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Abstract

This thesis presents a unified construction of rank one symmetric spaces of non-
compact type. These spaces correspond to hyperbolic geometries of real, complex,
quaternionic and octonionic types. We extend the approach of Cowling, Dooley,
Koranyi and Ricci using algebras of Heisenberg type, Clifford algebras and Spin
groups by emphasising the explicit geometry of these spaces.

Our concrete approach allows us to give a new proof of a result due to Pansu on
graded automorphisms of certain Lie algebras. We also prove a conjecture of Koranyi
concerning metrics on the boundary of the symmetric spaces and demonstrate that

the classical Cayley transform extends to a 1-quasiconformal map of the boundary.
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Introduction

The symmetric spaces of rank one of noncompact type are often grouped into four
families, corresponding to hyperbolic geometries of real, complex, quaternionic and
octonionic types. Certain results hold for all four families, yet due to the different
properties of the underlying division algebra (in particular the nonassociativity of
the octonions) the proofs of these results often require an examination of several
cases. Not only does this require more effort, it can also obscure the underlying
reasons for the truth of the results. An important example is Mostow’s rigidity
theorem, which holds for all four families but is proved (see [M]) with considerably
greater difficulty in the octonionic case.

We therefore seek a more unified way of approaching the symmetric spaces in
question. In [CDKR] and [CDKR2], the spaces are formulated in a new way using
algebras of Heisenberg type. In this thesis we continue this formulation and present
several results which utilise it.

We begin with a review of elementary hyperbolic geometry. In Chapter 1 we
construct several models of real and complex hyperbolic space in order to provide
motivation for the method of construction of the general symmetric spaces. Much
of this material is derived from the author’s Honours thesis [B]. We use a differen-
tial geometrical approach in order to highlight the similarities between the special
cases of real and complex hyperbolic spaces and the general spaces considered in
Chapter 3.

In Chapter 2 we develop most of the algebra we shall need. In particular, we re-
view some elementary properties of quaternions and octonions. The connection with
Clifford algebras is highlighted particularly in the case of the triality automorphism
of Spin(8) which itself is intrinsically linked with the octonions. The mathematics
in this chapter is well-known, however the presentation is somewhat nontraditional
and is based on material from [Ps], many of the details of which have been clarified
and reworked for this thesis. In particular the triality automorphism is constructed



from its action on the roots of s0(8) and then used to define the octonions. This
represents a reversal of the usual order of presentation of these topics, in which the
octonions are used to define the triality automorphism.

The definition and properties of algebras of Heisenberg type (H-type algebras)
are presented in Section 1 of Chapter 3. These algebras are generalisations of the
Lie algebras of the classical Heisenberg groups. After extending an H-type algebra
by adjoining a one-dimensional subspace, we isolate two (overlapping) regions of the
resulting vector space and equip them with Riemannian metrics. The first region
is the unit ball whereas the second is a Siegel-type domain. There is a map known
as the Cayley transform which isometrically identifies the two resulting Riemannian
manifolds. In [CDKR] and [CDKR2] it is proved that there is a bijection between
the set of symmetric spaces of rank one of noncompact type and H-type algebras
satisfying a condition known as the J? condition. In fact both the unit ball model
and the Siegel-type model are symmetric spaces if and only if the underlying H-
type algebra satisfies the J2 condition. In this case the two models are effectively
generalisations of the disc (Klein) model and the upper-half-space model of real
hyperbolic space. In Section 3.3 we show explicitly how all four families of the
symmetric spaces may be modelled by the unit ball or Siegel-type domains. We also
exhibit a connection between various subgroups of the group of isometries of the
symmetric spaces and Spin groups. Using our unified approach, we then give a new
proof of Pansu’s result ([Pu], Proposition 10.1) describing the automorphisms of the
symmetric spaces belonging to the quaternionic and octonionic families.

In the final chapter we extend the construction of the symmetric spaces by iden-
tifying the geodesics and calculating the distance formulae. Although these are
well-known, particularly in the real and complex cases, once again we are able to
highlight the uniformity of the approach by describing distances in all of the rank
one symmetric spaces of noncompact type using either of two equivalent formulae.

Having considered the geometry of the symmetric spaces, we examine the bound-
ary “at infinity”. The properties of certain classes of functions on the symmetric
spaces are governed by their behaviour of their extensions to the boundary. In
particular, isometries of the symmetric spaces extend to 1-quasiconformal maps of
the boundary. This fact is pivotal in the proof of Mostow’s rigidity theorem. In
Section 2 of Chapter 4 we define a function of two variables on the unit sphere of
an extended H-type algebra, the sphere being considered as the boundary of the

unit ball model. This function was conjectured by Korényi to be a distance function



when the J? condition holds in the underlying H-type algebra. We prove that this is
indeed the case and furthermore that the condition is also necessary. We also show
that the Cayley transform identifying the unit ball model and the Siegel-type model
extends continuously to the boundary, where it is 1-quasiconformal with respect
to Kordnyi’s metric on the sphere and a standard metric on the boundary of the
Siegel-type domain. This implies that all properties concerning quasiconformality
of the boundary may be examined in either model by using the Cayley transform

to pass from one model to the other.



Chapter 1
Hyperbolic Geometry

The simplest of the four families of symmetric spaces of rank one of noncompact
type consists of the spaces Og(1,n)/O(n) for n > 1. In this chapter we present a
geometrical treatment of these spaces, treating them as models of real hyperbolic
geometry. We also investigate the next most simple family, consisting of the spaces
U(1,n)/U(n) for n > 1, in a similar way. Many of the ideas presented in this
chapter will be generalised in later chapters. Most of the material in this chapter

has been adapted from [B].

1.1 Real Hyperbolic n-space

In this section, we examine a model of hyperbolic geometry which we regard as be-
ing the definition of real hyperbolic n-space. The underlying space is a hyperboloid
of revolution, which is equipped with an appropriate Riemannian metric. We in-
vestigate the properties of the group of isometries, the geodesics and the associated

distance function on the resultant manifold.

Definition The Lorentzian form < , > on R"*! is given by

<$a y> = —$0y0+$1y1 +"'+xnyn (11)

for all z = (zo,... ,Zn), ¥y = (Y0, - -- ,Yn) € R**1. Define real hyperbolic n-space H™
by

H"={z € R : (z,2) = -1 and 79 > 0} .



Geometrically, H™" is one of the two sheets of the hyperboloid

-zt —22=1

in R™*!. In order to make H™ into a Riemannian manifold, we shall use the following

lemma.

Lemma 1.1 Let z,y € R\ {0} such that (z,z) < 0 and (z,y) = 0. Then
(y,y) > 0.

Proof Since (z,z) < 0, we have
2> 224+ 12,

hence z # 0. The condition (z,y) = 0 may be expressed as

Toyo = Y Tils. (1.2)
i=1

By the Cauchy-Schwartz inequality,
2 n
23y, y) =75 (Y +yi +- - +yr) = (ny) +x32y?
(o) (o) w3t - (So07) it -
i=1 i=1

>0

)

hence <y,y> > 0. Furthermore, if (y,y) = 0, the above inequalities imply that
S y? =0, whence y; = --- =y, = 0. By (1.2), yo = 0, contradicting the assump-
tion that y # 0, hence (y,y) > 0 as claimed. O

The tangent space at the point € H™ may be identified with the set of all
vectors y € R™*! such that y is tangential to H™ when y is considered to be based
at z. In particular, we must have y - Vf(z) = 0, where f : R"*! — R is defined
by f(z) = (z,z) for all z € R. This condition is trivially equivalent to {z,y) = 0,
thus we identify the tangent space T, H™ at x with

{y e R"*': (z,y) = 0},



which is an n-dimensional subspace of R"*1. Furthermore, for each z € H", we
define an inner product on T, H" by

(v 9), = (¥¥)

for all y € T,H". Lemma 1.1 implies that the associated Riemannian metric is

positive definite.

Definition The Lorentz group of R™*! is given by

O(1,n)={Pe GL(n+1,R): <P:c, Py) = (z,y) for all z,y € R"+1}
={P € GL(n+1,R): P'SP =S}

where P! denotes the transpose of P,

-1 0
S =
0 I,
and I,, denotes the n x n identity matrix. The positive Lorentz group of R™*! is
given by

PO(1,n) = {P € O(1,n): (—];?ﬁ > 0 whenever (z,z) < 0}.
0

In fact PO(1,n)|gn = I(H™), the group of isometries of H". That is, if f : H® — H"
is any isometry then f is the restriction to H” of some P € PO(1,n), and conversely,
if P € PO(1,n), then P|y. € I(H"). Furthermore, the action of I(H™) on H" is
transitive. To see this, let

e={(4 o) reom]

cosht 0 sinht
A= a; = 0 I, n—1 0 :teR
sinht 0 cosht

and

Clearly K and A are subgroups of PO(1,n) and K is the stabiliser of (1,0,...,0).
Given z,y € H", we may find ki, ks € K such that

kl(.'IJ) = (.’L’o, 0, e ,0, .’II:L) and kg(y) = (’yo, 0, e ,0, y:;)’
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where 12 — (z),)2 = 2 — (v,)? = 1. There exists a € A such that

a‘(anO’- .- 70a$;).) = (yO’Oa v ,O’y:z)

(In particular, @ = a; where t satisfies zo cosht+2/, sinht = y,.) Setting g = k; 'ak;,
we see that g(z) = y as required. We thus have the Cartan decomposition of I(H"),

I(H™) = KAK,

where it is understood that K and A act on H™ by restriction of domain. (Proofs
of all unverified claims in the above paragraph may be found in [R] or [C].)

We now find the geodesics and associated distance function on H™.

Lemma 1.2 If z = (2,0,...,0,z,) € H*, 29 # 1, and y = (1,0,...,0), then the
geodesic through = and y is the intersection of the plane {(a,0,...,0,b) : a,b € R}
of R™"*! with H™. The geodesic may be parametrised as a unit speed curve by

v(t) = (cosht,0,...,0,sinht)

where t € R. Furthermore, the length of the geodesic arc « joining  and y 1is given
by

|| = cosh™ .

Proof The proof that the geodesic is the intersection with H™ of the given plane
may be found in Section 1.2.1 (although the fact may seem evident from symmetry

considerations alone). The given curve 7 is a unit speed curve, since
(4(t),4(t)) = —sinh®¢t + cosh®t = 1.

Furthermore v(0) = y and 7(¢o) = z, where ¢, = sinh™* z,. It follows that if « is
the restriction of v to [O, sinh™* a:n] (or [sinh’1 T, 0] as appropriate), then

la| = |sinh ™! z,| = cosh ™ zg
since 2 — z2 = 1. 0O

Theorem 1.3 Let z,y € H™ with x # y. The geodesic through x and y is the
intersection with H™ of the plane through z, y and the origin of R**'. The length
of the geodesic arc a joining x to y (that is, the associated Riemannian distance

function) is given by

d(z,y) = |a| = cosh™ (—(z,y)).

7



Proof Let z,y € H". Using the Cartan decomposition of I(H"), there exists
g € AK such that g(y) = (1,0,...,0). There exists a map k¥ € K such that
k(9(z)) = (x5,0,...,0,2.), where (z4)? — (z/,)?2 = 1. Since K stabilises the point
(1,0,...,0), we see that h(y) = (1,0,...,0) and h(z) = (z5,0,...,0,z,), where
h = kog € I(H"). By Lemma 1.2, the geodesic through h(y) and h(z) is the
intersection with H™ of the plane through A(y), h(z) and the origin of R**!. Now
h~1 € I(H™) preserves planes through the origin and also preserves geodesics, thus
the geodesic through x and y is the intersection with H™ of the plane through z, y

and the origin, as claimed. Furthermore, Lemma 1.2 implies that
d (h(z), h(y)) = cosh™ (h(z)), = cosh™ (—=(h(z), h(y))) ;
since h is an isometry, we have

d(z,y) = d(h(z), h(y)) = cosh™ (—(h(z), A(y))) = cosh™ (=(z,¥))

as required. O

1.2 Models of Real Hyperbolic Space

The space H™ endowed with the hyperbolic metric is technically only a model of
real hyperbolic n-space, which is more correctly defined as the simply connected,
connected n-dimensional real Riemannian manifold of constant curvature —1, unique
up to isomorphism. In this section we examine three other models of real hyperbolic

n-space.

1.2.1 The Projective Disc Model

The projective disc model, otherwise known as the Klein model, takes B™, the unit
ball of R™, to be the underlying space for n-dimensional real hyperbolic geometry.
The geodesics are Euclidean line segments, although the Riemannian metric differs

markedly from the Euclidean metric except at the origin.

Definition The gnomonic projection u: H® — B™ is defined by

z Tn
w(Zo, T1, ... ,Tp) = (—1 —)

b b
Zo Zo



for all z = (zo, ... ,T,) € H". Note that u is well-defined, since z2—z?—---—z2 =1

implies that z2 + --- + 22 < z2. It is also a bijection (since zo > 0), with inverse
given by
B ) = 1 (L1 s 80) = (L0t B0)
VI-yl— -2 V1-TyP

for ally = (y1,... ,yn) € B". Geometrically, u(z) is the intersection of the line join-

ing the origin of R"*! to z with the hyperplane {(1,y1,... ,%n) : ¥1,--- ,%n € R}.
The unit ball B® may be thought of as being embedded in R™! by identifying
y € B™ with (1,y) € R*..

We use pu~! to transfer the Riemannian metric of H™ to B™ by requiring that u
be an isometry. A routine calculation shows that the Jacobian of u~! at the point
z = (z1,...,%,) € B is given by

( I T e Tn \

) N+z2 1T - T,
J = F ToTq A2 + -T% cee T2Tn
\ TpTy  TpTy o+ A2+ 22 )
where A = /1 —z? — ... — 22 = /1 — |z|2. If y € T, B, one calculates that
-y 1
Jy= —)\'5-(1,10) + X(O’y)
and that
(z-y)? | |yl
I Jy) = ==+ 5

If we transfer the metric using the obvious formula

where v = 7!, then we have

_ (=Pl + 2y
o, CED

Alternatively, if we express ¥ = Yrad + Ytan, Where Yraq || £ and yian L z, then

<y y> — |yradl2 |yt:an|2
19/ x (1 _ |IE|2)2 1-— |$|2

9



We call this metric the Klein metric on B™. In order to find the geodesics of
B™ endowed with this metric, we first complete the proof of Lemma 1.2 using the

following lemma.

