on the ball Bis given by 

u(X, Z, t) = c-1aC(X, Z, t) = -(X, Z, t) 

(3.16) 

for all (X, Z, t) E B. It is proved in [CDKR2] that a is an isometry if and only if n 

satisfies the J2 condition. It is also demonstrated that the metric on B is given by 

(v,v), -{ (3.17) 
p=O 

where 

Vtan = V - Vrad 

and for p = (X, Z, t) =J 0, 

(3.18) 

if Z = t = 0, and 

r?) EB Rp = {((u + Jw )(t - Jz)X, (IZl2 + t 2)W, (IZl 2 + t 2 )u) : WE J, u ER} 

(3.19) 

otherwise. Here P denotes orthogonal projection. 

Let N and A denote the subgroups exp(n) and exp(n) of S. It is easy to see 

that N is normal in S and S is the semidirect product of N with A. We may write 

A= {au}ueR+ where au= exp(loguH) acts on D by 

au(X, Z, t) = (u112 X, uZ, ut) 

for all (X, Z, t) E D. A messy computation shows that the action of au on B is 

given by 

au(X, Z, t) = m-1((s(t - Jz) + c)X, Z, cs(l + t 2 + IZl 2) + (c2 + s2 )t) 
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where 

u+l 
C = 2-Jii' 

u-1 
s = 2-Jii' m = ls(Z E9 tH) + cHl 2 = (ts + c) 2 + s2 IZl2 . 

Note that c2 - s2 = 1. 

Let G denote the group of isometries of B and K be the stabiliser subgroup of 

the origin (0, 0, 0) E B. Let L denote the subgroup of K consisting of isometries 

which preserve tJ (hence 3 E9 a) and let M denote the subgroup of L consisting of 

isometries which fix H. Then K is a group of orthogonal transformations, K acts 

transitively on Ss and M acts transitively on Su x S3, where Ss, Su, S3 are the unit 

spheres in .s, tJ,3 respectively. (Proofs may be found in [CDKR2].) 

3.2 Construction of Symmetric Spaces Using H

type Algebras 

In this section we present our construction of all symmetric spaces of rank one of 

noncompact type. The construction utilises H-type algebras, Clifford algebras and 

Spin groups. We also identify the subgroups K, Land M of isometries of the sym

metric spaces. 

Let tJ denote a nontrivial Clifford module for C(q), q > 0, with a compatible 

inner product. Let 3 = Q C C(q) and a = span{l} C C(q). Let .s = tJ E9 3 E9 a 
where the inner product is extended by linearity and orthogonality. An element 

g E Spin(q + 1) C C(q) acts on tJ by the Clifford action X t-+ 1rc(g)X = gX and on 

3 E9 a= Q' by the orthogonal action Z t-+ 1ro(g)Z = gZg1• The unit elements of Q' 

may be regarded as a copy of Sq inside Spin(q + 1). For any unit Z E 3 and X E tJ 

we define JzX = 1rc(Z)X and extend J to all of 3 by linearity. The Lie bracket is 

determined by (3.1) and (3.12). Having equipped the unit ball of .s with the metric 

of (3.17), we seek descriptions of the subgroups M, L, K of the group of isometries 

G of s in the case where n = tJ E9 3 satisfies the J2 condition. In a series of results 

following this discussion, we show that the group L is given by 

L = {(g, 0) E Spin(q + 1) x O(t>) : 0Jz = cJz0 for all z E Z, for some c = ±1} 

where (g, 0) acts on .s by 

(X, Z E9 tH) t-+ (01rc(g)X, 1ro(g)(Z E9 tH)) 
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for all X E tJ, Z E 3, t ER. Note that the decomposition of an element of L into the 

form (g, 0) need not be unique and that if c = 1 then 0 is an intertwining operator 

for 1rc. In Sections 3.3 and 3.4 we shall see that if dim3 = 3 (mod 4) then c = 1 is 

the only possibility. 

We also demonstrate that the subgroup M of L is given by 

M = {(g, 0) EL: g E Spin(q)} 

where Spin(q) is embedded in Spin(q + 1) as described in Section 2.3.4. 

A pair (.X, Y) where .X ER and YE tJ acts ons by 

(X, Z, t) ~ ((t - .Xu)Y + J(z-,\w)Y + X2, .XZ + W, .Xt + u), 

where X = uY EB JwY E0 X2 with u ER, WE 3 and X 2 E (RY E0 j(Y))1-. We show 

that the group K is then given by 

K = {((.X, Y),l) E (Rx u) x L: .X2 + IYl2 = 1} 

where the element ((.X, Y), l) acts on v Es by 

v ~ (.X, Y)lv. 

The full group of isometries G is then given by the Cartan decomposition 

G=KAK 

or the lwasawa decomposition 

G=NAK. 

Definition A graded automorphism of n is a Lie algebra automorphism of n which 

preserves tJ and 3. Equivalently, a graded automorphism is a pair (A, B) where 

A E GL(u) and BE GL(3) such that 

[AX, AY] = B[X, Y] 

for all X, Y E tJ. 
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Theorem 3.1 

{i) If m E M acts on .s by m(X, Z, t) = (AX, BZ, t) for all (X, Z, t) E M, 

where A E O(u), BE 0(3), then m restricts to a graded automorphism of n. 

Conversely, any graded automorphism (A, B) of n with A and B orthogonal 

extends to an element of M. 

{ii) If (A, B) is a graded automorphism of n, where A and B are orthogonal, then 

B = ±1ro(g)l3 for some g E Spin(q) and A= 1rc(g)0 where 0 E O(u) satisfies 

0Jz = det(B)Jz0 for all Z E 3. 

Proof (i) Let m = (A, B, I) on u EB 3 EB a. Fix p = (X, -Z, 0) E u EB 3 EB a. Since 

m is a linear isometry, we have m(TJ2) EB Rp) = rJ?J EB Rmp. Setting 

V = (JzX, 0, 1z12) Erp> EB Rp, 

we must have 

mv = (AJzX, 0, IZl2) = ((u + Jw )JBzAX, IBZl2 W, IBZl2 u) 

for some u ER, WE 3. Then W = 0, u = l (as Bis orthogonal), so 

for all X E u, Z E 3. This implies that 

(z, B-1[AX, AY]) = (BZ, [AX, AY]) = (JBzAX, AY) 

= (AJzX, AY) = (JzX, Y) = (Z, [X, Y]) 

for all X, YE u, Z E 3, by the orthogonality of A and B. It follows that 

[AX, AY] = B[X, Y] 

for all X, Y E u, as required. 

Conversely, suppose that (A, B) is a graded automorphism of n. For all X, Y E u, 

Z E 3, 

(JBzAX, AY) = (BZ, [AX, AY]) = (BZ, B[X, Y]) 

= (Z, [X, Y]) = (JzX, Y) = (AJzX, AY), 
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that is, 

AJz = JszA (3.20) 

for all Z E 3. 

We need to show that if m = (A, B, I), then m ( rJ2) EB Rp) = T~J EB Rmp for 

all p E .s. Let p = (X, Z, t). If Z = 0 and t = 0, then mp = (AX, 0, 0), so 

m (TJ2) EB Rp) = {(A(uX + JwX), 0, 0) : u ER, WE 3} 

whereas 

T~) EB Rmp = {(u'AX + Jw,AX, 0, 0): u ER, W' E 3}. 

If u = u' and W' = BW, then 

A(uX + JwX) = u'AX + Jw,AX 

by (3.20), so equality holds in this case. If (Z, t) =J 0, then 

m (rJ2) EB Rp) 

= { (A(u + Jw)(t - Jz)X, (IZl2 + t 2) BW, (IZl2 + t 2) u) : u ER, WE 3} 

while 

T(2) EB Rmp 
mp 

= { ((u' + Jw, )(t - Jsz)AX, (IZl2 + t2) W', (IZl 2 + t2) u') : u' ER, W' E 3}. 

Now if u' = u and W' = BW then 

(u' + Jw,)(t - Jsz)AX = (u + Jsw)(t- Jsz)AX 

= A(u + Jw)(t - Jz)X 

by (3.20), establishing the result. 

(ii) We have AJw = JswA for all WE 3. We may write 

for some unit vectors Z1, ... , Zm E 3, where b = det(B) = ±1. Write 

where 0 is orthogonal. 
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If Z, Z' E 3, then 

( ( Z', Z) ) ( , ) Jp I z J Z' = J z - 2 2 J z, J Z' = J z J z, + 2 z ' z I = -J Z' J z 
z IZ'I 

(3.21) 

by (3.7). It follows that for all WE 3, 

JBwA = bJ(-pZ1)···(-Pzm)wJz1 ... Jzm0 

= bJz1 J(-pz2)···(-pzm)wJz2 .. 'Jzm0 

whereas 

implying that 

0Jw = bJw0. 

Since dim 3 is odd, we may express B as 

for some W1 , ... , Wk with k even. The result follows from the observations that 

for all odd i less thank, 1ro(WiWi+1) = PwiPwi+l' 1rc(WiWi+1) = JwiJwi+1 and 

Wi~+l E Spin(q). D 

Theorem 3.1 immediately implies that 

M = {(g,0) E Spin(q) x O(ti): 0Jz = cJz0 for all Z E 3, for some c = ±1}. 

Theorem 3.2 Any element of L is of the form (g, 0) where g E Spin(q + 1) and 

0 E O(ti) satisfies 0Jz = cJz0 for some€= ±l and all Z E 3. 

Proof We show that (Z, I) E L where Z E Sq and J is the identity. If p E .s, we 

may write p = (X, Y) where X E tJ, YE 3 EB a= Q'. In the same manner we may 

write 

if Y =/- 0 and 

rJ2) EB Rp = { (1rc(W)1rc(Y)X, IYl2 W) : WE Q'} 

rJ2) EB Rp = 1rc( Q')X 
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otherwise. Now (Z, I) acts on p to give (1rc(Z)X, 1ro(Z)Y). We need to check that 

this action preserves the appropriate subspace, that is, 

T(~\)P ffi R(Z, I)p = (Z, J)(TJ2) ffi Rp). 