Lemma 1.4 Ifz = (0,...,0,z,) € B", with z, # 0, then the (Kleinian) geodesic

joining y = (0,0,...,0) and z is contained in the line segment
{(0,...,0,a):a € [-1,1]}.

Proof Let (3 : [a,b] — B"™ be any differentiable curve such that 3(a) = y and
B(b) = z. Write B(t) = B1(t) + B2(t), where B1(t) = (0,...,0,|8(t)|) for all ¢t € [a, b].
A simple calculation shows that |8(t)| = |81(t)| and B(t) - B(t) = Bi(t) - Au(t) for all
t € [a, b]; furthermore since

) B(t) - B(t)
b0 (0.0 280,

we have

16(t) - Bt)| _
EOI

for all ¢ € [a, b] (by the Cauchy—Schwartz inequality). It follows that

181 = / (B, B0 dt

- <<1 — IBODIBEI + (B B(t))?) "
. (1= 18P

> /b ((1 — |BL®)D)B()I + (Bu(2) - B1(t))2> v dt

161(t)] = < 1B)|

(1= QP
/ (Bu(t), Bu(t)) /2, dt
= |B1]-

Since f, is also a curve such that §;(a) = y and 5;(b) = z, the result follows. O

The proof of Lemma 1.2 is now completed by noting that v maps the points z
and y defined in the proof of Lemma 1.4 above to two points of the required form,
v preserves geodesics and that v maps the line segment {(0,...,0,a):a € (-1,1)}
onto the intersection with H™ of the plane {(a,0,...,0,b) : a,b € R} of R**..

10



We now use p to transfer geodesics and the distance function to B™.

Theorem 1.5 The geodesics of B™ with the Klein metric are the intersections of

Euclidean straight lines with B™. The associated distance function is given by

_ l—-z-y
d(z,y) = cosh™* .
V1-lz]? 1yl

Proof By Theorem 1.3, the geodesics of H™ are the intersections with H™ of

planes through the origin of R®*!. The gnomonic projection y maps points on a
plane through the origin of R™*! onto the same plane, hence the geodesics of B",
embedded in {1} x R™ as discussed above, are indeed Euclidean line segments. Now

let z,y € B™. Since v is an isometry, we have

d(z,y) = d(v(z), v(y))
= cosh™ (— (v(z),v(v)))

— cosh! <_< (L2) (LY >>
VI=TzP V1-TyP

_ l-z-y
= cosh™!
(\/1—|1‘|2\/1—|y|2>

as claimed. O

1.2.2 The Conformal Ball Model

The next model that we examine is the conformal ball model, sometimes known as
the Poincaré model. This model also uses B™ as its underlying space, but the new
Riemannian metric differs from the Klein metric. The angle between two tangent
vectors arising from the new Riemannian metric agrees with the Euclidean angle
between these vectors, however the geodesics are no longer straight line segments

but are in fact arcs of circles which intersect the boundary S™~! at right angles.

Definition The (hyperbolic) stereographic projection ¢ : H* — B™ is defined by

C(a:o,xl,...,xn)=( L _%n )

14z’ 1+ 1z

for all z = (zo, ... ,T,) € H™. Note that ( is well defined, since z3—z?—--.—z2 =1

implies that z2 +--- + 22 = 22 — 1 < (1 + ). It is also a bijection (since zo > 0),

11



with inverse given by

1+ |y 2y 2Yn )
I-|y¥1—-1|y|>" " 1—|y[?

for all y = (y1,...,yn) € B". Geometrically, {(z) is the intersection of the line

My s Yn) = (

joining —ep to  with the n-dimensional subspace orthogonal to ey. The unit ball
B™ may be thought of as being embedded in R™*! by identifying y € B™ with the
point (0,y) € R™L.

As in the analysis of the Klein model, we use (! to transfer the Riemannian
metric of H™ to B™ by requiring that ¢ be an isometry. A simple calculation shows
that the Jacobian of (~! at the point £ = (z1,...,,) € B" is given by

( 4x, 4z, 4x,, \
. 202 + 422 dryze -0 Az,
J = Y dzoxy  2X2+4xk .. dxz,
\ 4z, dr,Ty -+ 202+ 422 }
where A = y/1—122 — ... — 12 = /1 — |z|2 as before. Then if y € T,B", we see
that
4(z - y) 2
and that
4|y|?
(Jy, Jy) = I/\4| :

If we transfer the metric using the obvious formula

(.9), = (€®),€®))eey

where £ = (!, then we obtain

4ly|?
<y7 y)g; - (1 _ |m|2)2‘
We call this metric the Poincaré metric on B™.

Recall that a Mobius transformation of R™ is a map which is expressible as a

composition of reflections in spheres and hyperplanes.

12



Theorem 1.6 The isometries of B™ with the Poincaré metric are precisely the re-
strictions to B™ of Mébius transformations which preserve B™.

Proof It is not difficult to check that every Mdbius transformation of B™ (that is,
a Mobius transformation which preserves B™) restricts to an isometry of B™ with the
Poincaré metric (see pp. 128-129 of [R] for the calculation). To prove the converse,
we use ¢ and € to transfer isometries of H™ to isometries of B™. For each b € (—1,1)
with b # 0, define the map 7, : B® — B™ by

(y) = (B|y]* + 2ynd + 1)—1 (1=0%)y+ (|y* + 2ynd + 1) ben)

for all y = (y1,... ,¥n) € B™ In fact 7, is the restriction to B" of p,0,, where p,
is the reflection in the (n — 1)-dimensional subspace orthogonal to e,, and oy is the
reflection in the sphere with centre —b~le, and radius |b|~'v/1 — b2. Since p, and o
are both Mobius transformations of B®, 7, is also a Mdbius transformation of B™.
A simple calculation shows that

7 = Ca(t)¢7!,

where

cosht 0 sinht
a(t) = 0 I, O €A
sinht O cosht

and

_ sinh ¢
" 1+ cosht’

(Here we refer to the Cartan decomposition I(H") = KAK.) Now if ¢ is any
rotation of B™, then 1 is the restriction to B™ of an orthogonal transformation
R € O(n). Such a transformation is evidently a Mobius transformation of B™ (by
composing at most (n+ 1) reflections in hyperplanes; see p. 106 of [R]). Furthermore

% = Ck¢™,

k= 10 € K.
0 R

13
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Since I(H™) = KAK and we have demonstrated that A and K act on B™ as the
restriction to B™ of Mobius transformations of B™ (using (), we conclude that every
isometry of B™ with the Poincaré metric is indeed the restriction to B™ of a Mobius

transformation of B™. O

It is evident that ¢ maps geodesics through (1,0,...,0) € H™ to diameters of
B™. These diameters are arcs of (degenerate) circles which intersect S™~! at right
angles. It is well known that the images of lines under Mdbius transformations are
circles or lines. It follows by conformality that any Mobius transformation of B™
maps the diameters of B™ into arcs of circles orthogonal to S™!.

Theorem 1.7 The geodesics of B™ with the Poincaré metric are arcs of circles
intersecting S™! at right angles. The associated distance function is given by

~ B 2|z —y|?
i) =co™ (14l )

for all z,y € B™.

Proof The geodesics have already been identified. To find the distance formula,
we use the fact that £ is an isometry, obtaining

d(z,y) = d(¢(z),£(y))
= cosh™ (—(£&(z),£(y)))
(1+ =)+ |y]?) ATy
Z e kYk )

-co” {2 RS ERIETD

(
-1 g(l — e[ = ly?) + 2(Iﬂcl2 +[yl*) — 4(z - y)>

= cosh (1-=1z2)(1 - |y|?)

2|z — y|?
Mo Epa - |y|2))

for all z,y € B™, as claimed. a

= cosh™!

Let y, z € T, B™. By polarisation, we see that

(y,2), = 4y 2)

(1—Jz|2)*
thus we have
4y - 2)
(v,2), _ Q== y-z
o) (2,22 2l 202l yllel

1— |2 1— [z
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If we interpret the left hand side as the hyperbolic (Poincaré) angle between y and
z, then this equation shows that the Poincaré angle agrees with the Euclidean angle,
regardless of the choice of x € B™. This justifies the name “conformal ball model”.

1.2.3 The Upper Half-Space Model

The final model that we examine is the upper half-space model. The upper half-
space U™ = {(zo,... ,Zn-1) € R™ : 29 > 0} is the base space for this model, which
is essentially the Poincaré model transferred to U™ using a Mdbius transformation.
This model has the advantage that the metric has a particularly simple form.

Let n: B® — U™ denote the Mobius transformation from B™ to U™ defined by

1

_ 1—:1:2,21:,...,23:,1_ .
1—2x0+|x|2( < ' 1)

= (:EO)xlv .. axn—l) =

Treating n as an isometry, we may transfer the Poincaré metric from B™ to U™ by
defining

(ya y>z = <7'-z (y)a Tz‘(y) >T(,_.)
for all z € U™ and all y € T, U™, where 7 = n~L.

Theorem 1.8 The Poincaré metric on U™ is given by

_ b
(v:9), = p

for all x = (zo,... ,Zn—1) € U™ and all y € T,U™. The associated distance formula
is given by

2
d(z,y) = cosh™! (1 + lx—_yl)
(z,y) T

for all z = (zo,... ,Zn-1),¥y = (Yo,--- ,Yn—1) € U™. The geodesics are circular arcs
and rays intersecting the boundary R*! = {(0,zy,... ,Zn_1) : T1,... ,Zn-1 € R}
orthogonally.

The calculations involved in the proof of this theorem are straightforward and
may be found on pp. 136-139 of [R]. Note that this metric is also conformal.
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1.3 Complex Hyperbolic Geometry

The construction of complex hyperbolic geometry proceeds along similar lines to the
real case, however there are intrinsic differences which arise from the properties of
complex numbers. Complex hyperbolic n-space is not isomorphic to real hyperbolic
2n-space for n > 1, for in the definition of the Lorentzian form (1.1), one particular
direction is distinguished from the others by virtue of the minus sign in the expres-
sion. On the other hand, in the complex Lorentzian form given below (1.3), one
complez direction is distinguished. This direction corresponds to two real directions.
The most obvious indication that the projective disc models of complex hyperbolic
n-space and real hyperbolic 2n-space are different is that the geodesics in the latter
space are straight lines whereas the geodesics in the former space are arcs of circles.
The material in this section, particularly the proof of Lemma 1.9, is based on [E].

Definition The Lorentzian form ( , > on C™t! is given by
(z,w) = —Zgwo + Zrwy + + - - + Zowy (1.3)

for all z = (29,... ,2,), w= (wo,...,w,) € C**. Define complex hyperbolic space
H"(C) by

H™(C) = {[z] € P™*}(C) : (2, 2) < 0}.

Here P"*!(C) denotes projective complex (n + 1)-space. The class of z, denoted
by [z], is the equivalence class containing z under the equivalence relation ~, where
z ~ w if and only if there exists A € C* = C\ {0} with 2 = Aw. Note that
H"(C) is well-defined, for if z € C™*! such that (z,z) < 0 and A € C*, then
(Az,Az) = [N*(z,2) < 0.

The following result is the analogue of the Cauchy—Schwartz inequality for com-
plex vector spaces.
Lemma 1.9 Let z,w € C"*! such that (z, z> <0 and <w,w> < 0. Then

<z, z)(w, w) < (z, w)(w, z)

Proof If (w,w) = 0, the result is trivial, so assume (w,w) < 0. We claim that
the set

S={r€C:(z+w,z+\w) >0}
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is compact. It is certainly closed, and if A € S, then
2|Mw, 2)| 2 2Re (Mw, 2)) = —(2,2) — A\*(w, w),
so
—IN*(w, w) = 2]\ {w, 2)| = (2,2) <0

which ensures that |\| is bounded above. Furthermore, S is nonempty, for we must
have wp # 0 (or else (w,w) > 0), so if A = —zp/wo, then

(24 dw, z + dw) = —|z0 + dwo|* + Z |zi + Aw;|*> = Z |zi + Aw;|2 > 0,

=1 i=1

that is, A € S. The function f : A — (z + Aw, z + Aw) is continuous on S, thus
it attains its maximum at some A9 € C. Considering f as a function of two real

variables, we have

f(z,y) = (a* + ¥*)(w, w) + 2(az - By) + (2, 2)

where <w,z> = a + i for some a and # in R. Setting Ao = zo + iy, we have
& (20,90) = 3L (z0,%0) =0, s0

2zo(w, w) + 22 =0
2yo<w,w> —-268=0.

Solving for zg, yo,

o _Re(w, 2)
P (w,w)
_ Im(w, z)
Yo = <w7w> .
That is,
/\0 — _ <Z, 'LU)

thus we have

(z,w} (z, w)
<z - <w,w>w,z — (w,w>w> > 0.

Multiplying through by — <w, w), expanding and rearranging gives the result. 0
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Let z € C**! with (2,2) < 0. The tangent space to 2] € H"(C) may be
identified with 2t = {w € C™*!: (z,w) =0}. Here z* is itself identified with
(Az)* by multiplication by A € C*. That is, if w is a tangent vector at z, then
Aw is the equivalent tangent vector at the equivalent point Az, A € C*. Then if
z,w € C™"*!, we may define

w.w) = (2, 2){w, w) = (z,w)(w, 2)
it (2’

to be the inner product of w with itself at the point z. Lemma 1.9 implies that this
inner product is positive definite on the tangent space at each point of H*(C).
We now define the complex analogue of the Lorentz group by

U(l,n)={A € GL(n+1,C): {Az, Aw) = (z,w) for all z,w € C**'}
={A€ GL(n+1,C): A*SA =S5}

s=( 1 %),
0 I,

Define an equivalence relation on U(1,n) by A; ~ A, if and only if there exists
A € C,|A| =1 such that A; = AA,. Let PU(1,n) denote the corresponding factor
group U(1,n)/~. Then the group I(H"(C)) of isometries of complex hyperbolic

where

n-space is given by
I(H*(C)) = PU(1,n)Uo PU(1,n),

where A € PU(1,n) acts on [z] € H*(C) by A([z]) = [Az] and o is component-
wise complex conjugation o([2]) = [Z]. As in the real case, we have the Cartan

decomposition U(1,n) = KAK, where (up to equivalence)
10 1 0
K= :ReU ] :ReU

cosht 0 sinht
A= a(t) = 0 In—l 0 :teR
cosht 0 sinht

and
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This implies that U(1,n) acts transitively on H"(C). The proof is identical to the
proof of the real case given in Section 1.1.

Given [z] € H™(C), we note that zy # 0, or else we would have (z,z) > 0. If
we set A = 25 € C*, then (\z)o = 1. That is, we can always choose a (unique)
representative of [2] such that zp = 1. The condition that (z,2) < 0 implies that
|12 + -+ + |22]? < 1, that is, (21,22,...,2,) € B™*(C), the unit ball in C*. If
w € T,B"(C), we may regard z as the point (1,z2,...,2,) € C*"! and w as the
point (0, ws,...,w,) € C**!; we have

_ (CL P — |z, w)P
) =

where [v|? = |v1]2 + -+ + |v,|? and (u,v) = Wvy + - -+ + Uy, for any u,v € C™.
In particular, the formula for the element of arc length is given by setting w = dz,

obtaining

_ (L= [Pl + |(z, d2)

ds? 3
(1—12%)

The space B™(C) with this metric is referred to as the (complez) projective disc

model. It is the complex analogue of the Klein model of real hyperbolic geometry.

In order to find the geodesics of H*(C), we first establish a connection between
real and complex hyperbolic geometry.

Lemma 1.10 Suppose n > 2. Let [2] € H*(C) and [w] € P"*1(C)\{0}. Then the
intersection of H™(C) with the projective complex line L = {{A\z + pw] : A\, u € C}
may be identified with H2. In particular, the (non-empty) intersection of B"(C)
with any complez line is isomorphic to B% with one-quarter of the (real) Poincaré

metric.

Proof Since 2j is nonzero, we may choose z such that zp = 1. We may replace w
with w—wpz without affecting L; then wo = 0. Passing to the projective disc model,
we now relabel z = (1, z) and w = (0, w) with z € B*(C) and w € C™\{0}. We may
replace w and z with (w,w) 2w and z — (w, w) (2, w)w respectively and thereby
insist without loss of generality that |w| = 1 and (z,w) = 0. Since the metric on
B™(C) is invariant under unitary transformations, we may choose an orthonormal
basis such that z = (0,t¢,0,...,0) and w = (1,0,...,0), where 0 < ¢t < 1, so that
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L is represented by the complex line {(},¢,0,...,0) : A € C}. Let p € L with
p = (\t0,...,0}, A € C, and let v € T,(L N B*(C); then v = (u,0,...,0) for
some p € C. We have
o0y, = L=l DR 1= )
P (12— ) (L—22 =A%)’

Define f : C — R? and F: L — R? by
f(A) = (Re(A),Im(})) and  F(A1,0,...,0) = f(})

for all A € C. If z € R?, set p = F~(z) and v = (f~!(dz),0,...,0) to obtain

2| 72
ds? = 192 (1.4)

(r? = |=?)
where 7 = v/1 — t2. We have shown that LNB"(C) is isometrically isomorphic (using
F) to B(0,7) C R? with the above metric (1.4). The transformation g : z — z/r of

R? maps B(0,r) isomorphically onto B(0, 1) and transforms (1.4) into

ds? = ﬂ
(1 - |2f2)®
which is one-quarter of the Poincaré metric on B(0,1) C R2. O

Lemma 1.10 allows us to describe the geodesics in complex hyperbolic space.

Theorem 1.11 If z,w € B"(C), z # w, then there is a unique geodesic containing
z and w. It lies in the unique complex line L containing z and w. Furthermore, if z,
w, B*(C) and L are identified with Z € R*", w € R?, B?™ and a real plane 1 C R*"
respectively under the natural identification of C™ with R?™, then the geodesic joining
z and w is identified with the unique circular arc in B®* through % and % which lies

in the 2-disc m N B?" and intersects the boundary of this disc at right-angles.

Proof We have seen that U(1,n) acts transitively on B*(C) and maps geodesics
to geodesics. We may therefore choose A € U(1,n) such that A(z) = 0. By an
argument similar to the one used in the proof of Lemma 1.4, the intersection of
the real line {tA(w) : t € R} with B*(C) is the unique geodesic containing 0 and
A(w). This geodesic evidently lies in the complex line {A\A(w) : A € C}. Now
A~! maps the corresponding projective line {{A\A(1,w)] : A € C} into the complex
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projective line L' through [(1, z)] and [(1,w)]. If representatives v of points [v] on L’
are chosen to have vp = 1, then L' may be represented in B"(C) as the complex line
L containing z and w. This proves the first assertion. By Lemma 1.10, L N B*(C)
is isometrically isomorphic to a dilation of B? with metric equal to one-quarter of
the Poincaré metric. As seen in Section 1.2.2, the geodesics in this model are arcs
of circles which intersect the boundary of B? at right-angles; this remains the case
even if the metric is multiplied by 1/4 (although the lengths of geodesic arcs are
different). O

We conclude this chapter by deriving the distance function on H™(C).
Theorem 1.12 Let (2], [w] € H*(C). Then

Al ful) = cosh™ [ 25 T

FEquivalently, if z,w € B™"(C), then
1 1= (2w)|

(1= 122)"2(1 = jw?) >
Proof As noted previously, U(1,n) acts transitively on H"(C) and preserves dis-
tances. Choose A € U(1,n) such that A([z]) = [(1,0,...,0)] and let [v] = A([w]).
Then by Theorem 1.11, if v is the representative of [v] such that vo = 1, then the

d(z,w) = cosh™

geodesic arc from [(1,0,...,0)] to [v] is given by
L={[(1,tvy,...,tv,)] : t € [0,1]}.
This is represented in B"*(C) by the curve « : [0, 1] — B"(C) given by
v(t) = (tvy, ... ,ty).

The length of this curve is given by

1
o e\ 1/2 172
|’Y|=/ (’Y(t),’)’(t» (t)dt / (v v>(tv1» ’t”n)
2 2 !
/ — 2o + [(tv, v)[? dt:/ B ] B
(1 PPy o 1-8f

-3l (1+:II) cosh™ <\/—11—TUT2)

~ cos ((1, O) v) ('v 1,0,...,0))
d \/ 0, (1,0, 0)) (0
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(Here we have abused notation slightly: the last line refers to v = (1,vy,...,v,)
as an element of C™*! whereas the other lines treat v = (vy,...,v,) as being in
B™*(C).) It follows that
d([2], [w]) = d([A2], [Aw])
— cosh-! \/(Az, Aw) (Aw, Az>

(Az, Az) (A'w, Aw)

o [y )
(z,2) (w, w)
as required. Note that this formula is well-defined, that is, it is independent of the

representatives of [2] and [w]. The equivalent expression for z,w € B"(C) follows

easily from the above formula. O
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Chapter 2

Clifford Algebras, Spin Groups

and Octonions

Our construction of symmetric spaces of rank one of noncompact type utilises Clif-
ford algebras and the associated so-called Spin groups. In this chapter we describe
these objects and explore the relationship between certain Clifford algebras and the
division algebras of quaternions and octonions. The emphasis is on the aspects of
Clifford theory which relate to the construction of symmetric spaces. For a more
general approach, see Porteous [Ps|, from which much of the material in this chapter

is derived.

2.1 Quaternions

The algebra H of quaternions is the space R* with product defined by
P=2=kK=-1
and
ij=k=—ji, jk=i=—-kj, ki=j=—ik,
where {1,1, j, k} is the standard (orthonormal) basis for R*. This product is asso-

ciative and respects the norm |-|: H — R given by

la + bi + cj + dk| = Va2 + b2 + c2 + d2
for all a,b,¢,d € R, that is, |zy| = |z| |y| for all z,y € H. This implies that H is a

division algebra, with

gl = |x|_2 T,
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where T = a — bi — c¢j — dk for all z = a + bi + cj + dk € H. It also implies that the
3-sphere
SP={zeH:|z|=1}

is a group under quaternionic multiplication. For z = a + bi + cj + dk € H, define
Re(z) = a and Im(z) = bi + ¢j + dk, so that
T+

2 )
We call Re(z) and Im(z) the real and imaginary parts of x respectively. The set of

Re(z) =

Im(z) =

imaginary quaternions Im(H) = {h € H : h = Im(h)} is clearly isomorphic to R3.
(Note that we treat 0 as both real and imaginary.) When there is no ambiguity, the

space R? will denote the imaginary quaternions. It is easy to see that
R3={heH:h*<0}.

The map x — Z is referred to as conjugation and satisfies

Y=Yz
for all z,y € H. We also have
z -y = Re(Ty), w X z = Im(wz)

for all 7,y € H, w, z € R3, where the dot product is taken in R* and the cross prod-
uct is taken in R3. In particular, two imaginary quaternions w and z anticommute

if and only if they are orthogonal.

Lemma 2.1 For ¢ € H* = H\ {0}, = € R?, the quaternion qrq™! is imaginary;
furthermore if ¢ € R3\ {0}, the map

pg: R*—=R% 2z —qzq™!
is the reflection in {Rq}t C R3, the plane through 0 with normal q.
Proof Since z? is real and nonpositive,
(pgz)? = (—qzq7!)" = gz?q ' = 2%qg™ = 2* < 0,

hence p,z € R3. Furthermore p,g = —gq, whereas if r € R? is orthogonal to q we

have

pgr=—qrq ' =rqqg =1

since r and ¢q anti-commute. The result follows by the linearity of p,. 0
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Corollary A map g € SO(3) if and only if it is of the form —p, for some ¢ € H*.
Proof This follows from the fact that any element of SO(3) is generated by two

reflections in planes through the origin and p,p, = —p,, for all g, 7 € R3\{0}. O

Definition If A is an algebra then a map u : A — A is an automorphism (anti-
automorphism) if it is linear and u(ab) = u(a)u(b) (respectively u(ab) = u(b)u(a))
for all a,b € A. A map u: A — A is an involution (anti-involution) if it is an

automorphism (respectively anti-automorphism) satisfying u? = I.

Lemma 2.2 A map u : H — H is an automorphism (anti-automorphism) if and
only if there exists R € SO(3) (respectively R € O(3)\SO(3)) such that

u(z) = Re(z) + R(Im(z))
for all x € H.

Proof If u(z) = Re(z) + R(Im(z)) for R € SO(3), then we may write R = —p,
for some ¢ € H*, so

u(z) = qzq~!

which is an automorphism of H. Alternatively if u(z) = Re(z) + R(Im(z)) for
R € 0(3)\SO(3), then —R € SO(3), and we have

u(z) = Re(z) — R(Im(z)) = qzq~!

for some ¢ € H*, implying that « is an anti-automorphism.

Conversely, suppose that u is an automorphism or anti-automorphism of H.
Since u(a) = u(1)u(a) for all a € H, we must have u(1) = 1. Furthermore, if z € R?
then u(z)? = u(z?) = 22 <0, so u(z) € R?® and |u(z)| = |z|. It follows that u is of
the required form with R € O(3) equal to the restriction of u to R3. By the above
remarks, u is an automorphism if R € SO(3) and an anti-automorphism otherwise.

O

Corollary A map u : H — H is an involution if and only if it is the identity or
it corresponds to the rotation of R® through m about some line through the origin.
The map u is an anti-involution if and only if it is the composition of an involution
with conjugation, that is, if and only if it corresponds to the reflection of R3 in the

origin or the reflection of R in some plane through the origin.
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We call the involution ~: H — H;z +— Z = jzj~! = —jzj the main involution

and its associated anti-involution *: H — H;z — T = T = T the reversion anti-

involution.

2.2 Tensor Products of Algebras

For K = R, C,H, let K(n) denote the real algebra of n x n matrices with entries
in K, and let 2K(n) denote the space (K(n)) @ (K(n)) endowed with the product

(a,b) - (¢, d) = (ac, bd)

for all a,b,c,d € K(n). Then 2K(n) may be regarded as a subalgebra of K(2n) by

(a,b) — ( g 2) € K(2n).

Definition Suppose that A is a finite-dimensional real associative algebra with

unit element 1, and that B, C are subalgebras satisfying the following conditions:
1. for any b € B,c € C, we have cb = bc;
2. A is generated as an algebra by B and C; and
3. dimA =dim BdimC.

Then we say that A is the (real) tensor product B ® C of B and C. For any finite-
dimensional real associative algebras B, C, there exists an algebra A containing
subalgebras B’,C’ isomorphic to B, C respectively such that A = B’ ® C’; fur-
thermore A is unique up to isomorphism. We may therefore define B ® C up to
isomorphism for any such B, C.

Lemma 2.3 If we regard C and H as real algebras, then we have C @ H = C(2)
and HQ H = R(4).

Proof We may identify C? with H as a right complex vector space using the
isomorphism (z,w) — z + jw, where C is identified with span{1,i} C H as before.
For any z € C, ¢ € H, the maps

zr- H—-H; zw—zx2 and g -H—-H; z+—qx
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are right complex linear; the maps
C—-C(2); z—2r and H->C(2); g¢gr—qL

are algebra monomorphisms. Denoting the images of these monomorphisms by
B = Cp and C = H, respectively, it is not difficult to show that C(2) = BQ C.
For any ¢ € H, define

gr - H—oH; z— x2q

and gy, as above. These maps may be considered as (real) linear maps on R*. The

maps
H—-RH4); ¢g—qo and H-oR4); re—r7g

are algebra monomorphisms. Denoting the images of these monomorphisms by
B = H, and C = Hp, respectively, it is once again easy to show that R(4) = B®C.
a

2.3 Clifford Algebras and Spin Groups

2.3.1 Universal Clifford Algebras

Given a finite-dimensional real vector space () with nondegenerate bilinear form g,
we define the (universal) Clifford algebra C(Q, q) to be the real associative algebra
of largest dimension generated by @ and {1} satisfying

1’ = —q(z,2)1 (2.1)

for all z € Q, in such a way that Q and R are embedded isomorphically in C(Q, q)
as linear subspaces. In particular, we abbreviate C (R™, (-,-)) to C(n), where (-, -)
is the standard inner product on R™. By polarisation of (2.1), we see that if z,y € Q
with ¢(z,y) = 0, then

TY = —YzT.