Since Z E Sq, we have 

l1ro(Z)YI = IYI 

for all Y E 3 ffi a. It follows that we need only verify that 

for all W E 3 ffi a, and that 

In (3.22), 

1rc(Q')1rc(Z)X = 1rc(Z)1rc(Q')X. 

LHS = 1rc ( zwz-1 zyz-1z) 
= 1rc(ZWZZYZZ) 

= 1rc(ZWY) = RHS 

(3.23) 

since Z E Sq. Furthermore, (3.23) is true by the J2 condition. It follows that 

(Z,J) E Las claimed. Now given g EL, choose Z E Sq such that ((Z, I) o g)H = H; 

this is always possible by the transitivity of the orthogonal action of Sq on Q'. It 

follows that (Z, I) o g is in M, so this composition may be expressed as (g0 , 0) for 

some g0 E Spin(q) and some 0 satisfying the requirements of the statement of the 

theorem. We have shown that g = (Z- 1g0 , 0) with z-1g0 E Spin(q + 1) as required. 

D 

Theorem 3.3 Every element of K is expressible in the form ( ( ..\, Y), l) E (Rx u) x L 

with ..\2 + IYl2 = 1. 

Proof Let k E K. By composing with an element of L, we may suppose that k 

maps (0, 0, 1) to (Xo, 0, to) for some Xo E u, to E R with t5 + IXol2 = 1. Now 

k(3 ffi a) = k(T};) ffi RH) = rl~ ffi RkH 

= {((u + Jw)Xo, toW, tou): (W, u) E 3 ffi a}. 
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As in Section 4 of [CDKR2], let 0 denote the differential of the involution G-+ G: 

g t----t aga at the identity of G. (The map 8 should not be confused with the triality 

automorphism of Chapter 2.) The isometry exp (x(0Y + Yf), where cos(x) = t0 , 

sin(x) = - IXol and Y = Xo/ IXol, acts ([CDKR2] p. 31) in the same way as (to, Xo) 

does. In fact 

(to, Xo)(0, Z, t) = (tXo + JzXo, toZ, tot), 

so the isometry (t0 , X 0 )-1k preserves J EB a hence is in L. The result follows imme

~~ D 

3.3 Applying the Construction 

We now explain how the construction applies to each of the four families of sym

metric spaces of rank one of noncompact type. In particular, we identify the groups 

G, K, L, M for each of these spaces and describe their actions. 

3.3.1 Case 1: PO(l, n)/ O(n) 

The cases when t> = 0 or J = 0 correspond to the Poincare and Klein models of real 

hyperbolic space respectively. In either case, the J2 condition is trivially satisfied. 

Due to the degeneracy of the H-type algebras, the Clifford algebraic interpretation 

is largely irrelevant. 

In the case where t> = 0, 

T?) EB Rp = .s 

for all p E .s, implying that Vrac1 = v and Vtan = 0 for all v E TPB. The metric is then 

4 lvl2 
(v,v)P = (1- IPl2)2 

for all v E TPB, which is precisely the Poincare metric on the unit ball Bn where 

n = dim(.s). In this case, we have G ,..., PO(l, n), K = L = O(.s) ,..., O(n) and 

M = 0(3) ,..., O(n - 1). 

Now suppose instead that J = 0. The map J is trivial, so 

T?) EB Rp = RX EB j(X) = RX = Rp 
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if p= (X,0,0) and 

r?) EEl Rp = {(utX, 0, t2u): u ER}= Rp 

if p = (X, 0, t), t =/ 0. In either case, Vrad is the projection of v onto p for any 

v E TpB. The metric is thus four times the ordinary Klein metric on the unit 

ball Bn where n = dim(.s). In this case, G rv PO(l, n), K = O(.s) rv O(n) and 

L = M = O(u) rv O(n - 1). 

3.3.2 Case 2: PU(I, n)/ U(n) 

Suppose q = dim(3) = 1. The group Spin(2) rv U(l) rv 8 1 acts orthogonally on 

Q'::: C by 

1ro(g)x = g2x 

for all g E 8 1, x E C. The Clifford action on ll = cn-l is given by 

1rc(g)X = gX 

for all g E 8 1, X E cn-1. Identify 3 with Im(C) and a with Re(C). The sphere 81 

is the whole of Spin(2). It follows that JiX = iX for all X E ll = cn-1. The J2 

condition holds trivially since there are no nonzero orthogonal elements Z1, Z2 E 3. 

Given X, Y E ll, we know that [X, Y] = ki for some k E R, however 

k = Re(z[X, Y]) = (i, [X, Y]) = (iX, Y) = Re(z(X, Y)c) = Im(X, Y)c 

where 
n-1 

(X, Y)c = LXiYJ, (X, Y) = Re(X, Y)c, 
j=l 

for all X, YE ll, Z1, Z2 E 3 EEl a. For any p = (X, iZ + t) E en we have 

r?) EEl Rp = { ((u + iw)(t - iZ)X, (Z2 + t2) (iw + u)) : u, w ER}= Cp, 

thus the metric agrees with the one given in Section 1.3 up to a constant factor. 

We seek orthogonal automorphisms of tl which commute or anticommute with 

Ji. Since conjugation anticommutes with Ji and the only orthogonal maps which 

commute with Ji are the elements of U(l, n), we see that any element of Lis given 

by (Ao, go, c) with Ao E U(n - 1), g0 E 8 1 and c = 0 or 1, where 

(Ao, go, c)(X, Y) = (goAoo-e X, g50-eY) 
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for all (X, Y) E tJ x (J ffi a). (Here a is componentwise complex conjugation as in 

Chapter 1.) Replacing 90A0 E U(n - 1) by A1 and 95 E 8 1 by 91, we see that 

L l'V U(n - 1) x U(l) x Z2 with (A1, 91, c) E L acting by 

(A1, 91, c)(X, Y) = (A1ae X, 9iaeY). 

The group 8pin(l) l'V 0(1) is embedded in Spin(2) as {±1} c 81. An element of 

Mis then given by (Ao, 9o, c) with Ao E U(n - 1), 9o E 0(1) = {±1} and c E Z2, 

where 

(Ao, 9o, c)(X, Y) = (90Aoae X, 95aeY) = (±Aoae X, aeY) 

for all (X, Y) E tJ x (J ffi a). Replacing ±Ao E U(n - 1) by A1, we see that 

M l'V U(n - 1) x Z2 with (A1 , c) EM acting by 

To describe the action of the pair(.~, W) with A ER, WE en-land A2 + IWl 2 = 1 

on (X, Y) E tJ x (3ffia), we first write X = µW + W' whereµ Ee and (W, W')c = 0. 

(Explicitly, µ = (X, W)c/ IWl2 and W' = X - µW.) Then 

(A, W)(X, Y) = (YW - AµW + W', AY + µ). 

By composing all such pairs (A, W) with all l E L, it is clear that the group K is 

isomorphic to U(n) x Z2 with (Ao, c) E U(n) x Z2 acting on VE en l'V tJ ffi (J ffi a) 
by 

(Ao, c)V = AoaeV. 

The action of au E A on B = {p E .s : IPI < 1} is given by 

au(X, Y) = (X(sY + c)-1, (cY + s)(sY + c)-1) 

for all (X, Y) E B C en-l x e, where c = (u + 1)/(2Jii), s = (u - 1)/(2Jii) 

as in Section 3.1.2. By the Cartan decomposition, we see that the full group G of 

isometries of B is indeed isomorphic to PU ( 1, n) x Z2 where 

( ( : ~ ) , ,} = {c + Dcr"p)(a +b'cr'p)-1 

for all p E en l'V .s and a E e, b, c E en, D E e(n) such that the matrix is an 

element of U(l, n) (clearly multiplication of such a matrix by a unit complex number 

does not affect its action on .s). 

62 



3.3.3 Case 3: Sp(l, n)/ Sp(n) 

Suppose q = dim(J) = 3. The group Spin(4) "'Sp(l) x Sp(l) acts orthogonally on 

Q' "'H (where the isomorphism is a vector space isomorphism) by 

~o ( ~ n x=qxr 

for all q, r E S3 , x EH. (Recall that x = jxj-1 and x = i for all x EH.) One of 

the two Clifford actions on tJ = Hn- l is given by 

~a(~ nX=XT 
for all q, r E S3, X E Hn-l. Identify J with Im(H) "'R3 and a with Re(H) "'R. 

The sphere S3 is contained in Spin( 4) by 

( q oq_). 
q f---+ 0 -

It follows that JzX = XZ for all X E tJ = Hn-1, Z E J = R3. The J2 condition 

holds by the associativity of H. Given X, Y E tJ, we must have [X, Y] = Z for some 

Z E R 3 • For any W E J, 

Re(W Z) = (W, Z) = (W, [X, Y]) = (XW, Y) 

= Re (W(X, Y)H) = Re (W(Im(X, Y)H)) 

where 

n-1 

(X, Y)H = I:XjYj, (X, Y) = Re(X, Y)H, 
j=l 

for all X, YE tJ, Z1, Z2 E J EB a. It follows that 

[X, Y] = lm(X, Y)H 

for all X, YE tJ. For any p = (X, Z + t) E Hn, with Z E R3 and t ER, we have 

rJ2> EB Rp = { (X(t- Z)(u + W), (IZl 2 + t2) (W + u)): WE R 3,u ER}= pH. 