In particular, if the standard basis of R™ is {ey, ... ,e,} then in C(n) we have the

relations

e? = —1, e,-ej = —6_7'6,'
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for 1 <14,5 < n,i+#j. It follows that the dimension of C(n) is 2"; a basis is given
by

{ei€iy---€, :0< k<N 1<i<ip<---<ip<n}
We define on C(Q, g) the algebra involution ~ by
T=-x

~ A~

for all z € @ (and extended by ab = @b). In particular, in C(n),

~

(enei -+ e5) = (=1)*(enesr, - -€i.)

foral0 < k<n,1<14 <iy<---<ix <n. We define the even Clifford algebra
C%Q, q) by

C%Q,9) ={a € C(Q,9):a=a};
this is clearly a subalgebra of C(Q, q). A basis for C°(n) is
{ei iy €, :0< k<n,keven,1<i <ip<---<ix<n}
If
CH(Q,9) ={a€C(Q,q) :@= —a},
then every element a € C(Q, ¢) is uniquely expressible as
a=a+a

with ap € C°(Q, q) and a; € C*(Q,q). The elements ay and a; are called the even
and odd parts of a respectively. We also define on C(Q), q) the algebra anti-involution

T=—-I
for all z € @ (and extended by ab = ba). In particular, in C(n),
€t ey = (—1) (es - einei) = (1) D2 (e e, - - )

forall0 < k< n,1<14 <iy < -+ < i <n. This anti-involution is called
conjugation.
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2.3.2 The Clifford Group

For any invertible g € C(Q, q), define the map p, : Q — C(Q, q) by

po(2) = g2(3) ™"

for all z € Q, and let

I'(Q, q) = {g € C(Q, q) : g invertible, p,(z) € Q for all z € Q}.

If g € T'(Q, ), the map p, is orthogonal, as

4(pg(2), pg(2)) = — (92(@) ") (92(@) ") = (92(@) ") (92(@7")
=929 'gz(9)” = -9°(9) " = Ga(z,z)(9) " = q(z,7)
for any z € Q. Furthermore, p, is bijective, for if pg(z) = 0 then the invertibility
of g implies that z = 0, whereas the surjectivity of p, follows from the fact that @
is finite-dimensional and from the rank-nullity theorem. In fact I'(Q, q) is a group

called the Clifford group for @ in C(Q,q). If a € Q\ {0}, then a is invertible and
any z € @ is expressible as x = Aa + b with A € R and ¢(a,b) = 0. It follows that

pa(Xa +b) = a(Xa +b)(@)"' = —a(Aa + b)a~!
=-Xa—aba"!=-Xa+baa"! = -Xa+b,
that is, a € I'(Q, q) and p, is the reflection in the hyperplane orthogonal to Ra. Since
every orthogonal map is the product of a finite number of reflections in hyperplanes,
we see that p : ['(Q,q9) — 0(Q,q);a — p, is a surjective homomorphism and

that every element of I'(Q, q) is representable as the product of a finite number of
elements of Q. In fact ker(p) = R* = R\ {0}.

2.3.3 Pin and Spin

For any a € C(Q, q), define the norm of a, N(a), by
N(a) =aa.

If g e T(Q,q), then g = z; - - - x4 for some z1,... ,zx € Q. It follows that

{8 ) (i) ()

i=k i=1
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since N(z;) = —z? = q(z;,7;) € R* for all i = 1,... , k. This implies that the norm
N :T'(Q,q) — R* is a homomorphism. We define

Pin(Q,q) = {9 €T(Q,q) : N(g9) = =1}
and
Spin(Q,q) = {g € T°(Q,q) : N(g) = £1}

where I'°(Q,q) = I'(Q,q) N C%Q, q) is the “even” subgroup of I'(Q,q). When
Q@ = R™ and ¢ is the standard inner product, we abbreviate I'(Q, q), Pin(Q, ¢q) and
Spin(Q, q) to I'(n), Pin(n) and Spin(n) respectively. It is evident that Pin(Q,q)
(Spin(Q, q)) is a normal subgroup of I'(Q, q) (respectively I'°(Q, ¢)) and that

I'(Q,q)/Pin(Q,q) = T°(Q,q)/Spin(Q, q) = R*.
Furthermore, the maps
Pin(Q,q) > 0(@,9); g—p, and  Spin(Q,q) — SO(Q,q); g+ py
are surjective, the kernel in both cases being isomorphic to S°® = {£1}. Note that
Spin(Q,q) C {g € C°(Q,q) : N(g) = £1},

but the reverse inclusion is not true in general. Topologically, if n > 1 then Spin(n)
is compact and connected (see [Ps], pp. 226-8) and is thus the connected two-fold
covering space of SO(n).

2.3.4 Embedding Spin(n + 1) in C(n)
Define 6 : C(n) — C°(n + 1) by
0(6,’) = €i€n+1

for i = 1,...,n, extended to be an algebra homomorphism. Then € is in fact an

isomorphism, with
0_1(61'1 cee) =€y e
forall1<i; <---< i <n, keven, and
6 (e, - - “€i ent1) = € - €

30



forall1 <4 < --- < i <n, kodd. Since Spin(n + 1) C C°n + 1), we may
regard Spin(n + 1) as a subgroup of C(n) using the isomorphism 6. Under this

identification, we have
Spin(n) = {g € Spin(n+1) : g = g}.

(This follows from the fact that 6 is norm-preserving on @ = R™.)

Lemma 2.4 If h € Spin(n + 1), then hx(ﬁ) € @ for all z € Q', where Q'
denotes the subspace R1@® R"™ C C(n).

Proof We may write h = hg + h; where hy and h; are the even and odd parts of
h respectively. We then have

6(h) = ho + hieny1; 9@) = ho — hi€n41,
S0
9(h)6n+1 = (ho + h16n+1)6n+1 = 6n+1(ho - h1€n+1) = 6n+19(ﬁ) .

Fix ¢ € @'; then z = zy + ;, where o € R1 and z; € R™ = span{ey,...,e,}.
Since §(h) € Spin(n+1) C C°(n + 1),

0(h)(—zoent1 + z1) = 2'0(h)
for some ' € R™*! C C(n+1), since —zpen 41+ € R™! C C(n+1). Consequently

6(h)0(z) = 0(h)(zo + Z1€n+1)
= 0(h)(—zoen4t1 + T1)ent1
=12'0(h)ens1

=z'eq10 (Tz)
= 6(z")6 (ﬁ)

-\ —1
for some z” € Q'. It follows that hx (h) € @ for all z € @', as claimed. Note

that, since Spin(n + 1) preserves norms, the map
’ ’ ~\ !
Q —-Q;, z— hx (h)
is a rotation of Q'. a
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Lemma 2.5 Any element of Spin(n + 1) C C(n) is expressible in the form zg for
some z € S™ = {z € Q' : Tz = 1} and some g € Spin(n).

-1
Proof 1If h € Spin(n + 1), then h(h) € S™ since 1 € S™. Let z € Q' satisfy the

-\ -1
condition 2% = h(h) (noting that (Q')%2 = Q') and let g = Zh. Clearly z € S", so

1

z=2z=2z"1and

-\ -1
g(‘?j)_1 = z'lh(h) 2 =212 =1,

that is, g € Spin(n) and h = zg. O
Consider the sequence

Spin(n) —— Spin(n + 1) £ S,

-1
where ¢ is the inclusion map and p is the map Spin(n +1) — S™; h — h(h) .

We claim that the fibres of u are the left cosets of Spin(n) in Spin(n + 1). In-
deed, if z;,zo € Q' satisfy 2 = z2, then it is easy to see that z; = +z,. If
hi,hy € Spin(n + 1) satisfy p(hy) = u(hy) = 2% for some 2 € S™, then writing
hi = 2191 and hy = 239, for 21,20 € S™ and g1, go € Spin(n), we see that z; = +z,
zy = £z and hT'hy € Spin(n). Since p is surjective, we may view Spin(n) as
the stabiliser subgroup of any given element of S™ under the transitive action of
Spin(n + 1), that is, h(z) = hz (ﬁ)_l.

2.3.5 Construction of Low-Dimensional Clifford Algebras

and Spin Groups

Lemma 2.6 The Clifford algebras C(n),n = 0,1,2,3,4 are isomorphic to R, C,
H, 2H, H(2) respectively. |

Proof C(0) = R is obvious. For the other cases,
1. In C, set e; =1.

2. InH,sete; =1, e;=k.

.0 .
3. In2H, set e; = : ], e= J 0, , €3 = k0 .
0 —2 0 —j 0 —k



;0 0 kE 0
4. InH(2),setel=<z , €3 = J ) €3 = >,

0 —i 0 —j 0 —k
(01
N1 0 )

It is easy to verify that the result holds with these identifications. a
Lemma 2.7 For alln>4,C(n) 2 C(n—4)®C(4) 2 C(n—4) @ H(2).

Proof Consider C = C(4) as a subalgebra of C(n), generated by the elements 1,
e1, es, €3, €4 of C(n). Let a = ejeseseq and let B denote the subalgebra of C(n)
generated by the elements 1, aes, ... , ae, of C(n). It is evident that B is isomorphic
to C(n—4), since (ae;)(ae;) = e;e; for any 5 < 4, j < n. Furthermore, every element
of B commutes with every element of C, since e; anticommutes with a for 1 <7 <4
and commutes with a for 5 < i < n. Clearly C(n) is generated by B and C, and

dim C(n) = 2" = 2" *2* = dim(C(n — 4)) dim(C(4)).

The result follows immediately. a

Lemmas 2.3 and 2.7 enable us to identify the following low-dimensional Clifford

algebras.
Corollary
Cc(5) = C®H(2) = C(4);
C6) =2 HH(2) = R(8);
C(7) = HH(2) = 2R(8); and
C8) = H(2)®H(2) = R(16).

By induction, the spaces C(n) are isomorphic to K(2™) for some m and K = R,
C, H, %R or 2H depending on n. The corresponding space K?™ is called the spinor
space of C(n). It is not difficult to see that conjugation on C(n) = K(2™) is in
fact the adjoint operation on K(2™). This is a potential source of confusion, for &
(conjugation in C(n)) corresponds to ()" (conjugation in K(2™)). (In [Ps], Porteous
uses z~ for the Clifford algebra conjugation in order to avoid this ambiguity.)

Lemma 2.8 Forn <5, Spin(n) = {g € C°(n) : N(g) = £1}.
The proof of this result may be found in [Ps], p. 147.
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Corollary

Spin(1) = 0(1) = S°, Spin(2) & U(1) = 81,
Spin(3) = Sp(1) = S3, Spin(4) = Sp(1) x Sp(1) = S3 x S8,
Spin(5) = Sp(2), Spin(6) C U(4).

(We recall that Sp(n) denotes the group of isometries of H™ with respect to the

standard norm |(zy,... ,Z,)| = \/|x1|2 oot |zt
We now give an explicit description of Spin(2) and Spin(4). In the case of

Spin(2), we have @' = R? which is identified with C. The unit complex number
g € U(1) = Spin(2) acts as a rotation of Q' by

A~ —

y— gy(@) " = gyg = g’v.
In the case of Spin(4), we have @' = R?, identified with {( ?(J) (~) ) (Y € H}
Y

0
Under this identification, if ( g ) € ?H then
r

©)-:3)

0 0
The element ( g A) € Spin(4), where g,7 € S3, acts orthogonally on ( ?(’; . )
T Y

(rs)=(e2)(ha)(as) (7 wa):

that is, y — quT.

by

2.4 Octonions and Triality

2.4.1 Fundamental Properties of O

The octonion algebra O is usually defined to be H? equipped with the product
(z,9)(=',y) = (z2' — ¥y, y2’ + y'z)
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and conjugation

(z,y) = (T’ _y)

for all z,y,z’,y’ € H, however we do not follow this route but instead present an
equivalent formulation which does not require the use of quaternions and more im-
portantly clarifies the link between octonions, Clifford algebras and Spin(8).

Consider the Lie algebra s0(8) of Spin(8) (and SO(8)) spanned by
{Xx:0<j<k<T}, where Xj;=E;,— E; € R(8).

Here Ejy is the elementary 8 x 8 matrix with 1 in the (4, k)-position and 0 elsewhere.

A maximal torus t is spanned by {Y;}3_, where
Y; = Xojo541-
The (complex infinitesimal) roots are
{i(£Y] £ Y hicrejza
where Y; = Yp. An ordered basis is given by
{a(Yy = ¥3),a(Yy + ¥7), (Y5 — ¥y),i(Y7 — Y3}

we denote these roots by ay, a1, as, as respectively. The associated Dynkin diagram
is depicted in Figure 2.1.

In Appendix A we describe the construction of a map ©, known as the triality
automorphism of s0(8). This map is a Lie algebra automorphism of order 3 whose

(07)]

(7]

a3

Figure 2.1: Dynkin diagram for so(8)
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dual map preserves ap and cyclically permutes aj, ap, 3. Let {ej};=0 denote the
standard basis for R8. Define a map v : R® — R2 by setting

vieg) =1 and vier) =20(Xox), k=1,...,7

and extending to make v linear. Based on the calculations in Appendix A, we find
that

( o —T1 —T9 —T3 —Ty4 —Ty —Tg —XT7 \
I To —I3 T2 Ts —I4 7 —Te
D) I3 g —I Te —T7 —T4 Ts
I3 —T9 I Zo Z7 Te —T5 —T4

(%o, T1, T2, T3, T4, Ts, Te, Tr) =

ry —Ts —Tg —T7 To I i) T3

s T4 7 —Tg —In Zo I3 —X2

6 —I7 Ty Ts —T2 —I3 Zo I

z
\127 Te —T5 Ty —X3 Iy —Ih .’L‘o/

for all (zo, ... ,z7) € R® Furthermore
1
O(X;1) = Sv(exlv(ey) 22

forall 0 < j <k <7 Let Y =v(R8). We shall investigate further properties of ©
in Section 2.4.4. (As an aside, we note that R(8) may be regarded as a non-universal
Clifford algebra with Q = R7. The term non-universal means that the Clifford al-
gebra has dimension less than the maximal 27 = 128. Conjugation in the Clifford
algebra corresponds to transposition in R(8) and the subspace @' corresponds to
Y. For a more detailed discussion, see Chapter 19 of [Ps].)

We now construct the octonion algebra. For z,y € RS2, define the (bilinear)
product zy € R® by

zy = v(2)y.
Ife=¢e=(1,0,0,0,0,0,0,0) € R® we have
ex =v(e)z = Iz =z = v(z)e = ze,
so e is the identity element of the algebra R2. It is easy to verify that

(v(@))'v(z) = [o I (2.3)
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for all z € R8. If z,y € R® we have
ley|* = [v(z)y|” = y'(v () v(z)y = ' |2|* Iy = |z|" |yI*,

implying that R8 is a normed division algebra. We henceforth refer to R® with the
above product as the octonion or Cayley algebra and denote it by O. We also define,
for £ € O, the element T € O given by

z = (v(z))’e.