We seek orthogonal automorphisms of tJ which commute or anticommute with J z, 
for all Z E R 3 • In the former case, we see that the automorphisms are precisely the 
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elements of Sp( n- l). We claim that there are no automorphisms which anticommute 

with the Clifford action, that is, there does not exist an orthogonal map g : Hn --t Hn 

such that 

g(X)Z = -g(X Z) 

for all X E Hn, Z E Im(H). Suppose such a g exists. Set X = e = (1, 0, ... , 0). 

Then g(Ze) = -g(e)Z for all Z E Im(H), so by linearity, g(Ye) = g(e)Y for all 

Y E H. This gives 

g(e)YZ = -g(e)YZ 

for all Y EH, Z E Im(H). Cancelling g(e) =f:. 0 and using linearity again, we have 

YZ=ZY 

for all Y, Z E H which is a contradiction. 

We have now established that any element of L is given by ( ( ~ ~ ) , A) with 

( ~ ~) E Spin(4), A E Sp(n - 1), where 

( ~ ~) (X, Y) = (Xr,qYr) 

for all (X, Y) E tJ x (3 E9 a). As a result, we can write L '.::'. Sp(n -1) x Sp(l) x Sp(l) 
with (A, q, r) EL acting by 

(A, q, r)(X, Y) = (AXr, qYr). 

The group Spin(3) rv Sp(l) is embedded in Spin(4) by 

q-(~ ~) 
Any element of Mis then given by (q, A) with q E Sp(l), A E Sp(n - 1), where 

(q, A)(X, Y) = (AXq, qYq) 

for all (X, Y) E tJ x (3 E9 a). That is, M rv Sp(n - 1) x Sp(l). In particular, if 

q = Z E R 3 n Sp(l) and A= -I, then Z = z-1 =-Zand 

(q,A)(X,Y) = (Xz,zyz- 1 ) = (JzX,-pzY) 

for all (X, Y) E tJ x (3 E9 a). 
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To describe the action of the pair (.X, W), where we have .X ER, WE Hn-l and 

.X2 + IWl2 = 1 on (X, Y) E tJ x (3 EB a), we first write X = Wµ + W' whereµ EH 

and (W, W')u = 0. (Explicitly, µ = (W, X)u/ IWl2 and W' = X - W µ.) Then 

(.X, W)(X, Y) = (WY - .XW µ + W', .XY + µ). 

By composing all such pairs ( A, W) with all l E L, it is clear that the group K is 

isomorphic to Sp(n) x Sp(l), where (A, q) E Sp(n) x Sp(l) acts on tJ EB (3 EB a) "'Hn 

by 

X ~ Axq 

for all X E Hn. Note that due to the noncommutativity of H, there does not in 

general exist Ao E Sp(n) such that Axq = A0x for all x. 

The action of au E A on the ball B is given by 

(X, Y) ~ (X(sY + c)-1, (cY + s)(sY + c)-1) 

for all (X, Y) E B C Hn-l x H, where c = (u + 1)/(2y'u), s = (u - 1)/(2y'u) as 

before. Using the Cartan decomposition, we see that the full group of isometries of 

B is Sp(l, n) x Sp(l) acting on B by 

( (: ~) ,q) p = (c+ Dp)(a+ b'p)-1q 

for all p E .s '..:':'. Hn, q E Sp(l) and a EH, b, c E Hn, DE H(n) such that the matrix 

is an element of Sp(l, n). 

3.3.4 Case 4: F4(-2o)/ Spin(9) 

Suppose q = dim(3) = 7. Identify 3EBa with Y by setting H = I (the 8 by 8 identity 

matrix) and 3 = v(R7). The group Spin(8) c 80(8) x 80(8) acts orthogonally on 

Yby 

( 9o O ) --1 1ro O 91 Y = 9oY91 

for all (go, 91, 92) E Spin ( 8), x E O "' R 8• One of the two Clifford actions on tJ = 0 
is given by 

1rc ( 90 ~ ) X = g1X 
0 91 
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for all (g0 , g1, g2) E Spin(8), X E 0. The sphere S7 is contained in Spin(8) by 

X ( v(X) 0 ) 
~ 0 v(Xl . 

Then JzX = (v(Zlf X = v(X)Ze = X(Ze) for all X E tJ = 0, Z E J = v(R7). 

The J 2 condition holds since (t + Jz)O = 0 for all t E R, Z E J, although as we 

shall see this would not be the case if tJ were the (reducible) Clifford module on for 

any n > 1. Given X, YE tJ, let [X, Y] = Z E v(R7). For any WE J, 

Re(WZe) = (W, Z) e = (W, [X, Y]) e = (v(X)We, Y) e 

= Re(X(We)Y) = Re(W XY) = Re(Wim(XY)). 

It follows that 

[X, Y] = Im (XY) = Im (v(X)tY) 

for all X, YE tJ "'0. For any p = (X, v(Y)) E tJ EB (J EB a), with X E tJ and YE 0, 

we have 

rJ2) EB Rp = {((xY-1)W, v(W)): w E O}. 

Note that rJ2) EB Rp is not in general equal to pO since 

(XY- 1 )W # X(Y- 1W) 

by the nonassociativity of 0. This explains why the J2 condition does not hold for 

<limo tJ greater than 1. 

We claim that there are no orthogonal intertwining operators of tJ apart from 

±I. Clearly any such operator satisfies 

g(X)Z = g(X Z) 

for all X E 0, Z E Im(O). Setting X = 1, we have g(Z) = aZ where a= g(l) E 0 

with !al = 1. This also holds for Z ER. By linearity, it follows that (aX)Z = a(X Z) 

for all X, Z E 0. By Lemma 2.lO(iv), a E R, whence g(X) = ±X for all X E tJ as 

claimed. 

We now demonstrate that, as in the case of Sp(l, n)/ Sp(n), there are no orthog

onal automorphisms of tJ which anticommute with Jz for all Z E J. Clearly such an 

operator satisfies 

g(X)Z = -g(X Z) 
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for all X E 0, Z E Im(0). Setting X = 1, we have g(Z) = -aZ where a= g(l) E 0 

with lal = 1. By linearity, g(X) = aX, so we have 

(aX) Z = a (ZX) 

for all X, Z E 0. If X = a, then by alternativity we have 

a(aZ) = (aa)Z = a(Za) 

whence aZ = Za for all Z E 0. This implies that a ER, so 

XZ=ZX 

for all X, Z E O which is a contradiction. 

In light of Theorem 3.2, we have now established that L rv Spin(8) where the 

0-triad (go, 91, 92) acts on tJ EB (3 EB a) by 

Recall that Spin(7) may be embedded in Spin(8) by 

Spin(7) rv H2 = {(go, 91, 92) E Spin(8) : g2e = e }. 

Any 0-triad in H2 satisfies 

whence 

(go, 91, 92)(0, v(e)) = (0, gol[i11) = (0, v(e)). 

This shows that H2 fixes H. Since M rv Spin(7) by Theorem 3.1, we have M = H2 . 

In particular, for any Z E J with IZel = 1, the 0-triad (-Z, (ztf, _zt Z) is in H2 

since 

t ~ t- t 2 
-Z Ze = -Z Ze = Z Ze = IZI e = e. 

The action of this 0-triad on (X, Y) E tJ EB (3 EB a) is given by 

(See Lemmas 2.12 and 2.10.) 
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The pair (>., W) with ,\ER, WE t> = 0, >.2 + IWl2 = 1 acts on t> EB (3 EB a) by 

(>., W)(X, Y) = (WYe - >.X, >.Y + v(WX)). 

Viewing the set of such pairs as a copy of S8 , we see that, in light of Lemma 2.5, 

K,...., Spin(9). 

The action of au EA on B = {p Es: IPI < 1} is given by 

(X, Y) r-+ (X(sY + c)-1, (cY + s)(sY + c)-1) 

for all (X, Y) E B c cn-l x C, where c = (u + 1)/(2y'u), s = (u - 1)/(2y'u) 

as before. The full group G = K AK ,...., F4( _ 20) of isometries of B is difficult to 

describe; indeed, it is hoped that the H-type formulation will lead to an easier 

way of realising this group. Nevertheless we provide the formal definition here, as 

presented in Takahashi (T]. We seek to find the octonionic equivalent of 0(1, n), 
U(l, n) and Sp(l, n) for the case when n = 2. Accordingly, let J1,2 denote the 

(Jordan) algebra of 3 x 3 hermitian matrices with coefficients in O © C of the form 

(

- a1 . U3 © i U2 © i ) 
U3@ 1, a2 U1 , 

U2 © i U1 a3 

Ui E 0, i = 1,2,3, 

where conjugation is given by (a© a)= a©a for all a©a E O©C and the product 

is given by xoy = ½(xy+yx). The group F4(_20) is then defined to be the connected 

component of the identity of the group of automorphisms of J1,2. It acts on the unit 

ball in 0 2 by restriction when this ball is embedded in J1,2 by 

where .\2 = 1 - lxl2 - IYl2. 

y©i 

-IYl2 
-xy 

x®i) 
-yx 

-lxl2 

3.4 Graded Automorphisms of n 

Pansu [Pu] has proved that every quasiconformal map of the boundary of one of the 

symmetric spaces Sp(l, n)/ Sp(n) or F4(_20)/ Spin(9) is conformal with respect to the 

boundary metric which is given in Section 4.2.1. (The definition of quasiconformal

ity is given in Section 4.2.2.) Pansu's result involves a lemma (Proposition 10.1 on 
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p. 41 of (Pu]) involving graded automorphisms of the associated space n. We have 

already seen in Theorem 3.1 that such a graded automorphism is an element of the 

group M provided that it is orthogonal. Pansu's result implies that the orthogo

nality condition may be relaxed somewhat in the cases when dim 3 = 3 or 7. In 

particular, for any graded automorphism of n, there exists a dilation of n such that 

the composition of the dilation and the automorphism is an element of M. Pansu's 

proof of his result relies on particular properties of the Lie algebras of Sp( n - 1) and 

Spin(7) and as such may be thought of as using a case-by-case analysis. We present 

a new proof, largely based on a result of Saal [S], which requires only that the J2 
condition hold and that dim3 = 3 (mod 4). 