Explicitly, if z = (zo, 1, ... ,27), then T = (2o, —21,... ,—2z7). We call zo the real
part of z and (0, z1, ... ,z7) the imaginary part of z, denoted by Re(z) and Im(z)
respectively. Note that € = e, T = z, Re(z)e = (z + Z)/2, Im(z) = (z — T)/2 for all
z € O and that T = —z if and only if z = Im(z). We claim that

(@v)e = 5(z +72)
for all z,y € O; this follows from
Ty + gz = T(ye) + Y(ze) = (v(2))'v(y)e + (v(y))v(z)e = 2(z,y) e (2.4)
by polarisation of (2.3). Since (v(z))v(z) = |z|> I = v(z)(v(z))t, we have
|z’ e = Tz = 2T.
It follows that
7l = |z| %%

for all z € O. Furthermore, if z and y are imaginary then they anticommute if and

only if they are orthogonal.

Definition For z,y, z € O, we define the scalar triple product of z, y and z to be

{z,y,2} = (Z,y2) .

Lemma 2.9 The quantity {z,y, z} is invariant under even permutations of the en-
tries, that is,

{z,y,2} = {y, 2,2} = {z,z,y}
forall z,y,z € O.
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Proof We have

{z,y,2} = (T,y2) =Tv(y)2 =T(v(7))"2 = (v(7)T)'z = (T, 2) = {
If £ = zoe + z; where 2o = Re(z) and z; = Im(z), then
{y, z, z0e} = (7, 220€) = 20 (U, 2) = (2, Y Te€) = {Z, Y, Toe}
and

{v,2,2:} —{z,9, 71} = {71,2,9} — {21,9, 2}
={z1,2,7} + {Z1,9, 2}
= (71,29 + y2)
= (11,2(%,9) €)
= 0.
By linearity it follows that

{y,2,2} = {z,9,7} = {z,v, 2},

and by repeating the same argument we also have {z,y, z} = {2, z, y}.

O

There appears to be nothing of interest to say about odd permutations of the

entries of the scalar triple product.

Corollary For allz,y € O,

Y=1YT.

Proof Set z=e. By Lemma 2.9, we have {e, z,y} = {z,y,e}. By (2.4),

e(zy) + (zy)e = z(ye) + (Fe)7,

that is, zy + Ty = zy + Y. The corollary follows.

We also have

z(zy) = v(@V(z)y = (v(2))'v(z)y = oy = Tz)y

for all z,y € O, implying that

z(zy) = (z + T)zy — Z(zy)
= ((z +7)z)y — (Tx)y since £ + 7 € Re

2
=Ty,
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that is, O is an alternative algebra.
Pick 7,7 € Im(O) such that |i| = |j| =1 and (¢, ) = 0. Then if k = ij, we have
k = Im(k), for we must have ij + ji = 0, implying that

Furthermore,

whence (i, k) = (j, k) = 0 by a similar argument. Since |k| = |é| |j| = 1, we see that
the elements {%,j} generate a subalgebra of O isomorphic to H which is therefore
associative. Nevertheless, the algebra O is not associative, for if ¢,j are as above
and ! € Im(O)\ {0} is chosen such that [ is orthogonal to i, j and %7, then

ij+gi=d+1li=jl+1j=(j)l+1(GE5) =0,
whence

i(51) + (i)l = —i(ly) — U(55) = (P + 1)j — (i + 1) (35 + 1) (2.5)
=GE+D%—-(GE+0)(@E+1)5) =0 (2.6)

by the alternativity of O. If O were in fact associative, (2.5) would imply that
(25)l = 0 which contradicts the fact that O is a division algebra.
We have noted that Re(z)e = (z + T)/2 for all z € O, thus by (2.4),

Re(y) = % (Ty + (Ty) ) = %(Ty +7z) = (z,y) e.
A simple calculation shows that (Z,y) = (z,7) for all z,y € O, so
Re(zy) = (Z,y) = (,9) = (¥, z) = Re(yz)
for all z,y € O. Also
Re(z(y2)) = (%,y2) = {z,9,2} = {2, 2,3} = (Z,2y) = Re(2(zy)) = Re((zy)2)

for all z,y, z € O. Another useful fact is that if x € O satisfies zy = yz forally € O
then z € Re. To see this, choose a subalgebra A of O containing x isomorphic to
H and use the analogous (easily verified) result for H.
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Lemma 2.10

(i) For all a,b € O, (ab)a = a(ba) = aba. If b is imaginary, then so is aba. If a
is also imaginary and |a| = 1, the map R" — R : b — —aba is the reflection
in the hyperplane {Ra}t.

(it) For all a,b € O, (ab)a = a(ba) = aba.
(1ii) (Moufang identity) For all a,b,c € O, a(bc)a = (ab)(ca).
() If r € O satisfies r(zy) = (rz)y for all z,y € O, then r € Re.
Proof For any a,b,c € O, define their associator by
[a, b, c] = (ab)c — a(bc).

The alternativity property of O may then be expressed as [a,a,b] = 0for alla,b € O.
We have also shown that [@,a,b] = 0 for all a,b € O. For any a,b,c € O, the
trilinearity of |-, -, -] implies that

0=[a+ca+cb =][a,ab]+][ccb +[a,cb]+[ca,b,
so [a, ¢, b] = —[c,a,b]. Since
[a,b,c] = — [¢,b,a],

we have [b, c,a] = —[b, a, ] (after replacing a, b, c with their conjugates). As a result,
the associator is invariant under even permutations of its arguments and changes
sign under odd such permutations. It follows immediately that [a,b,@] = 0 and
[a,b,a] = 0, establishing (ii) and the first part of (i). To prove the rest of (i),
suppose that b is imaginary; then

Re(aba) = Re((ab)a) = Re(a(ab)) = Re (|a|’b) = |a|’ Re(b) = 0,

so aba is imaginary. If a is also imaginary and |a| = 1, then defining p, : R” — R’

to be the linear map b — —aba we have
pa(@) = —aaa@ = —a
and
Pa(b) = —aba = baa = b
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for all b € R7 orthogonal to a. This completes the proof of (i).
Now c(aba) = ((ca)b)a for all a,b,c € O, for

c(aba) — ((ca)b)a = c(a(ba)) — ((ca)b)a
= —[c, a, ba] + (ca)(ba) — (ca)(ba) — [ca, b, a)
= [¢, ba, a] + [b, ca, a]
= (c(ba))a — ¢ (ba?) + (b(ca))a — b (ca?)
= [¢,b,a%] — (cb)a® + [b, ¢, a®] — (bc)a® + (b(ca) + c(ba))a
= (b(ca) + c(ba) — (cb)a — (bc)a)a
= —([¢,b,a] + [b,c,a]) a
=0.

Then

a(bc)a — (ab)(ca) = ((ab)c)a — [a, b, c]a — ((ab)c)a + [ab, ¢, a]
= —[a, b, c]a — [c, ab, a]
= —|[a, b, cla — (c(ab))a + c(aba)
= —[a, b, cla — (c(ab))a + ((ca)b)a, by the above claim
= ([c,a,b] — [a,b,¢]) a
=0
proving (iii).

In order to establish (iv), we first show that the image of the associator contains
Im(O), that is, Im(O) C [O, O, O]. Suppose that we are given n € Im(O); write
n = am with @ € R and |m| = 1. Choose [ € Im(O) with [ L m and |l| = 1 and
set k = Im. Pick : € Im(O) with¢ L [,¢ L m,4 L k and |[i| =1 and set j = ki. It
is easy to show that j,k € Im(O), |k| =|j| =1and that k LI,k L m, ¢ L j and
k L j. Also, by the Moufang identity (iii), we have

(G, 1) e = —jl — I = (ki)(mk) + (km)(ik) = k(im + mi)k = 0,

that is, 7 L I. By (2.5), (¢j)l +i(jl) = 0, so [i,4,!] = 2(¢j)l = 2kl = 2m. Finally,

[54,7,1] = am = n, so that Im(O) C [0, 0, O] as claimed. (In fact the reverse

inclusion holds as well, for we have seen that Re([a, b, c]) = 0 for all a,b,c € O.)
Now we note that polarisation of the Moufang identity (iii) gives

(ca)(bd) + (da)(bc) = (c(ab))d + (d(ab))c. (2.7)
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We now prove that
dla, b, c] — [a, b, c]d + [ab, c,d] + [bc, a, d] + [ca,b,d] =0 (2.8)
for all a,b,c,d € O. In fact

d[a, b, c] = d((ab)c) — d(a(bc))
= —[d, ab, c| + (d(ab))c + [d, a, bc] — (da)(bc)
= —[ab, ¢, d] — [bec, a,d] — (c(ab))d + (ca)(bd) by (2.7)
= —[ab, c,d] — [bc, a,d] + [c, a, bld — ((ca)b)d + (ca)(bd)
= —[ab, ¢, d] — [be, a,d] + [a, b, c]d — [ca, b, d].

Now suppose that [r,z,y] = 0 for all z,y € O. Setting d = r in (2.8) we have
rla,b,c] — [a,b,c]Jr =0

for all a,b,c € O. Since Im(O) C [0, O, O}, it follows that r commutes with all
imaginary octonions, hence all octonions. By the remarks preceding the statement
of this lemma, r € Re. O

2.4.2 Spin(8)

In the corollary to Lemma 2.7 we saw that the Clifford algebra C(7) is isomorphic to
2R(8). As in Section 2.3.4 we may consider Spin(8) as being embedded in C(7). In
this section we realise Spin(8) as a subgroup of 2R(8). In fact, by the orthogonality
of the Clifford groups (see Section 2.3.2) and the fact that Spin(8) is connected, we
may realise Spin(8) as a subgroup of SO(8) x SO(8).

Let {e,e1,...,er} denote the standard basis of R8. It is easy to verify that
{v(e:)}I_, is a set of pairwise anticommuting matrices of determinant 1. (This is
consistent with the interpretation of R(8) as a nonuniversal Clifford algebra de-
scribed in Section 2.4.1; it is also consistent with equation (2.2).) When Y is

embedded in 2R(8) = C(7) by
Y 0 ot

for y € Y, it is clear that the subspace @' = R & @ of C(7) may be identified with
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Y C 2R(8). The element ( g 2 ) of 2R (8) satisfies

(20)-(22),

0
hence the element ( g L ) € Spin(8) acts orthogonally on Y by

—_— -1
y 0 (9 0 y 0 g 0 _ [ gyh* 0
0 ¢t 0 h 0 yt 0 h 0 hytgt )’
since g and h are necessarily in SO(8). That is,

Spin(8) = {(g,h) : g,h € SO(8),gyh* € Y for all y € Y},

however for technical reasons we now make a slightly different characterisation of

Spin(8). Define the companion involution R(8) — R(8); g — § by
g=JgJ

1 0
J=(0 _I7>€R(8);

we call § the companion of g. It is obvious that

where

gz =gz
for all g € R(8), z € O. This implies that if g € SO(8), then g € SO(8). It also

implies that g = § if and only if ge = e, in which case

(10
77 o n
for some h € SO(7). We then write

0
Spin(8) = {( g(;) i ) : 90,91 € SO(8),g0ydr € Y for all y € Y} c R(16).
1

go 0
[}
projections of Spin(8) onto SO(8), thus has kernel

(5 2)(e5))
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2.4.3 Triality

The orthogonal action of Spin(8) on S7 is given by
0
( o ) z = gov()Ji e
0 o

Jo

forall z € S” = {z € O : |z| = 1}. Consequently, for ( 0 f) > € Spin(8), there

91
exists a unique g2 € SO(8) such that

goydi ‘e = Gaye

for all y € Y. We call the ordered triple (go, g1, 92) a 6-triad of SO(8), and define

6 : Spin(8) — Spin(8) by
o % 0y (9 O
0 & 0 g

Then as Lemma 2.11 below implies, 8 is a well-defined automorphism of order 3. It
is known as the triality automorphism of Spin(8). In fact 6 is closely related to the
map O defined in Section 2.4.1; we shall investigate this connection in Section 2.4.4

below.

Lemma 2.11 Let (go, 91, 92) be a 0-triad of SO(8). Then (g1, g2, 90), (92, 9o, 91) and
(9% 975 95Y), (975925 95Y), (921, 95%, 91") are O-triads of SO(8). Furthermore,
(91, Jo, §2) is also a B-triad of SO(8).

Proof Ify,z €Y then

9oydi 'ze = (goydi ‘e) (ze) = (Jave)(ze)
since goyg;' € Y. Now if z € Y, then
(Te, (91" 2e)(ze)) = {ye, §i ' ze, xe} = {we,ye, §7'ze} = (Te, ygy 'ze)
= (90Te, goydy ‘ze) = (9oTe, (Joye)(ze)) = (Joze, g2e(ze))
= {gO:reaW’ ze} = {?’Fy—év Zeagoxe} = <g2—g€7 Zgo.’JSe)
= (e, 9; ' zdoze)

by the orthogonality of go and g,. Since this is true for all y € Y we have
(97" ze) (ze) = g5 '2zgoze
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for all z,z € Y. It follows that g;'zdo € Y for all z € Y and, by setting = = I, that
(95", 95", 917") is a 6-triad of SO(8). (Note that (§)"' = (¢g7!) for all g € SO(8).)
Repeating this argument (four times) completes the proof of the first claim. Now
Y is closed under transposition, so

(goyg")’ = Gv'es" € Y
for all y € Y; it follows that

- - +—1\1t - — -— —
91995 'e = (govdr") e = goydi ‘e = Goye = goe = gay'e,

establishing the second claim. O

By virtue of this theorem we may now describe Spin(8) as
Spin(8) = {(go, 91, 92) a 6-triad of SO(8)}.
The standard orthogonal action of Spin(8) on S7 is given by
(90,91, 92)T = Gav(x)e = GoT = g2T
for all z € S”. Recall that we embedded Y in 2R(8) by
y O
o (10):
we may thus embed z € S7 in 2R(8) by
v(z 0
S ( (0) I/(:L‘)t).

We claim that, for any z € S7, this embedding gives an element of Spin(8). This is

an immediate consequence of Lemma 2.11 and the following result.

Lemma 2.12 For any z € S7, the triple (u(m)t(l/(az))v, v(z), (V(:I,‘)t)v) is a 0-triad of
SO(8).

The proof of this lemma appears in Section 2.4.4.

We now relate the group of automorphisms of O to Spin(8). Let
Gy = {g € SO(8) : g(zy) = g(z)g(y) for all z,y € O}

denote the group of automorphisms of O. If g € Gy, then g(e) = e, so g is of the
10
form ( 0 o ) where ¢’ € SO(7) and g = g.
g
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Lemma 2.13 Let g € SO(8). Then (g9,9,9) is a 0-triad of SO(8) if and only if
g e Gg.