Lemma 3.4 For any unit vector Z' E 3, the map 

'{)z1 : l1E03 E0 a--+ l1E03 E0 a; (X, Z, t) ~ (Jz,X, -pz,Z, t) 

satisfies !.pz, EM. 

Proof This is obvious from our construction in Section 3.2, however we may prove 

the result directly as follows. Since I.{) z, is orthogonal, we need only check that 

'{)z1 (TJ2) E0 Rp) = TJ~,p E0 R'{)z,p 

for all p = (X, Z, t) E .s. By (3.21), 

Jpz,wJz, = -Jz,Jw 

for all WE 3. If v E rJ2) E0 Rp, then 

V = ((u + Jw)(t- Jz)X, (IZl 2 + t2) w, (IZl 2 + t2) u) 

for some u E R, W E 3, so 

!.pz,v = (Jz,(u + Jw)(t- Jz)X, -(IZl 2 + t 2)pz,W, (IZl 2 + t2)u) 

= ((u + Jw, )(t - J_pz,z)Jz,X, (l-pz,Zl 2 + t2 )W', (l-pz,Zl 2 + t2)u) 

E TJ~,p E0 R'{)z1p, 

where W' = -pz,W. Note that we have used the orthogonality of -pz,. D 
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Theorem 3.5 If n = tl EB 3 is a nondegenerate H-type algebra satisfying the J 2 con

dition with dim (3) = 3 ( mod 4), then any graded automorphism of n is the product 

of a dilation with the restriction ton of an element of M. That is, if A E GL(u) 

and BE GL(3) satisfy 

[AX, AY] = B[X, Y] 

for all X, YE n, then if F(X, Z) = (AX, BZ) for all (X, Z) E tl EB 3 we have 

for some>.> 0, m EM, where 

8A(X, Z) = (>.1/ 2 X, >.Z) 

for all (X, Z) E tl EB 3. 

Proof Suppose B = I, that is, 

[AX, AY] = [X, Y] 

for all X, Y E tl. We claim that A intertwines the representation J of C0(q) on 

tl, where q = dim(3). Let {Z1, ... , Zq} denote an orthonormal basis for 3, and let 

Ji = Jzi for i = 1, ... , q. For any 1 :::; i, k ::Sq, X, YE tl we have 

(Zi, [X, Y]) = (JiX, Y) = (JkJiAX, Y) 

= (Zk, [JJkX, Y]) = (Zk, [AJiJkX, AY]) . 
(3.24) 

Replacing X, Y by AX, AY respectively in the first and fourth expressions of (3.24), 

we have 

(Zi, [X, Y]) = (Zi, [AX, AY]) = (Zk, [JJkAX, AY]). 

By the surjectivity of A it follows that 

for all X, YE tl. By the surjectivity of the Lie bracket (on 3), 

for all 1 :::; i, k :::; q as claimed. 
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By the J2 condition, we may write 

m 

where l'.li = RXi EB j(Xi) for i = 1, ... , m, {Xi} being a set of orthonormal vectors 

in t:1, such that { t:li} is a set of equivalent irreducible Clifford submodules. Let 

Since q - 3 (mod 4), we see that K 2 = I and K Ji = JiK for all i = 1, ... , q. Let 

Ki denote the restriction of K to t:li. Since Ki is orthogonal and K'f = I, Ki must 

have an eigenvector Vi with eigenvalue Ei = ±1. By Schur's Lemma, Ki - cJ = 0, 

that is, K = ±I on each l'.li · By the equivalence of the submodules { t:1i}, we see that 

K = ±1 on t:I, thus J1 = ±J2 • • • Jq. Since AJdk = JiJkA for all 1 :S: i, k :S: q, we 

have AJ1 = J1A, thus 

(AJ1X, AY) = (J1AX, AY) = (Z1, [AX, AY]) = (Z1, [X, Y]) = (J1X, Y) 

for all X, YE t:1; the surjectivity of J1 implies that A is orthogonal. Now 

(JzX, Y) = (Z, [X, Y]) = (Z, [AX, AY]) = (JzAX, AY) = (A-1 JzAX, Y) 

for all X, YE t:1, Z E J, whence AJz = JzA for all Z E J. We claim that the map 

ep : t:1 EB J EB a~ t1 EB J EB a; (X, Z, t) 1----+ (AX, Z, t) 

satisfies ep E M. Since ep is orthogonal, this amounts to showing that 

ep (TJ2) EB Rp) = TJ~ EB Repp 

for all p = (X, z, t) E .5. If V E rJ2) EB Rp, then 

V = ((u + Jw )(t - Jz)X, (IZl 2 + t2) w, (IZl 2 + t2) u) 

for some u E R, W E J, so 

epv = (A(u + Jw)(t- Jz)X, (IZl 2 + t 2) W, (IZl2 + t 2) u) 

= ((u + Jw)(t- Jz)AX, (IZl 2 + t 2) W, (IZl 2 + t 2) u) 

E TJ~ EB Repp. 

The result is therefore true in this case with >. = 1. 
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Now suppose that A, B satisfy the hypotheses of the theorem and that det(B) 

is positive. Write 

where T1, T2 are orthogonal and Bo is diagonal with positive eigenvalues >.1, ... , Aq. 

Since det(B) > 0, we can ensure that det(T1) = det(T2) = 1. We may then write T1 

and T2 as the product of an even number of reflections in hyperplanes perpendicular 

to given elements of J, that is, 

for some unit vectors Zii, ... , Zir E J, and similarly for T2 , where pz is (as usual) 

the reflection in the hyperplane (Rz)1-. The identity (3.10) 

[JzX, JzY] = -pz[X, Y] 

for all X, YE t>, Z E J, IZI = 1 implies that (Jz, -pz) is a graded automorphism of 

tJ EB J. Furthermore (Jz, -pz) is the restriction ton of the map (Jz, -pz, I) which 

is in M by Lemma 3.4. Consequently 

(3.25) 

for some m1, m2 EM and Ao E GL(t>), where (Ao, Bo) is a graded automorphism of 

tJ EB J. Now 

(A~JiAoX, Y) = (JiAoX, AoY) = (Zi, [AoX, AoY]) = (Zi, Bo[X, Y]) 

= (BoZi, [X, Y]) = >.i (Zi, [X, Y]) = >.i (JiX, Y) 

for all X, Y E t>, 1 ::; i ::; q, so AiJiAo = >.Ji for all such i. It follows that 

>.i = (det(A0))2 for all 1 ::; i ::; q, where n = dim(t>). That is, Bo = >.I for some 

>. > 0, whence 

where (A1, I) is a graded automorphism of n. The above special case demonstrated 

that (A1, I) = mln for some m E M, thus the result follows in this case. 

Finally, suppose det(B) < 0. Since q = dim(J) is odd, we may write 
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where T1, T2 E S0(3) and Bo is diagonal with negative eigenvalues ..\1, ..\2, ... , Aq < 0. 

As before, 

for some m1, m2 E Mand A0 E GL(u), where (Ao, Bo) is a graded automorphism 

of u EB 3. By the argument following (3.25), we see that ,\f = (det(Ao)) 2 for all 

1 :s; i :s; q, so that B0 = ,\J for some,\ < 0, whence there exists A1 E GL(u) such 

that (A1, -I) is a graded automorphism of 'O EB 3. It follows that Ai JzA1 = -Jz for 

all Z E 3. By a similar argument to one used at the beginning of this proof, we can 

show that 

for all 1 :s; i, k :s; q. It follows that 

where K = J1 · · · Jq as before. We have already demonstrated that K = ±I. It 

follows that 

which is clearly impossible, for if X E 'O \ { 0} then 

which is a contradiction. It follows that det(B) > 0, establishing the result. D 

In light of this theorem and Theorem 3.l(i), we have the following result. 

Corollary Let Autu(n) denote the set of graded automorphisms of n where n is as 

in Theorem 3.5. Then 

Essentially, Pansu's argument shows that any quasiconformal map of the bound

ary of Sp(l, n)/ Sp(n) or F4c-2o)/ Spin(9) has a derivative almost everywhere which, 

where it exists, is a graded automorphism of the tangent space, considered as a 

Lie algebra isomorphic to n. The decomposition of this derivative as the product 

of a dilation and an isometry provides the requisite conformality. See [Pu] for details. 
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Chapter 4 

The Geometry of the Spaces 

Constructed 

In this chapter we examine the Riemannian geometry of the symmetric spaces con

structed, finding the geodesics and two formulae for distances in B. We also define 

distance formulae on the boundaries of B and D and establish that the Cayley trans

form extends to a quasiconformal map with respect to these distances. Except where 

noted we assume that n = tJ E9 3 is an H-type algebra satisfying the J 2 condition. 

4.1 Geodesics and Distance Formulae 

In the previous chapter we defined a Riemannian metric on B, the unit ball of 

s = tJ E9 J E9 a. In this section we find the associated geodesics and two equivalent 

formulae for the distances in B. One of these distance formulae is not a priori sym

metric; the other uses the J2 condition to provide the symmetry. 

Let ~ denote the orthogonal projection onto 3. For any p E s = tJ E9 J E9 a, let 

PP denote the orthogonal projection onto Rp E9 rJ2). (See (3.18) and (3.19).) 

Definition For any Pi = (Xi, Zi, ti) E s, i = 1, 2, 3, where X 3 =/:- 0, we define the 

J-product {P1,P2}v3 to be the element of J such that 

(4.1) 
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Note that {P1,P2}v3 exists, for if Z1 = Z~ EB Zf with Z~ = (Z1, Z2) IZ2l-2 Z2, then 

(Z1, Z2) 2 
Jz1 Jz2 X3 = Jz~1 Jz2X3 + IZ2l2 Jz2 X3 = Jz111 X3 - (Z1, Z2) X3 

for some Z"' E 3 by the J2 condition, noting that zr J_ Z2 and that Ji2 = - IZ21 2 I. 

We now establish a series of technical lemmas. 

Proof By the selfadjointness of the projection operator Pv2 , 

. R rri(2) smce P2 E P2 EB .1.v2 . D 

Lemma 4.2 For all t ER, Z E 3, X, YE tl, we have 

(t2 + IZl2) ( (X, Y)2 + l[X, Y]l2) = (X, (t + Jz)Y)2 + l[X, (t + Jz)Y]l2. 

Proof The result is trivial if X = 0, so we assume otherwise. Express Y in the 

form aX + JzX + Y' for some a ER, Z E 3, Y' E (RX EB j(X)).L. For any WE 3, 

we have 

(W, [X, Y']) = (JwX, Y') = 0, 

that is, [X, Y'] = 0. It follows that 

[X, Y] = [X, JzX] = 1x12 z 

by equation (3.9). This implies that 

Since 

l[X, Y]l2 = (J[X,Y]X, Y) = 1x12 (P;(x)Y, Y)' 

we see that 

(X, Y)2 + l[X, Y]l2 = 1x12 (PRXEBj(x)Y, Y) = IYl 2 (PaYEBj(Y)x,x) 

by symmetry. Replacing Y by ( t + J z) Y, the result follows by the J2 condition. 

D 
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Lemma 4.3 Let Pi= (Xi, Zi, ti) E .s, i = 1, 2. If X E u\ {O}, then 

l{P1,P2}xl2 = IZ1l 2 IZ212 - (Z1, Z2)2. 

Proof By definition, 

Jz1 Jz2X = J{p1,P2}xx - (Z1, Z2) X, 

however (J{pi,v2}xX, X) = 0 and IJz1 Jz2XI = IZ1I IZ2I IXI, from which the result 

follows easily. D 

Lemma 4.4 Under the hypotheses of Lemma 4-3, ({P1,P2}x, Zi) = 0 for i = l, 2. 

Proof We have 

since (Jz,Y, Y) = 0 for any YE tJ, Z' E 3. Furthermore the identity 

Jz1 Jz2 + Jz2Jz1 = -2 (Z1, Z2) I 

implies that 

J{v2,vi}xX - (Z1, Z2) X = Jz2Jz1X = -Jz1 Jz2 X - 2 (Z1, Z2) X 

= -J{v1,v2}xX - (Z1, Z2) X, 

that is, {P1,P2}x = -{p2,P1}x which completes the proof (by symmetry). D 

Lemma 4.5 Under the hypotheses of Lemma 4-3, if X1, X2 -=I 0, then 

for i = l, 2. 

Proof Now 

({P1,P2}v2, [X1, X2]) = - (J{P1,v2}p2X2, X1) 

= - (Jz1 Jz2X2 + (Z1, Z2) X2, X1) 

= (Jz1X1, Jz2X2) - (Z1, Z2) (X1, X2). 

Since 

the result follows by relabelling. D 

The following result links the two forms of the distance formula given in Theo

rem 4.10. 
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Theorem 4.6 For any P1,P2 Es, P2 =/:- 0, Pi= (Xi, Zi, ti) for i = 1, 2, 

1(1 - (p1,P2)) H + ~ [p1,P2] + {p1,P2}pl = I IP2I Pp2Pl - ,::,I, 
where p = P1 or P2 if X1, X2 =/:- 0, or p Es\ {0} is arbitrary if either X1, X2 = 0. 

Proof The square of the left-hand expression is 

(1- (P1,P2))2 + I~ [p1,P2] + {P1,P2}pl2 

= 1 - 2 (p1,P2) + (p1,P2)2 + I~ [p1,P2] + {P1,P2}pl2, 

whereas the square of the right-hand expression is 

IP2l 2 IPp2P1l2 - 2 (1P2I Pp2Pl, ,::,) + 1 = IP2l2 IPp2P1l2 - 2 (p1,P2) + 1 

by Lemma 4.1. We need only show that 

IP2l2 IPp2P1l2 = (p1,P2)2 + I~ [p1,P2] + {P1,P2}pl2 · 

If (Z2 , t2) =/:- 0 then an orthonormal basis for Rp2 EB rJ;) is given by the vector 

{ c ( (t2 - Jz2 )X2, 0, IZ21 2 + tD} 

and the vectors 

{ c (JY.(t2 - Jz2 )X2, (IZ212 + tD ~, 0), i = 1, ... , q} 

(4.2) 

where q = dim(J), c = (IZ212 + t~)-112 IP2l-1 and {~};=1 is an orthonormal basis 

for J. (Note that IJY.(t2 - Jz2)X2I = l~I lt2H - Z2I IX2I = (IZ21 2 + t~) 112 IX2I-) It 
follows that 

IPP2P11 2 = c2 [ ( (X1, (t2 - Jz2)X2) + t1 (IZ21 2 + t~) )2 
q 

+ L ( (X1, JY.(t2 - Jz2)X2) + (IZ212 + t~) (Z1, ~) )2] 
i=l 

=,? [(x,, (t2 - Jz,)X2)2 + t, (Y;, [X,, (t2 - Jz,)X2])' 

+ 2t1 (IZ212 + t~) (X1, (t2 - JzJX2) 
q 

+ 2 (IZ212 + t~) L (Z1, ~) (~, [(t2 - Jz2 )X2, X1]) 
i=l 
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= c2 [ (X1, (t2 - Jz2)X2)2 + l[X1, (t2 - Jz2)X2]i2 

+ 2(IZ212 + t~) (t1 (X1, (t2 - Jz2)X2) - (Z1, [X1, (t2 - Jz2)X2])) 

+ (ti + IZ112) (IZ21 2 + t~) 2] 

= IP2l-2 [ (X1, X2)2 + l[X1, X2]12 + 2 ((t1 - Jzi)X1, (t2 - Jz2)X2) 

+ (IZ112 + tD (IZ2l2 + tD] 

by Lemma 4.2. This expression also holds if (Z2 , t2 ) = 0, for then 

Rp2 EB TJ;) = RX2 EB j(X2). 

An orthonormal basis for this subspace is given by 

{cX2} U {cJY;X2, i = 1, ... , q} 

where c = IX2l-1 = IP2l-1. Then 

IP,,p,I' - c' [ (x,, x,)' + t, (x,, i,,.x,)'] 

- c2 [(X1,X,)2 + t ("Y;, [X,,X,])'] 

= IP2l-2 [(X1,X2)2 + l[X1,X2]12] · 

Since ~[p1,P2] = t1Z2 - t2Z1 + [X1,X2], we have 

(P1,P2)2 + l~[p1,P2] + {P1,P2}pl2 

=tit~+ (Z1, Z2)2 + (X1, X2)2 + 2t1t2 (X1, X2) + 2t1t2 (Z1, Z2) 

+ 2 (Z1, Z2) (X1, X2) + l{P1,P2}pl2 + ti IZ212 + t~ IZ11 2 

+ l[X1, X2]i2 - 2t1t2 (Z1, Z2) + 2t1 (Z2, [X1, X2]) 

- 2t2 (Z1, [X1, X2]) + 2t1 (Z2, {P1,P2}p) 

- 2t2 (Z1, {P1,P2}p) + 2 ([X1,X2], {P1,P2}p) 

= (ti + IZ1i2) (t~ + IZ21 2) + (X1, X2)2 + l[X1, X2]1 2 

+ 2 ((t1 - Jz1 )X1, (t2 - lz2)X2) 

= IP2l2 IPp2P1l2 

by Lemmas 4.3, 4.4 and 4.5, noting that the term ([X1, X 2], {p1,p2}p) = 0 if either 

X1 or X2 are zero whereas the other terms involving {p1,p2}p are independent of p. 

That is, ( 4.2) holds and the result is established. D 
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Before we identify the geodesics of B, we develop two more lemmas. 

Lemma 4.7 Given X E u\ {O}, there exists k' E K such that k'(RX) = a and 

k'(j(X)) = 3. 

Proof By Corollary 6.7 of [CDKR2], if k' = exp ( i (ox+ X )-) where X denotes 

the unit vector X / IX I, then k' is represented by 

0 0 0 0 0 0 -1 

0 0 0 0 -1 0 0 

0 0 0 0 0 -adXt 0 

0 0 0 I 0 0 0 

0 1 0 0 0 0 0 

0 0 adX 0 0 0 0 

1 0 0 0 0 0 0 

with respect to the coordinates 

RX EB RJwX EB (j(X) 8 RJwX) EB t(X) EB RW EB (3 8 RW) EB a 

where W E S3 is arbitrary. The lemma follows trivially. 