Proof Suppose g € Gy. If y,z € Y are arbitrary, then

9((ye)(ze)) = g(ye)g(ze) & gyg~"gze = (Jye)(gze)
& gzgl €Y and gz le = gre forallz € Y,

so (g,9,9) is a 6-triad. Conversely, if (g, g,9) is a 6-triad of SO(8), then for any
y € Y, we have gyj~! € Y and gyj—le = gye. Set y = I € Y; then he = e,
where h = §~1g§~!. It follows that A = h; this may be rewritten as (g;)® = I,
where g, = g§~! € Y. By Lemma 2.11, (571,571, §7}) is a O-triad of SO(8), hence
(91,91, 91) is also a f-triad. That is, g1yj; ‘e = Giye for all y € Y. Since §; = g;*
and (g1)3 = I, this simplifies to gye = ygie, or (g1€)(ye) = (ye)(gie), forally € Y.
It follows that g;e € Re, so by the orthogonality of g; and the fact that g, € Y,
we have g; = +1. It is easy to verify that (—I,—1I,—1I) is not a f-triad of SO(8),
implying that g; = I and g = §. Consequently gyg~! € Y and gyg~'e = gye for all
y €Y. Now if z, 2z € O, then let ' = v(z), 2’ = v(z); we have

g(zz) = g(z'de) = gz'g 7 go'e = (92’9 'e)(ge) = (g2'e)(g7'e) = g(z)g(2),
that is, g € Go. O

For i = 0,1,2, define H; = {(g0, 91, 92) € Spin(8) : gie = e}. Clearly H, is the
stabiliser subgroup at e € S7 of the standard orthogonal action of Spin(8), hence
H, =2 Spin(7). Furthermore, the automorphism 6 : Spin(8) — Spin(8) permutes
the groups H; cyclically, so H; = Spin(7) for i = 0,1,2. If (go, 91,92) € H1 N Hy,
then gse = e implies that joe = e, whence gog;* = I and go = §;. Similarly, gie = e
implies that go = go. It follows that (go, 91,92) = (9o, Jo, o) is a f-triad, whence
so is (go, o, go) by Lemma 2.11. We have shown that go = go, so (go, 9o, go) is a
f-triad. By Lemma 2.13, H; N Hy = G,. Since G, is preserved by 6, we see that
HoNH, = H,NHy=HyNHy= Gs.

2.4.4 Further Remarks on Triality

In this section we link the two triality automorphisms © and 6 of so(8) and Spin(8)
respectively, present an equivalent characterisation of 6-triads and use this charac-

terisation to give a proof of Lemma 2.12.
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Let Z denote the centre of Spin(8). It is easy to see that Z is given by
zZ={({,LI),I,-1,-1),(-1,1,-1),(-1,-1,1)} 2 Z3 X Z,.

The triality automorphism 6 preserves (I, I,I) and cyclically permutes the other
three elements of Z. It follows that € projects to an automorphism of the space
Spin(8)/Z of order 3. The map © is the derivative of this automorphism. (Note
that 50(8) may be regarded as the Lie algebra of Spin(8)/Z.) In fact  does not
project to an automorphism of SO(8), for we have

(09)-(o7) = o(T 5)-(37)

The arguments project to the same element of SO(8) (namely I) but their images
do not.

The group Spin(8) is the only one of the groups Spin(n) to admit a triality
automorphism. That this is true is indicated by our method of construction using
the threefold rotational symmetry of the Dynkin diagram for so(8). The Dynkin
diagrams for other Lie algebras so(n), n # 8 do not possess this type of symmetry.
Details may be found in [L].

The standard definition of a f-triad is a triple (go, g1, g2) of elements of SO(8)
satisfying

for all z,y € O, or equivalently

go(zy) = Ga(2)91(y)

for all z,y € O. We show that this definition is equivalent to the one given in
Section 2.4.3. Suppose that (go, g1, g2) satisfies gokg;’ € Y for all k € Y with
gokgr'e = goke for all k € Y. Fix z,y € O and set k = v(z) € Y. There exists
z € O such that gov(z)g;* = v(z). We have

Gox = Gov(z)e = gov(x)di e = v(2)e = 2
and
9o(zy) = gov(z)y = v(2)91y = §2(2)51(y)
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as required. Conversely, suppose that go(zy) = §2(x)g1(y) for all z,y € O. Fixing
z € O and setting z = go(z) gives

gov(z)y = v(2)g1y
for all y € O, whence gov(z)j;* = v(2) € Y and gov(z)g; e = z = §a(z) as required.

Proof of Lemma 2.12 We use the standard definition of a #-triad. The map v(z)

corresponds to left multiplication by € O, whereas the map (v(z)) corresponds to

right multiplication by Z, since

(v(z))a=Ta=a

for all a € O. Consider the triad (go, g1, 92) = (V(x)t(u(:c))v, v(z), (V(w)tf) for some
z € S7. For any a,b € O, we have

go(ab) = z((ab)z)
= (z(ab))z
= (za)(bx)
= g1(a)g2(b)

by the Moufang identity (Lemma 2.10 (iii)). Since go, 91,92 € SO(8), the result
follows. U
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Chapter 3

The Construction of Symmetric

Spaces

In order to formulate the new construction of symmetric spaces of rank one of non-
compact type, we first require some properties of a special class of Lie algebras
known as H-type algebras, introduced by Kaplan [K]. Of particular interest is the
subclass of these algebras satisfying a condition known as the J2 condition, a con-
dition first described in [CDKR]. We use these algebras in conjunction with Clifford
algebras to construct the symmetric spaces, examining each of the four families indi-
vidually. We also examine a result due to Pansu [Pu] involving graded isomorphisms

of H-type algebras.

3.1 H-type algebras

In this section we define H-type algebras and give some of their important properties.
We also examine some associated Riemannian manifolds, generalising the Klein and
upper half-space models of hyperbolic space. Most of the material in this section
appears in [CDKR2], although some of the results were originally proved in [K].

3.1.1 The J? condition

Let n denote a Lie algebra equipped with an inner product (-,-) and associated
length |-|. Suppose that n = v @ 3 with [n,3] = {0} and [n,n] C 3, so that n is
two-step nilpotent. Define the map J : 3 — End(b) by

(JZXa Y) = (Z, [X’ Y]) (3'1)
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for all Z € 3 and all X,Y € v. If J satisfies
|[JzX| = |Z]|X]| (3.2)

for all Z € 3, X € v then n is said to be of Heisenberg type, or alternatively n is said
to be an H-type algebra. The associated simply connected Lie group N = exp(n) is
called an H-type group.

The map J possesses several important properties. Equation 3.1 implies that Jz
is skew-symmetric for all Z € 3. Repeated polarisation of (3.2) gives

(JzX,JzY) = (Z,Z) (X,Y) (3.3)
(JwX,JzX) = (W, Z) (X, X) (3.4)
(JwX, JzY) + (JzX, JwY) = 2(W, Z) (X,Y) (3.5)

for all X,Y € v, W, Z € 3. By the skew-symmetry of Jz and (3.3) we have
Ji=—|Z1 (3.6)
hence
Jzdw + Jwdz = =2(Z, W) I (3.7)
by polarisation, for all Z, W € 3. This implies that when Z and W are orthogonal,
Jzdw = —JwJz. (3.8)
By (3.1) and (3.4),
(W, [X, JzX]) = (JwX, JzX) = (W, Z) (X, X)
for all X € v, W, Z € 3, implying that
[X,JzX] = |X|*Z (3.9)
for all X € v, Z € 3. Finally, for any X,Y € v, W, Z € 3, we have

(W, [JzX, JZzY]) = (JwJz X, JzY)
= —(JzJwX, JzY) — 2(W, Z) (X, JzY)
=—(Z,2)(JwX,Y) +2(W, Z) (JzX,Y)
=— (W, (12’ [X,Y] - 22 (Z,[X,Y])))
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by (3.1), (3.7), (3.3), the skew-symmetry of Jz and (3.1) again, thus
[JzX,JzY] = —|Z|? pz]X, Y] (3.10)

for all X,Y € v and Z € 3, where pz : 3 — 3 is the reflection in the hyperplane
orthogonal to Z.
Given X € v\ {0}, we let j(X) = {JzX : Z € 3}.

Definition Given an H-type algebra n, we say that n satisfies the J2 condition if
for all X € v, Z), Z, € 3\{0} with (Z;, Z;) = 0, there exists Z3 € 3 such that

Jz,J2,X = Jz, X. (3.11)

Equivalently, n satisfies the J2 condition if Jz preserves RX @ j(X) for all Z € 3,
X €, orif

R+j)R+j)X =R +j)X

for all X € v. By (3.2) and (3.8), if X # 0 and dim(3) > 2, then the element Z3 in
(3.11) is unique and orthogonal to both Z;, Z,.

Suppose that dim(3) = ¢ > 0 and let {Z;}]_, be an orthonormal basis for 3. The
map C(gq) — End(b); e; — Jz, extends by linearity to a representation of C(g) on v.
Now let n satisfy the J2 condition. If X € v\{0} and X’ € (RX @j(X))+, then the
representations of C(g) on the mutually orthogonal J;-invariant subspaces RX @®;j(X)
and RX' @ j(X’) are equivalent. To see this, suppose for some Z, Z', W, W' € Z we
have (Z,2') =0, JzJzX = JwX and JzJz X' = JuX'. By the J? condition, there
exists Wy € 3 with JzJZI(X + X') = JWO(X + X'), implying that JzJz/ X = Jw,X
and JzJz X' = Jw, X', that is, W = Wy = W'. Consequently the linear map that
sends X to X’ and JzX to JzX' for each Z € 3 is an intertwining operator as
required. It follows that

P+

b = (PRXx ®j(Xk))

=
Il

1
for some Xj,..., X\ € v, where each summand is an equivalent irreducible Clifford
submodule.

3.1.2 Some Associated Riemannian Spaces

Suppose n = v @ 3 is an H-type algebra satisfying the J? condition. Let a denote a

one-dimensional normed vector space with unit vector H and let s = n®a. In order
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to make s into a Lie algebra with inner product, we extend the inner product on n
by requiring that a be orthogonal to n; we extend the Lie bracket by bilinearity and
the conditions

H, X] = %X and  [H,Z]=Z (3.12)
for all X € v, Z € 3. We write (X, Z,t) for the element X + Z + tH of s, where
X €v, Z €3, t € R. Define the height function h: s — R by

X, Z,t)=t— i |X|?
for (X, Z,t) € s, and let
D= {p€s:h(p) >0}

The space D is the analogue of the upper half-plane model of hyperbolic space.
It also generalises the well-known Siegel domain for SU(2,1). Let exp(s) denote
the connected, simply connected Lie group with Lie algebra s. This group may be
identified with S = v X 3 x R* by identifying the point exp(X + Z) exp(logtH) of
exp(s) with (X, Z,t) € S. Define © : S — S by

o(X,Z,t) = (X, Z,t+ % |X|2> (3.13)

for all (X, Z,t) € s. It is trivial to see that © is injective and ©(S) = D. It follows
that there exists a simply transitive action of exp(s) on D given by conjugating
left multiplication in the group S by ©. We obtain an invariant metric on D by
transporting the left-invariant metric of exp(s) to D, requiring that © be an isometry.
We now define the Cayley transform C : B — D, where B is the unit ball in s, by

1
C(X,Z,t) = T (21 -t+Jz)X,22,1 -2 - |Z]%) (3.14)

for all (X, Z,t) € B. The inverse of C is given by
1

— 2 2
CHX',Z'\t) = (L+0)+ (2] ((1 +t' = Jz)X',2Z', -1+ ()" +|Z/| )

(3.15)

for all (X', Z’,t') € D. We obtain a metric on B by transporting the metric on D to
B, requiring that C be an isometry. Note that we may identify the tangent space
at a point p of either D or B with s since D and B are subsets of the vector space
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s. Any isometry g of D may be transported using C' to give an isometry g of B:
explicitly, § = C~1gC.
Define the inversion o : D — D by

o(X,Z,t)= (-t +Jz)X, -2,t) (3.16)

1Z)* + ¢
for all (X, Z,t) € D. The equivalent map on the ball B is given by
(X, 2Z,t)=C'oC(X, Z,t) = —(X, Z,t)

for all (X, Z,t) € B. It is proved in [CDKR2] that ¢ is an isometry if and only if n
satisfies the J2 condition. It is also demonstrated that the metric on B is given by

4 |'Ura.d|2 4 |'Utan|2
, Dp#0
(o), ={ (1-pf)° 1-Ipf (3.17)
4 I’U|2 ’ b= 0

where

VUrad = PT,SZ) @va
Utan = VU — Urad
and for p = (X, Z,t) # 0,
T® ®Rp=RX + J,X (3.18)
if Z=t=0, and

T® @ Rp = {((u+ Jw)(t — J2)X, (|1Z]> + )W, (|Z|* + t*)u) : W € 3,u € R}
(3.19)

otherwise. Here P denotes orthogonal projection.

Let N and A denote the subgroups exp(n) and exp(a) of S. It is easy to see
that N is normal in S and S is the semidirect product of N with A. We may write
A = {ay}uer+ where a, = exp(loguH) acts on D by

au(X, Z,t) = (u}2X,uZ, ut)

for all (X, Z,t) € D. A messy computation shows that the action of a, on B is
given by

au(X, Z,t) = m7((s(t — Jz) + )X, Z,cs(1 + 82 + | Z)?) + (2 + s?)t)
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where
1 -1

€= % §= Z—ﬁ m = |s(Z @ tH) + cH|* = (ts + ¢)* + 5| 2.
Note that ¢> — s2 = 1.

Let G denote the group of isometries of B and K be the stabiliser subgroup of
the origin (0,0,0) € B. Let L denote the subgroup of K consisting of isometries
which preserve v (hence 3 @ a) and let M denote the subgroup of L consisting of
isometries which fix H. Then K is a group of orthogonal transformations, K acts
transitively on Ss and M acts transitively on S, x S;, where S;, S, S; are the unit
spheres in s, v, 3 respectively. (Proofs may be found in [CDKR2].)

3.2 Construction of Symmetric Spaces Using H-

type Algebras

In this section we present our construction of all symmetric spaces of rank one of
noncompact type. The construction utilises H-type algebras, Clifford algebras and
Spin groups. We also identify the subgroups K, L and M of isometries of the sym-

metric spaces.