Lemma 4.8 If t ER, t' = (1 - t)/(1 + t) and X E l'l, then 

at,(tH + X) = l X. 
v'l - t2 

D 

Proof This follows readily from the formula for au given in Section 3.1.2, however 

we may easily calculate it directly. In fact, if C is the Cayley transform given in 

(3.14), then 

( 2 ( 1 - t) 1 - t2 ) ( 2 1 ) 
C(X, 0, t) = (1 - t)2 X, 0, (1 - t)2 = 1 - t X, 0, t' ' 

whence 

at,C(X, 0, t) = --X, 0, - = -----;:::=:::;:X, 0, 1 ( 2,Jii t') ( 2 ) 
1 - t t' v'l - t2 

and 

- ( -1 1 ( 4 ) 1 at, X, 0, t) = C at,C(X, 0, t) = -4 v'f=t2X' 0, 0 = v'f=t2X 
1 - t 2 1- t 2 

as claimed. D 

We now describe the geodesics of B. As one would expect, Theorem 4.9 below 

is consistent with Theorems 1.5 and 1.11. 

79 



Theorem 4.9 The geodesic through PI,P2 E .s, PI =I P2 is the circular arc through 

PI and P2 contained in 

which is orthogonal to ~ n S5 • 

Proof This result has already been established in the case when l'J = 0, for then 

~ = JEBa and.sis isomorphic to Bn with the Poincare metric, where n = dim(JEBa). 

We therefore assume that l'J # 0. There exists k EK such that k(p2 - PI)= X E l'J. 

Let II = kpI + (RX EB j ( X)). By linearity, if w E II such that w ..L (RX EB j ( X)), then 

II= w+(RXEBj(X)). Let k' be as in Lemma 4.7. By transitivity, there exists m EM 

such that mk'w = k'(tH) for some t E R. The composition (k')- 1mk' sends RX 

and j(X) to themselves and w to tH, hence II'= (k')-Imk'(II) = tH + (RX +j(X)). 

Now let t' = (1 - t)/(1 + t). By Lemma 4.8, 

at,(tH + sX + Jz,X) = ~(sX + Jz,X) 
1 - t2 

for all s E R, Z' E J. It follows that k'at,II' = J EB a. We claim that B3ea is 

totally geodesic in B5 • To see this, note that the isometry (e-IC) maps B3ea onto 

{0} x J x R+ CS; here C is the Cayley transform and 8: .5-----+ .5 is the map 

1 2 
8(X,Z,t) = (X,Z,t+ 4 IXI) 

for all (X, Z, t) E ll + J + a as given in Section 3.1.2. By an argument similar to the 

proof of Proposition 2.1 of [CDKR2], we need only show that 

([T, U], U) = 0 

for all U = (0, Z, t), T = (X, 0, 0), with Z E J, X E l'J and t > 0. This holds, for 

([T, U], U) = ( 1tx, (0, Z, t)) = 0. 

The restriction of the metric on B5 to B3ea is the Poincare metric on B39a, for if 

p E J EB a then rJ2) EB Rp = J EB a. It follows that the geodesic through k"PI and k"p2 

is the circular arc through these points intersecting S39a orthogonally, where 
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Since k', k and m are all orthogonal maps which satisfy 

f (TJ2) + Rp) = Tj~) + Rf(p) 

for all p E B5 , f = k', k, m, and also since lit, : tH + (X EB j(X)) -+ X EB j(X) is 

effectively a scaling by (1 - t2)-112 , the result follows. D 

We now establish the asymmetric distance formula. 

Theorem 4.10 The distance function on B5 is given by 

Proof We first consider the case when tJ = 0. In this case, since rJ;) EBRp2 = 3EBa, 

we have Pp2P1 = Pt· Now s is isomorphic to Bn with the Poincare metric, where 

n = dim(3 EB a). Using the identity 

cosh-1(1 + 2a) = 2cosh-1 Jf+a 

which holds for all real a, we have 

as required. 

Now assume tJ # 0. Let w, X, t, k, k', m, t', k" be as in the proof of the previ

ous theorem. We show that d is preserved under f = k, k', m, k". For such f, 
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l/(PI)I = IPII, lf(P2)I = IP2I and (/(PI), /(p2)) = (pI,P2) by the orthogonality of f. 

Furthermore, since Pf(p2)/(PI) = f(Pp2PI), 

again by the orthogonality of f, therefore d is indeed preserved under f. Now the 

expression for d is correct when PI, P2 E 3 EB a as seen above, thus to complete the 

proof, we need only show that 

that is, dltH+u is preserved under iit'· Since 

for any X3 E t:1\{0}, Theorem 4.6 implies that we need only show that 

(l -t2 - (XI,X2))2 + l[XI,X2]12 (1- (-\XI, AX2))2 + l[-\XI, AX2]i2 
(1 - t2 - IXIl2) (1 - t2 - IX21 2) = (1 - j-\XIl2) (1 - j-\X212) 

where A= (1 - t2)-I12 . This equation follows trivially by linearity. D 

Note that Theorem 4.6 may be used to give the symmetric form of this formula, 

namely 

where p = PI or P2 if XI, X2 =I 0, or p E .s\ {0} is arbitrary if either XI, X2 = 0. 

4.2 The Boundary 

In this section we define a distance function on the boundary S5 of B. The J2 
condition is crucial in showing that the function is indeed a distance function. In 

fact the function is not even symmetric if the J2 condition does not hold. We 

also demonstrate that if the J2 condition does hold then the Cayley transform 

C : B --+ D, when extended to the boundary, is 1-quasiconformal with respect to a 

natural distance function on the boundary of D. 
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4.2.1 The Boundary of B 

We begin with a technical inequality. 

Lemma 4.11 If PIE 3 EB a and P2 E tJ, then 

for all p E .s. 

Proof If either of PI or P2 is 0, the result clearly holds. Assume that PI,P2 =I 0. 

Let p = (XI, ZI, tI) and PI= (0, Z2, t2). By (4.2), 

IPI + P2l2 IPv1+v2Pl2 = (XI,P2)2 + l[XI,P2Jl2 + 2 ((tI - Jzi)XI, (t2 - Jz2)P2) 

+ (IZil2 + t2) (IZ212 + t~) 

IPil2 IPv1Pl 2 = (IZil2 + tD (IZ2l2 + tn 
IP2l2 IPp2Pl 2 = (XI,P2)2 + l[XI,P2]l2 · 

This implies that 

(IPII IPv1PI + IP2I IPv2Pl)2 

= (xI,P2)2 + 1[x1,P2J12 + (1z112 + tD (1z212 + tn 
+ 2J ( (x1,P2)2 + 1[x1,P2J12) (1z112 + tD (1z212 + tn 

= (X1,P2)2 + l[X1,P2]l2 + (IZil2 + tD (IZ212 + t~) 

+ 2V((t1 - Jz1)X1, (t2 - Jz2)P2)2 + l[(tI - Jz1)XI, (t2 - Jz2)P2Jl2 

2:: (x1,P2? + 1[xI,P2J12 + (1zI12 + tD (1z21 2 + tn 
+ 2 ((t1 - Jz1 )X1, (t2 - Jz2)P2) 

= IP1 + P2l 2 IPv1+v2Pl 2 

by Lemma 4.2. 

Theorem 4.12 Define db: S5 x S5 ---+ R by 

for all PI, P2 E S5 • Then db is a distance function on S5 • 
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Proof If P1,P2 E Ss, then 

In this case, write P1 = p~ EB pf, where p~ E TJ;) EB Rp2. It then follows that 

sop~= P2- Then 

whence pr = 0 and P1 = P2· Since db is nonnegative, it is therefore positive definite. 

Also, the symmetry of db follows from Theorem 4.6 and the anticommutativity of 

[·,·]and{·, ·}x (see Lemma 4.4). It remains to verify the triangle inequality. 

Let u, v, w E S5 • Using an isometry k EK, which preserves db by Theorem 4.10 

and orthogonality, we may assume that u = H. Now writing v = (v2, Z2, t2) and 

w = w1 EB w2 EB W3, with w1 E J EB a and w2 E Rv2 EB j(v2) = Rv2 EB TS;), we see that 

where v1 = (Z2, t2) E J EB a, and 

Lemma 4.11, with P1 = v1, P2 = v2 and p = u - w gives 

IPv(u - w)I ~ lv1I 1Pv1 (u - w)I + lv2I IPv2 (u - w)I 

= lv1I lu - w1I + lv2l lw2I 

by the triangle inequality for the inner product space l1 EB J EB a, and similarly 

84 



It follows that 

lv212 lw212 = (1 - lv112) (1 - lw112 - lw312) 
~ (1 - lv112) (1 - lw112) 
~ 4 lu - vii lu - w1I 

= 116 (db(u, v))2(db(u, w) )2• 

By the triangle inequality for tJ EB J EB a and the fact that lv11 ~ 1, we have 

1 
8(db(v, w)) 2 = IPvw - vl 

~ Iv- Pvul + IPvu- Pvwl 

= Iv - Pvul + IPv(u- w)I 

~ i(db(u,v)) 2 + lv1I lu- w1I + lv2I lw2I 

~ i(db(u, v))2 + i(db(u, w)) 2 + i(db(u, v))(db(u, w)) 

1 2 = 8(db(u, v) + db(u, w)) , 

establishing the triangle inequality for db, hence db is indeed a distance function on 

S5 • D 
Since the preceding proof requires the J 2 condition, it is natural to ask whether 

the function db is a distance function in the case of H-type algebras not satisfying 

this condition. In fact db is not even symmetric if the J 2 condition does not hold. 

Theorem 4.13 Let n = tJ EB J denote an H-type algebra and .s = n EB a where a is 

one-dimensional. Assume that n does not satisfy the J2 condition. Then the map 

db: S5 x S5 -+ R defined in the statement of Theorem 4.12 is not symmetric. 

Proof Since 

the function db is symmetric if and only if 
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Since the J2 condition does not hold, we can find orthonormal vectors Z1, Z2 E 3 

and X E tJ such that Jz1 Jz2 X (/. RX EB j(X). As 

we may set 

where Z3 E 3 is a unit vector, 0::; k <land YE (RX EBj(X)).1. Then Z3 ..l Z1, Z2, 

since 

Extend Z1, Z2 , Z3 to an orthonormal basis {Zi};=1 for 3. Set P1 = c(X + H) and 

P2 = c(Jz2 X + Z1), where c = 2-1/2 • Then 

Rp1 EBTJ;> = {((u+ Jw)X, W,u): u ER, WE 3} 

for which an (ordered) orthonormal basis is given by 

It is clear that p2 is orthogonal to all but the second and third vectors of this basis, 

giving 

In particular, 

On the other hand, 

Rp2 EB TJ;> = {((u + Jw )(-Jz1 )Jz2 X, W, u): u ER, WE 3} 

for which an (ordered) orthonormal basis is given by 

where vi = c(-JziJz1 Jz2 X, Zi, 0) for i = 3, ... , q. We denote the first three vectors 

of this basis by v0 , v1 and v2 respectively. Since 
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we see that p1 is orthogonal to V1 and v2 and that (vo,P1) = ½- Furthermore, for 

i = 3, ... , q, we have 

1 1 
(vi,Pt) = 2 (-JziJz1 Jz2 X,X) = - 2 (Jzi(kJz3 X + Y),X) 

1 k 
= 2 (kJz3 X + Y, JziX) = ·t5i3· 

It follows that 

so that 

In particular, 

so db is not symmetric. D 

4.2.2 The Boundary of D and the Cayley Transform 

In t, x 3 x a, the set 

8Do = { (X, z, t) : t = ~ IXl4 } 

is evidently the boundary of D. The Cayley transform C defined in (3.14) extends 

to a bijection 8B \ { H} -----+ 8D0 given by the same formula. In order to define 

C at the point H E 8B, we denote the one point compactification of 8D0 by 

8D = 8D0 U { oo} and define C(H) = oo. The map u defined in (3.16) extends 

to a map 8D-----+ 8D given by the same expression and the conditions u(e) = oo and 

u(oo) = e, where e = (0,0,0). We now identify 8D0 with N ,..._, t, x 3 by restricting 

the map (X, Z, t) i---+ (X, Z). The image of e, also denoted by e, is the identity 

element of N. We identify 8D with N U { oo} in the same way. The boundary 

extension of u is now regarded as a map on N U { oo} satisfying 

u(e) = oo, u(oo) = e 
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,;(X, Z) = B-1 ( e~I' + Jz) X, -Z) 
for all (X, Z) =I- (0, 0), where 

B(X, Z) = l~t + IZl2 • 

(4.3) 

Similarly we regard the extended Cayley transform Casa map from 8B to NU{oo} 

given by 

C(0, 0, 1) = C(H) = oo 

and 

1 
C(X, Z, t) = 2 (2(1 - t + Jz)X, 2Z) 

(1- t) 2 + IZI 
for all (X, Z, t) E 8B\{H}. 

The Campbell-Baker-Hausdorff formula shows that multiplication in N is given 

by 

(X, Z)(X', Z') = (x + X', Z + Z' + ~[X, X']) 

for all (X, Z), (X', Z') E tJ x J. Equip N with the left-invariant distance dN defined 

by 

( 
4 ) 1/4 

dN(e, (X, Z)) = I~~ + 1z12 = (B(X, Z)) 114 . 

We may extend this distance to N U { oo} by setting d(x, oo) = oo for all x E N. 

We shall show that the extended Cayley transform is a 1-quasiconformal map with 

respect to the distances db and dN on 8B and N U { oo} respectively. The map 

f : (X, dx) -t (Y, dy) between metric spaces X and Y is said to be A-quasiconformal 

at the point x E X, where ).. > 1, if for all c > 0 and all sufficiently small r > 0, 

there exists R > 0 such that 

B(f (x), R) ~ f(B(x, r)) ~ B(f (x), ().. + c)R). 

That is, the image of a small ball centred at x is contained within two balls centred 

at f(x), the ratio of whose radii is nearly bounded by )... The map / is said to be 

A-quasiconformal if it is A-quasiconformal at all x E X. We extend this definition 
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in the case where X or Y is N U { oo} in the following way. The map f is said to 

be A-quasiconformal at oo if f u is A-quasiconformal at e. We use the map u in a 

similar way to define A-quasiconformality at a point x such that f(x) = oo. 

In order to prove the 1-quasiconformality of C, we first demonstrate that the 

inversion u : N U { oo} ---+ N U { oo} is 1-quasiconformal with respect to d N. In fact 

Theorem 5.1 of [CDKR] asserts (amongst other things) the equivalence of the J2 
condition holding and the A-quasiconformality of u, for some A 2: 1. The following 

lemma shows that we may take A = 1. 

Lemma 4.14 The map u : (NU { oo }, dN) ---+ (NU { oo }, dN) defined in (4.3) above 

is 1-quasiconformal. 

Proof That u is 1-quasiconformal at the points e and oo is obvious from the 

definition and the fact that u is an involution. The lemma now follows from formula 

(3.3) in [CDKR] which holds whenever the J2 condition holds: 

(4.4) 

for all n, n' E N* = N\ { e}. In terms of the distance dN, taking fourth roots of this 

equation gives 

d ( ( ) ( ')) dN(n,n') 
N u n , u n = d ( )d ( , ) 

N n,e N n ,e 

for all n,n' EN*. If we fix n EN* with dN(n,e) = K, and allow n' to vary subject 

to dN(n, n') = c where c < K, then by the triangle inequality we have 

K(: + c) ~ dN(u(n), u(n')) ~ K(:- c) 

which clearly establishes the lemma. 

In order to prove (4.4) we follow the proof of Theorem 4.2 of [CDKR]. In partic

ular, let 

Then 

and 

1x12 
A(X, Z) = - 4- + Jz and - 1x12 

A(X, Z) = - 4- - Jz. 

A(X, Z) A(X, Z) = A(X, Z) A(X, Z) = B(X, Z) 

u(X, Z) = (B(X, z))-1(-AX, -Z) 
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for all (X, Z) E N*. Now if n = (X, Z), n' = (X', Z') and A, A', A, A', B, B' 
are abbreviations for A(X, Z), A(X', Z'), A(X, Z), A(X', Z'), B(X, Z), B(X', Z') 
respectively, a simple calculation (see [CDKR] for details) gives 

B(n-1n') = B' + B + ~( (X, X')2 + l[X, X']l2 

+2 cx1:~X'I' - (Z,Z'))-(.Ax•,x)- (AX,X'). 

(Note that the conjugation bars over A and A' were incorrectly omitted in formula 

(4.5) of [CDKR].) We now apply this formula to a(n) and a(n') in place of n and 

n' respectively, and use the formulae B(a(n)) = B(n)-1, jB-1AXj 2 = B-1 IXl 2 and 

which are easily established. We obtain 

B( a( n t 1a( n')) 

- B-'(BT' ( B' + B + B-'~')-' ( (AX,.Ax')' + l[AX,.Ax'JI') 

+2 cx1:~X'I' -(Z,Z'))-(A'X',X)-(AX,X')) 

Formula (4.4) now follows from Lemma 4.2. D 

Recall that G denotes the full group of isometries of D. 

Lemma 4.15 Let G0 denote the connected component of the identity of G. Let G1 

denote the subgroup of G generated by N and a. Then Go~ G1. 

Proof It suffices to show that there is no proper Lie subalgebra g' of g containing 

n and 0n, where 0 : g ---+ g is the differential at the identity of G of the involution 

g 1-+ aga. Proposition 4.7(ii) of [CDKR2] asserts that [X, 0X] = - IXl2 H for all 

X E tJ, whence g' contains a. By Lemma 4.l(iii) of [CDKR2], p = aEB(J-0)n where 

p is the -1 eigenspace of 0. This implies that pc g'. In the proof of Theorem 4.6 

of [CDKR2] it is established that [p, p] = t, where t is the Lie algebra of K, the 

stabiliser subgroup of (0, 0, 1) E D. (In fact, t is the +1 eigenspace of 0.) This 

implies that t C g'. Finally, since g = t EB p, we conclude that g' = g as claimed. 

D 
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Corollary The group Go acts 1-quasiconformally on ( N U { oo}, dN). 

Proof By Lemma 4.14, u is 1-quasiconformal. Furthermore N acts isometrically 

on itself with respect to dN. Since isometries are 1-quasiconformal and any com

position of 1-quasiconformal maps is itself 1-quasiconformal, the corollary follows. 

D 

Recall that we use the Cayley transform to transfer isometries of D to isometries 

of B, that is, 

for any isometry g : D ---+ D. 

Lemma 4.16 Let Go denote the connected component of the identity of G. Then 

the group K n Go acts transitively on the boundary N U { oo}. 

Proof By the remarks preceding the statement of this lemma, we may instead 

establish that K0 = (Kn G0f acts transitively on 8B. Fix a point p E 8B. Since 

K is compact and Go is closed, Ko is compact, therefore the orbit of p is closed in 

8B. Since k is a finite cover of Ko and the orbit of p under k is the whole of 8B, 

we conclude that the orbit of p is open in 8B, hence is the whole of 8B. D 

Theorem 4.17 The extended Cayley transform C: (8B,db)---+ (NU {oo},dN) is 

1-quasiconformal. 

Proof It suffices to demonstrate the 1-quasiconformality of Cat the point -Hof 

8B; for suppose that C is indeed 1-quasiconformal there. Let p E 8B be arbitrary. 