Let v denote a nontrivial Clifford module for C(q), ¢ > 0, with a compatible
inner product. Let 3 = @ C C(q) and a = span{l} C C(q). Let s = v d3Da
where the inner product is extended by linearity and orthogonality. An element
g € Spin(q+1) C C(q) acts on v by the Clifford action X — mc(g)X = gX and on
3®a = Q' by the orthogonal action Z — mo(9)Z = gZg—. The unit elements of Q'
may be regarded as a copy of S? inside Spin(q + 1). For any unit Z € 3and X € v
we define JzX = mc(Z)X and extend J to all of 3 by linearity. The Lie bracket is
determined by (3.1) and (3.12). Having equipped the unit ball of s with the metric
of (3.17), we seek descriptions of the subgroups M, L, K of the group of isometries
G of s in the case where n = v @ 3 satisfies the J? condition. In a series of results
following this discussion, we show that the group L is given by

L ={(g,6) € Spin(g+1) x O(v) : 8Jz = eJz0 for all z € Z, for some € = +1}
where (g,0) acts on s by
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forall X € v, Z € 3, t € R. Note that the decomposition of an element of L into the
form (g, ) need not be unique and that if € = 1 then 0 is an intertwining operator
for m¢. In Sections 3.3 and 3.4 we shall see that if dim3 =3 (mod 4) then ¢ =1 is
the only possibility.

We also demonstrate that the subgroup M of L is given by

M ={(g,6) € L: g € Spin(q)}

where Spin(q) is embedded in Spin(q + 1) as described in Section 2.3.4.
A pair (\,Y) where A € R and Y € v acts on s by

(X, Z,t) = ((t = W)Y + Jz—xm)Y + Xa, AZ + W, Xt + u),

where X = uY @ JwY ® Xy withu € R, W € 3 and X; € (RY @j(Y))*. We show
that the group K is then given by

K={((\LY),)e®Rx0)xL: 2+|Y" =1}
where the element ((),Y),!) acts on v € s by
v (A Y).
The full group of isometries G is then given by the Cartan decomposition
G =KAK
or the Iwasawa decomposition

G = NAK.

Definition A graded automorphism of n is a Lie algebra automorphism of n which
preserves b and 3. Equivalently, a graded automorphism is a pair (A, B) where
A € GL(v) and B € GL(3) such that

[AX, AY] = B[X,Y]

for all X,Y € v.
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Theorem 3.1

(i) If m € M acts on s by m(X, Z,t) = (AX,BZ,t) for all (X,Z,t) € M,
where A € O(v), B € O(3), then m restricts to a graded automorphism of n.
Conversely, any graded automorphism (A, B) of n with A and B orthogonal

extends to an element of M.

(i1) If (A, B) is a graded automorphism of n, where A and B are orthogonal, then
B = %mo(g)|, for some g € Spin(q) and A = mc(g)0 where 6 € O(v) satisfies
0Jz = det(B)Jz0 for all Z € 3.

Proof (i) Let m = (A,B,])onv®3®da. Fixp=(X,-Z,0) € v® 3 & a. Since
m is a linear isometry, we have m(T}> @ Rp) = T2 ® Rmp. Setting

v=(JzX,0,|Z°) € T® @ Rp,
we must have
mv = (AJzX,0,|Z%) = (u+ Jw)JpzAX,|BZ|* W, |BZ|* u)
for some u € R, W € 3. Then W =0, u =1 (as B is orthogonal), so
AJzX = JpzAX
for all X € v, Z € 3. This implies that

(Z,B7'[AX, AY]) = (BZ,[AX, AY]) = (JzAX, AY)
= (AJzX,AY) = (JzX,Y) = (Z,[X,Y])

for all X,Y € v, Z € 3, by the orthogonality of A and B. It follows that
[AX, AY] = B[X,Y]

for all X,Y € v, as required.
Conversely, suppose that (A, B) is a graded automorphism of n. Forall X,Y € v,
Z €y,

(JszAX, AY) = (BZ,[AX, AY]) = (BZ, B[X,Y))
=(Z,[X,Y]) = (JzX,Y) = (AJzX, AY),
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that is,
AJz = JpzA (3.20)

for all Z € 3.
We need to show that if m = (A, B, I), then m (T,fz) @ Rp) = T,‘,?,E @ Rmp for
allpes. Let p=(X,Z,t). If Z=0and ¢t =0, then mp = (AX,0,0), so

m (T @ Rp) = {(A(uX + JwX),0,0) : u € R, W € 3}
whereas
T2 & Rmp = {(v'AX + JwAX,0,0) : u € R, W' €3}.
If u=v' and W = BW, then
AuX + JwX) = AX + Jw AX
by (3.20), so equality holds in this case. If (Z,t) # 0, then

m(Tf) @Rp)
= {(A(u+ Jw)(t - J2)X, (1Z)> +3) BW, (|12 + t*) u) : u € R,W € 3}

while

T,ng @ Rmp
= {((W + Jw)(t — Jpz)AX, (1Z> + ) W', (|1Z)* +t*) ') : ' € R, W' €3}.

Now if v/ = u and W' = BW then

(v + Jw)(t — Jpz)AX = (u+ Jpw)(t — Jpz)AX
= A(u + JW)(t - Jz)X

by (3.20), establishing the result.

(ii) We have AJw = Jpw A for all W € 3. We may write

B =b(-pz,) - (—pz.)

for some unit vectors Zi, ..., Z,, € 3, where b = det(B) = £1. Write

A=Jg - Jg 0

m

where 6 is orthogonal.
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If Z,Z' € 3, then

(Z',2)
|2'?

by (3.7). It follows that for all W € 3,

Jpz,szl = (Jz -2 le) Iz =JdzJz + 2 (ZI,Z) I=—-JzJz (3.21)

TwA = bJ(py ) t-prmyw Iz -+ J2,.0
=bJz,J(—pzy)~pzmW 22 "+ " 2,0

=bJz, -+ Jz, Jwl
whereas
JpwA=Alw = Jz, -+ Jz,.0Jw,
implying that
0Jw = bJwh.
Since dim 3 is odd, we may express B as

B=pr1..-ka

for some Wi,..., W, with k£ even. The result follows from the observations that
for all odd i less than k, mo(W;Wit1) = pw,pw.,,, Tc(WiWiy1) = Jw,Jw,,, and
WiWii1 € Spin(q). g

Theorem 3.1 immediately implies that
M ={(g,6) € Spin(q) x O(b) : 0Jz = eJz0 for all Z € 3, for some € = +1}.

Theorem 3.2 Any element of L is of the form (g,0) where g € Spin(q + 1) and
6 € O(v) satisfies 0Jz = €Jz0 for some e = £1 and all Z € 3.

Proof We show that (Z,I) € L where Z € S? and [ is the identity. If p € 5, we
may write p = (X,Y) where X € v, Y € 3 ®a = @’. In the same manner we may
write

TP @ Rp = {(nc(W)me(V)X, [Y' W) : W € Q'}
if Y #0 and
T® & Rp = mc(Q) X
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otherwise. Now (Z, I) acts on p to give (7¢c(Z)X,m0(Z)Y). We need to check that

this action preserves the appropriate subspace, that is,
TS, ®R(Z, D)p = (Z,1)(T2 & Rp).
Since Z € S, we have
[mo(2)Y| = Y|
forall Y € 3 ® a. It follows that we need only verify that
o(10(Z)W)nc(mo(2)Y )rc(Z) = no(Z)me(W)ne(Y)
for all W € 3 @ a, and that
7c(@)me(2)X = me(Z)me(Q') X.
In (3.22),

LHS = 7o (ZWE-IZYZ—IZ)
= 16(ZWZZYZZ)
= Wc(ZWY) = RHS

(3.22)

(3.23)

since Z € S9. Furthermore, (3.23) is true by the J? condition. It follows that
(Z,I) € L as claimed. Now given g € L, choose Z € S such that ((Z,I)og)H = H,
this is always possible by the transitivity of the orthogonal action of S? on Q’'. It

follows that (Z,I) o g is in M, so this composition may be expressed as (go, ) for

some go € Spin(q) and some 0 satisfying the requirements of the statement of the
theorem. We have shown that g = (Z~1go,0) with Z~1go € Spin(q+ 1) as required.

O

Theorem 3.3 Every element of K is expressible in the form ((A,Y),l) € (Rxv)xL

with N2 +|Y|* = 1.

Proof Let k € K. By composing with an element of L, we may suppose that k

maps (0,0,1) to (Xo,0,to) for some Xy € v, to € R with t2 + |X0|2 = 1. Now

k(3@ a) = k(TP @ RH) = T\) @ REH
= {((u + Jw)Xo, toW, tou) : (W,u) € 3 ® a}.
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As in Section 4 of [CDKR2], let 6 denote the differential of the involution G — G :
g — ogo at the identity of G. (The map © should not be confused with the triality
automorphism of Chapter 2.) The isometry exp (z(8Y +Y)), where cos(z) = to,
sin(z) = — | Xo| and Y = Xo/ | Xo|, acts ((CDKR2] p. 31) in the same way as (to, Xo)

does. In fact
(to, X0)(0, Z,t) = (tXo + JzXo, toZ, tot),

so the isometry (to, Xo) 'k preserves 3 @ a hence is in L. The result follows imme-
diately. O

3.3 Applying the Construction

We now explain how the construction applies to each of the four families of sym-
metric spaces of rank one of noncompact type. In particular, we identify the groups
G, K, L, M for each of these spaces and describe their actions.

3.3.1 Case 1: PO(1,n)/0O(n)

The cases when v = 0 or 3 = 0 correspond to the Poincaré and Klein models of real
hyperbolic space respectively. In either case, the J? condition is trivially satisfied.
Due to the degeneracy of the H-type algebras, the Clifford algebraic interpretation

is largely irrelevant.
In the case where v = 0,

Tf) ®Rp=s

for all p € s, implying that vraq = v and vian = 0 for all v € T, B. The metric is then

v,v), = L |v|2

(v,v), 1= pP)’

for all v € T,,B, which is precisely the Poincaré metric on the unit ball B™ where
n = dim(s). In this case, we have G & PO(1,n), K = L = O(s) & O(n) and
M=0(3)=20(n-1).

Now suppose instead that 3 = 0. The map J is trivial, so
2 .
TP ®Rp=RX ®j(X)=RX =Rp
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if p=(X,0,0) and
2 _ 2, . —
T® @ Rp = {(utX,0,t%u) :u e R} =Rp

if p = (X,0,t), t # 0. In either case, vraq is the projection of v onto p for any
v € T,B. The metric is thus four times the ordinary Klein metric on the unit
ball B® where n = dim(s). In this case, G = PO(1,n), K = O(s) = O(n) and
L=M=0(v) = O0(n-1).

3.3.2 Case 2: PU(1,n)/U(n)

Suppose ¢ = dim(3) = 1. The group Spin(2) & U(1) = S? acts orthogonally on
Q = Cby

mo(9)z = g’z
for all g € S*, z € C. The Clifford action on v = C*! is given by
mo(9)X = gX

for all g € S, X € C*!. Identify 3 with Im(C) and a with Re(C). The sphere S?
is the whole of Spin(2). It follows that J;X = iX for all X € v = C"~!. The J?
condition holds trivially since there are no nonzero orthogonal elements Z;, Z; € 3.
Given X,Y € v, we know that [X,Y] = ki for some k € R, however

k= Re(i[X,Y]) = (3, [X,Y]) = (iX,Y) = Re(i(X,Y)c) = Im(X, Y)c

where
n—1 . _
(X,Y)c = ZX,-YJ-, (X,Y)=Re(X,Y)c, (Z1, Z2) = Re(Z12,)
j=1

forall X,Y €v, Z;,Z; € 3@ a. For any p = (X,iZ +t) € C" we have
T® ®Rp = {((u+iw)(t —iZ2)X, (Z2* +t*) (iw + u)) : u,w € R} = Cp,

thus the metric agrees with the one given in Section 1.3 up to a constant factor.

We seek orthogonal automorphisms of v which commute or anticommute with
J;. Since conjugation anticommutes with J; and the only orthogonal maps which
commute with J; are the elements of U(1,n), we see that any element of L is given
by (Ao, go,€) with Ap € U(n —1), go € S* and € = 0 or 1, where

(AO, 9o, E) (Xa Y) = (goAOUEX’ ggaey)
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for all (X,Y) € v x (3 ® a). (Here o is componentwise complex conjugation as in
Chapter 1.) Replacing godo € U(n — 1) by A; and g2 € S! by g1, we see that
L= U(n—1)x U(1) x Zy with (Ay, g1,€) € L acting by

(A1, g1,6)(X,Y) = (A10°X, 10°Y).

The group Spin(1) = O(1) is embedded in Spin(2) as {£1} C S'. An element of
M is then given by (Ao, go,€) with Ag € U(n — 1), go € O(1) = {£1} and € € Z,

where
(Ao, 90,€)(X,Y) = (goAeo° X, g20°Y) = (£A0° X, 0°Y)

for all (X,Y) € v X (3 ® a). Replacing +4p € U(n — 1) by A;, we see that
M 2 U(n—1) x Zy with (A;,€) € M acting by

(A, €)(X,Y) = (A10°X, 5°Y).

To describe the action of the pair (A, W) with A € R, W € C* ! and X2+ |W|* = 1
on (X,Y) € vx(3@a), we first write X = uW + W'’ where p € C and (W, W’')c = 0.
(Explicitly, u = (X, W)c/ |[W|* and W’ = X — uW.) Then

A W)(X,Y) = (YW = \uW + W, AY + p).