By Lemma 4.16, there exists k E K n Go such that k( - H) = p. Furthermore k, 
considered as a map from 8B to itself, is an isometry with respect to db. (This follows 

from the orthogonality of k and the relationship between the interior distance d ( on 

B) and db.) Since C = kCTc-1 , Tc-1 is 1-quasiconformal at p, C is 1-quasiconformal 

at-Hand k is 1-quasiconformal ate EN,.,.., 8B (by the corollary to Lemma 4.15), 

we conclude that C is 1-quasiconformal at p. 

We therefore need only check the 1-quasiconformality of C at q = -H E 8B. 

Fix c > 0 and take p = (X, Z, t) E 8B such that db(P, q) = c. We have 

c = db(P, q) = 2v'2 IPqp - ql 1/ 2 

= 2v'2 l(0, Z, t) - (0, 0, -1)1112 

= 2v'2(1Zl2 + (t + 1)2) 114, 
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or 

4 

1z12 = : 4 - (t + 1)2 = 484 - (t + 1)2, 

where we have made the substitution 8 = c / 4. Let 

2 
(X1, Z1) = C(p) = 2 ((1 - t + Jz)X, Z). 

(1- t)2 + IZI 

We have 

since C(q) = (0, 0). Since IXl2 + IZl2 + t2 = 1, 

while 

Thus 

I 14 _ 16((1 - t)2 + 1z12)2 IXl4 
X1 - ---'------

((1 - t)2 + 1z12)4 

_ 16(1 - t2 -1z12)2 

- ((1 - t)2 + 1z12)2 

_ 16(1 - t2 - 484 + (1 + t)2) 2 

- ((1 - t)2 + 484 - (1 + t)2)2 

16(2(1 + t) - 484 ) 2 

-
(484 - 4t)2 

IZ1l2 = 4 IZl2 
((1 - t)2 + 1z12)2 

4(484 - (t + 1)2) 
-

(484 - 4t)2 

d4 =_!_IX 14 IZ 12 = (2(1 + t) - 484)2 + 4(484 - (t + 1)2) 
16 1 + 1 (484 -4t)2 

84 
= 84-( 

For c (hence 8) sufficiently small, t < 0. From 

1z12 + t2 ~ 1 and 1z12 + (t + 1)2 = 484 
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we obtain 

t2 - ( t + 1) 2 ~ 1 - 484, 

or 

Also 

(t + 1)2 ~ 484 

gives 

-t ~ 1- 282 

since t + 1 ~ 0. Using these estimates, we see that 

84 84 
d4 < ----- - ----,-

- 84 + (1 - 282) (1 - 82)2 

and 

84 84 
d4 > -

- 84 + ( 1 - 284 ) 1 - 84 . 

Since the ratio of these two quantities tends to 1 as 8 ---+ 0, the map C is indeed 

1-quasiconformal at - H. D 
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Appendix A 

Triality Calculations 

In Section 2.4.4 we linked the triality automorphism of Spin(8) with the Lie alge

braic properties of .so(8), in particular the roots thereof. In this appendix we present 

some of the calculations involved. 

The Lie algebra g = .so(8) of G = S0(8) consists of all real skew-symmetric 

matrices. A basis is given by 

{ X;k : 0 $ j < k $ 7}, 

A maximal torus t is spanned by {lj}J=o where 

Yj = X2;,2;+1 

for j = 0, 1, 2, 3. If H = E]=o a; Yj E t for reals a 1, a 2, a 3, a4 , then 

[H, X2;,2k] = -a;X2;+1,2k - akX2;,2k+1 

[H, X2;,2k+1] = -a;X2;+1,2k+1 + akX2;,2k 

[H, X2;+1,2k] = a;X2;,2k - akX2;+1,2k+1 

[H, X2;+1,2k+1] = a;X2;,2k+1 + akX2;+1,2k 

for all 0 $ j < k $ 3, whereas [H, lj] = 0 for all j = 0, 1, 2, 3. This implies that the 

roots are given by 

with root spaces spanned by 
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corresponding to the roots ±i(1'j* + Yt) and 

corresponding to the roots ±i(Y;* - Yt), for O::; j < k::; 3. 

Let the positive roots be given by 

1 ::; j < k ::; 4, 

where Yt = Yo for convenience. (The subscripts in Xi,k should be taken modulo 8 

in order to comply with this renumbering.) An ordered basis is then given by 

denoted a 0, a 1, a2, a3 respectively. The Dynkin diagram is depicted in Figure 2.1. 

Let e be the rotation of it* defined by 

and extended by linearity. Clearly e is of order 3 and is given by 

1 1 1 -1 

1 1 1 -1 1 
-
2 1 -1 1 1 

1 -1 -1 -1 

with respect to the basis { iYi*, iY2*, iY;(, iY.i*}. By a slight abuse of notation, we 

may regard e as a map on t by defining it to be induced by the same matrix with 

respect to the basis {Y1, Y2 , Y3 , Yt} of t. We wish to extend e to a Lie algebra 

automorphism of all of g. If Z0 is a vector in the root space R0 for the root a in 

the complexification of g, then [H, Z0 ] = a(H)Z0 for all HE t. As e is to be a Lie 

algebra automorphism, 

[8H, 8Z0 ] = a(H)8Z0 = ( (e-1)* a) (8H)8Z0 = (8a)(8H)8Z0 

since e is orthogonal. This implies that 

for all roots a. Clearly we need only ensure that this holds for all positive roots. 

For the positive roots a= i(Y;* + Yk*), 1 ::; j < k ::; 4, define 
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and for the positive roots i(}7 - Yt), 1 :::; j < k:::; 4, define 

Xo: = s(X2j,2k + X2i+1,2k+1), 

where s = 1 except when (j = 1 and k = 3) or (k = 4) in which cases= -1; and 

t = 1 except when j = 1, k = 2 in which case t = -1. It is easy to verify that in all 

cases, 

Extend 8 to all of g by requiring that 

and 

for all positive roots a and extending by linearity. It is easy to verify that 8 is a 

Lie algebra automorphism of order 3. In fact a calculation shows that 

for all O :::; j < k :::; 7, where 11 is given in Section 2.4.1 and { e0 , .•• , e7} is the 

standard basis of R 8 . 

96 



Bibliography 

[B] A.D. Banner, Hyperbolic Geometry and Mostow Rigidity, Pure Mathe

matics Honours Thesis, U.N.S.W., 1996. 

[C] M. Cowling, Unitary and uniformly bounded representations of some sim

ple Lie groups, in Harmonic Analysis and Group Representations, 49-128, 

C.I.M.E. II ciclo (1980). Liguori, Napoli (1982). 

[CDKR] M. Cowling, A.H. Dooley, A. Koranyi and F. Ricci, H-type groups and 

Iwasawa decompositions, Adv. Math. 87 (1991), 1-41. 

[CDKR2] M. Cowling, A.H. Dooley, A. Koranyi and F. Ricci, An approach to sym

metric spaces of rank one via groups of Heisenberg type, to appear, J. 

Geom. Analysis. 

[E] 

[GdlH] 

D.B.A. Epstein, Complex hyperbolic geometry, in Analytical and Geomet

rical Aspects of Hyperbolic Space, edited by D.B.A. Epstein, Cambridge 

Univ. Press, Cambridge, (1987), 93-111. 

E. Ghys, P. de la Harpe, (eds.), Sur les Groupes Hyperboliques d'apres 

Mikhael Gromov, Progress in Mathematics, Vol. 83, Birkhauser, Boston, 

1990. 

[H] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, 

Pure and Applied Mathematics, Academic Press, New York, 1984. 

[J] N. Jacobson, Structure and Representations of Jordan Algebras, Amer. 

Math. Soc. Coll. Puhl., Vol. 39, Amer. Math. Soc., Providence, 1968. 

[L] 0. Loos, Symmetric Spaces II: Compact Spaces and Classification, W.A. 

Benjamin, Inc., New York, 1969. 

97 



[M] G.D. Mostow, Strong Rigidity of Locally Symmetric Spaces, Ann. of Math. 

Studies, Vol. 78, Princeton Univ. Press, Princeton (1973). 

[Pu] P. Pansu, Metriques de Carnot-Caratheodory et quasiisometries des es

paces symetriques de rang un, Ann. of Math. 129 (1989), 1-60. 

[Ps] I.R. Porteous, Clifford Algebras and the Classical Groups, Cambridge 

Stud. in Adv. Math., Vol. 50, Cambridge Univ. Press, Cambridge, 1995 

[R] 

[Rml] 

[Rm2] 

[S] 

[T] 

J.G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer-Verlag, New 

York, 1994. 

C. Riehm, The automorphism group of a composition of quadratic forms, 

Trans. Amer. Math. Soc. 269 (1982), 403-414. 

C. Riehm, Explicit spin representations and Lie algebras of Heisenberg 

type, J. London Math. Soc. 29 (2) (1984), 49-62. 

L. Saal, The automorphism group of a Lie algebra of Heisenberg type, 

Rend. Sem. Mat. Univ. Pol. Torino 54 (2) (1996), 101-113 

R. Takahashi, Quelques resultats sur l'analyse harmonique dans l'espace 

symetrique non compact de rang un du type exceptionnel, in Analyse 

Harmonique sur les Groupes de Lie II, Lecture Notes in Math. 739, 511-

567. Springer-Verlag, New York 1979. 

98 


	Title Page : THE GEOMETRY OF SYMMETRIC SPACES AND CLIFFORD ALGEBRAS
	Acknowledgements
	Abstract
	Contents
	Introduction

	Chapter 1 : Hyperbolic Geometry
	Chapter 2 : Clifford Algebras, Spin Groups and Octonions
	Chapter 3 : The Construction of Symmetric Spaces
	Chapter 4 : The Geometry of the Spaces Constructed
	Appendix
	Bibliography