By composing all such pairs (A, W) with all [ € L, it is clear that the group K is
isomorphic to U(n) x Zy with (Ao, &) € U(n) X Zy actingon Ve C*"= v ® (3D a)
by

(Ao,&)V = AoO’EV
The action of a,, € Aon B={p € s: |p| < 1} is given by
au(X,Y) = (X(sY +¢)7L, (cY +5)(sY +¢)71)

for all (X,Y) € B C C*! x C, where ¢c = (u+1)/(2u), s = (u—1)/(2v1)
as in Section 3.1.2. By the Cartan decomposition, we see that the full group G of
isometries of B is indeed isomorphic to PU(1,n) x Zy where

(( : Z ) ,6) p = (c+ Do’p)(a + b*aep)_1

forallp e C* =2 sanda € C, bc € C*, D € C(n) such that the matrix is an
element of U(1,n) (clearly multiplication of such a matrix by a unit complex number
does not affect its action on s).
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3.3.3 Case 3: Sp(1,n)/Sp(n)

Suppose g = dim(3) = 3. The group Spin(4) = Sp(1) x Sp(1) acts orthogonally on
Q' = H (where the isomorphism is a vector space isomorphism) by

T qox—:ﬁ
00? q

for all ¢,7 € S, z € H. (Recall that Z = jzj~! and Z = T for all z € H.) One of
the two Clifford actions on v = H*! is given by

7rc<q 2)X=Xr
07

for all g,7 € $3, X € H*!. Identify 3 with Im(H) = R? and a with Re(H) & R.
The sphere S* is contained in Spin(4) by

It follows that J;X = XZ for all X € v = H*!, Z € 3 = R3. The J? condition
holds by the associativity of H. Given X,Y € v, we must have [X,Y] = Z for some
Z € R3. For any W € 3,

Re(W2) = (W, 2) = (W, [X,Y]) = (XW,Y)
=Re (W(X,Y)u) = Re (W(Im(X,Y)n))

where
n—1 . .
(X, V)u=) X;¥;, (X,Y)=Re(X,Y)n, (Z1,2%)=Re(Z12)
j=1

for all X,Y € v, Z,,Z; € 3® a. It follows that
[X,Y] =Im(X,Y)nu
for all X,Y € v. For any p = (X,Z +t) € H*, with Z € R® and t € R, we have
TO®Rp= {(X(t—Z)(u+W),(|Z)> +t?) (W +u)) : W € R®,u € R} = pH.

We seek orthogonal automorphisms of v which commute or anticommute with Jz,

for all Z € R3. In the former case, we see that the automorphisms are precisely the
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elements of Sp(n—1). We claim that there are no automorphisms which anticommute
with the Clifford action, that is, there does not exist an orthogonal map g : H* — H"
such that

9(X)Z = —9(X2)

for all X € H*, Z € Im(H). Suppose such a g exists. Set X = e = (1,0,...,0).
Then g(Ze) = —g(e)Z for all Z € Im(H), so by linearity, g(Ye) = g(e)Y for all
Y € H. This gives

()T Z = —g(e)TZ
forall Y € H, Z € Im(H). Cancelling g(e) # 0 and using linearity again, we have
YZ=2Y
for all Y, Z € H which is a contradiction.

We have now established that any element of L is given by (( g E ) ,A) with
r

< g E) € Spin(4), A € Sp(n — 1), where
=

( . g) (X,Y) = (X7, q¥7)

for all (X,Y) € v x (3@ a). As a result, we can write L = Sp(n—1) x Sp(1) x Sp(1)
with (A, g,r) € L acting by

(A,q,7)(X,Y) = (AXT,qYT).
The group Spin(3) = Sp(1) is embedded in Spin(4) by
~(33)
0 q
Any element of M is then given by (g, A) with ¢ € Sp(1), A € Sp(n — 1), where
(9, A)(X,Y) = (AX7q,qY7)

for all (X,Y) € v x (3 ® a). That is, M = Sp(n — 1) x Sp(1). In particular, if
g=2Z2e€R3NSp(1)and A= —I,then Z=2Z"'= —Z and :

(@ A)X,Y) = (XZ,2YZY) = (JzX, —pzY)
for all (X,Y) €vx (3P a).
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To describe the action of the pair (A, W), where we have A\ € R, W € H*"! and
A4+ |WP=1on (X,Y) € b x (3 a), we first write X = Wy + W’ where p € H
and (W, W')g = 0. (Explicitly, 4 = (W, X)u/ |W|* and W’ = X — Wp.) Then

O\ W)(X,Y) = (WY = \Wp+ W, Y + p).

By composing all such pairs (A, W) with all € L, it is clear that the group K is
isomorphic to Sp(n) x Sp(1), where (A, q) € Sp(n) x Sp(1) acts on v @ (3 a) = H"
by

X — Azg

for all X € H". Note that due to the noncommutativity of H, there does not in
general exist Ag € Sp(n) such that Azg = Apz for all z.
The action of a, € A on the ball B is given by

(X,Y) = (X(sY +¢)7%, (cY +5)(sY +¢)7)

for all (X,Y) € B C H*! x H, where ¢ = (u+1)/(2y/u), s = (u — 1)/(2\/u) as
before. Using the Cartan decomposition, we see that the full group of isometries of
B is Sp(1,n) x Sp(1) acting on B by

(( Z Z),q)p=(C+Dp)(a+b*p)‘lﬁ

forallpe s = H", g€ Sp(1) and a € H,b,c € H", D € H(n) such that the matrix

is an element of Sp(1,n).

3.3.4 Case 4: Fy_y0)/Spin(9)

Suppose ¢ = dim(3) = 7. Identify 3@ a with Y by setting H = I (the 8 by 8 identity
matrix) and 3 = ¥(R"). The group Spin(8) C SO(8) x SO(8) acts orthogonally on

Y by
TO . Y = goY9,;
0 &

for all (go, 91, 92) € Spin(8), z € O = R3. One of the two Clifford actions on b = O

is given by
0
Tc g0 . X = ng
0 o
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for all (go, g1, g2) € Spin(8), X € O. The sphere S7 is contained in Spin(8) by

X — < v(X) 0 ) .
0 vX)

Then JzX = (v(Z2))) X = v(X)Ze = X(Ze) forall X € v = O, Z € 3 = v(R").
The J? condition holds since (¢t + Jz)O = O for all t € R, Z € 3, although as we
shall see this would not be the case if v were the (reducible) Clifford module O™ for
any n > 1. Given X,Y € v, let [X,Y]=Z € vy(R"). For any W €3,
Re(WZe) = (W, Z)e = (W,[X,Y])e= (v(X)We,Y)e
= Re(X(We)Y) = Re(W XY) = Re(WIm(XY)).

It follows that
[X,Y]=Im (XY) = Im (v(X)Y)

forall X, Y €0 = 0. Forany p= (X,v(Y)) €ev®(3®a), with X cvandY € O,

we have
2 -1 )
T® @ Rp = {(XY )W, v(W)) : W € O}.
Note that T,§2) @ Rp is not in general equal to pO since
(XY HW £ X(Y W)

by the nonassociativity of O. This explains why the J? condition does not hold for
dimg v greater than 1.
We claim that there are no orthogonal intertwining operators of v apart from

+1. Clearly any such operator satisfies
9(X)Z = g(XZ)

for all X € O, Z € Im(O). Setting X = 1, we have g(Z) = aZ where a = g(1) € O
with |a| = 1. This also holds for Z € R.. By linearity, it follows that (aX)Z = a(X 2)
for all X,Z € O. By Lemma 2.10(iv), a € R, whence g(X) = +X for all X € b as
claimed.

We now demonstrate that, as in the case of Sp(1,n)/Sp(n), there are no orthog-
onal automorphisms of v which anticommute with Jz for all Z € 3. Clearly such an

operator satisfies
9(X)Z = —9g(XZ)
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forall X € O, Z € Im(O). Setting X = 1, we have g(Z) = —aZ wherea = g(1) € O
with |a| = 1. By linearity, g(X) = aX, so we have

(aX) Z = a (2X)
for all X, Z € O. If X = @, then by alternativity we have
a(aZ) = (aa)Z = a(Za)
whence aZ = Za for all Z € O. This implies that a € R, so
XZ=272X

for all X, Z € O which is a contradiction.
In light of Theorem 3.2, we have now established that L = Spin(8) where the
6-triad (go, g1, g2) acts on b @ (3 @ a) by

(X,Y) = (91X, 9oY 91)-
Recall that Spin(7) may be embedded in Spin(8) by
Spin(7) & Hy = {(go, 91, 92) € Spin(8) : goe = e}.
Any 6-triad in H, satisfies
gov(e)iile=gov(e)e =gt =Goe =€ =,
whence
(90, 91, 92) (0, v(e)) = (0, goIg1") = (0, v(e)).

This shows that Hj fixes H. Since M = Spin(7) by Theorem 3.1, we have M = H,.
In particular, for any Z € 3 with |Ze| = 1, the 6-triad (—Z, (Z%), —Z!Z) is in Hy

since
~Z'Ze=-2Ze=27'Ze=|Z|’e=e.
The action of this f-triad on (X,Y) € 0 ® (3 ® a) is given by
(X,Y)=((Z2") X,-2ZY(Z2")") = (X Ze, ZY Z7Y) = (Jz X, —pzY).
(See Lemmas 2.12 and 2.10.)
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The pair (\,W) with A€ R, W €0 =0, A2+ |W|*=1actson v ® (3 D a) by
A\ W)(X,Y) = (WYe - AX,\Y +v(WX)).

Viewing the set of such pairs as a copy of S%, we see that, in light of Lemma 2.5,
K = Spin(9).
The action of a,, € A on B={p € s: |p| < 1} is given by

(X,Y) = (X(sY +¢)7, (Y +35)(sY +¢)7})

for all (X,Y) € B C C*™! x C, where ¢ = (u+ 1)/(2y/u), s = (u—1)/(2y/u)
as before. The full group G = KAK = Fy_3) of isometries of B is difficult to
describe; indeed, it is hoped that the H-type formulation will lead to an easier
way of realising this group. Nevertheless we provide the formal definition here, as
presented in Takahashi [T]. We seek to find the octonionic equivalent of O(1,n),
U(1,n) and Sp(1,n) for the case when n = 2. Accordingly, let J;o denote the
(Jordan) algebra of 3 x 3 hermitian matrices with coefficients in O ® C of the form

ai ’U,3®’i ﬂz@i
U3 1 as Uq , a;,€R, uw; €0, i=1,2,3,

U ®i W as

where conjugation is given by (a ® o) = @®a for all a® @ € O® C and the product
is given by zoy = %(a:y+y:v). The group Fjy_s) is then defined to be the connected
component of the identity of the group of automorphisms of J; 5. It acts on the unit
ball in O? by restriction when this ball is embedded in Ji,2 by

1 7®i T®:
(z,9) =A% y®i —yf° -z
t®i —zg — |z

where A2 =1 — |z|® — |y|>.

3.4 Graded Automorphisms of n

Pansu [Pu] has proved that every quasiconformal map of the boundary of one of the
symmetric spaces Sp(1,n)/Sp(n) or Fy_a0)/Spin(9) is conformal with respect to the
boundary metric which is given in Section 4.2.1. (The definition of quasiconformal-

ity is given in Section 4.2.2.) Pansu’s result involves a lemma (Proposition 10.1 on
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p. 41 of [Pu]) involving graded automorphisms of the associated space n. We have
already seen in Theorem 3.1 that such a graded automorphism is an element of the
group M provided that it is orthogonal. Pansu’s result implies that the orthogo-
nality condition may be relaxed somewhat in the cases when dim3 = 3 or 7. In
particular, for any graded automorphism of n, there exists a dilation of n such that
the composition of the dilation and the automorphism is an element of M. Pansu’s
proof of his result relies on particular properties of the Lie algebras of Sp(n—1) and
Spin(7) and as such may be thought of as using a case-by-case analysis. We present
a new proof, largely based on a result of Saal [S], which requires only that the J2
condition hold and that dim3 = 3 (mod 4).

Lemma 3.4 For any unit vector Z' € 3, the map
pz:0D3Da—->0vD3Da; (XaZ’t)H(JZ’Xa_pZ’Z7t)
satisfies pz1 € M.

Proof This is obvious from our construction in Section 3.2, however we may prove

the result directly as follows. Since z: is orthogonal, we need only check that
0z(T® ®Rp) = T, & Rozp
for all p = (X, Z,t) € s. By (3.21),
Jogwdz = —Jz1Jw
forall Wej Ifve T,fz) @ Rp, then
v=((u+Jw)t—J2)X, (1Z* + )W, (12> + t}) u)

for some u € R, W € 3, so

0zv = (Jz(u+ Jw)(t — J2) X, —(12]* + )pz W, (|Z]* + *)u)
= ((u+ Jw)(t = J_p,2)I2 X, (|—pz Z|* + YW, (|—pz: Z|” + t*)u)
€ T<,£2z)/p @ R‘PZ'p,

where W' = —pzW. Note that we have used the orthogonality of —pz:. g

69



Theorem 3.5 Ifn = 0@} is a nondegenerate H-type algebra satisfying the J? con-
dition with dim(3) = 3 (mod 4), then any graded automorphism of n is the product
of a dilation with the restriction to n of an element of M. That is, if A € GL(v)
and B € GL(3) satisfy

[AX,AY] = B[X,Y]

for all XY €n, then if F(X,Z) = (AX,BZ) for all (X,Z) € b & 3 we have
F = dm|,
for some A > 0, m € M, where
X, Z2) = (\2X,\2)

forall (X,Z) ev®3.
Proof Suppose B = I, that is,

[AX, AY] = [X,Y]

for all X,Y € v. We claim that A intertwines the representation J of C°(q) on
v, where ¢ = dim(3). Let {Zi,...,Z;} denote an orthonormal basis for 3, and let
Ji=Jgz, fori=1,...,q. Forany 1 <4,k <gq, X,Y € b we have

(Zi’ [X7 Y]) = (JiX7 Y) = (']kJi‘]kX’ Y)

(3.24)
= (Zk, [1i Dk X, Y]) = (Zk, [AJ:Ji X, AY)).

Replacing X,Y by AX, AY respectively in the first and fourth expressions of (3.24),

we have
(Zi, [ X,Y)) = (Z;,[AX, AY)) = (Zx, [J: JkAX, AY]) .
By the surjectivity of A it follows that
(Je(SiJkA — AT ) X, Y) = (Zk, [(JiJkA — Adp ) X, Y]) =0
for all X,Y € v. By the surjectivity of the Lie bracket (on 3),
AJiJi = J;J A
for all 1 < i,k < q as claimed.
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By the J? condition, we may write

m
b=
=1

where b; = RX; @ j(X;) for i = 1,...,m, {X;} being a set of orthonormal vectors
in v, such that {v;} is a set of equivalent irreducible Clifford submodules. Let

K=JJyJ,

Since ¢ = 3 (mod 4), we see that K2 =1 and KJ; = J;K foralli=1,...,q. Let
K; denote the restriction of K to b;. Since K; is orthogonal and K? = I, K; must
have an eigenvector v; with eigenvalue ¢; = £1. By Schur’s Lemma, K; — ¢;I = 0,
that is, K = +I on each v;. By the equivalence of the submodules {b;}, we see that
K =+l on v, thus J; = £J5---J,. Since AJ;Jy = J;JyA forall 1 <4,k < g, we
have AJ, = J1 A, thus

(AIhX,AY) = (L1AX,AY) = (Z,,[AX, AY]) = (Z,,[X,Y]) = (1 X,Y)
for all X,Y € v; the surjectivity of J; implies that A is orthogonal. Now
(JzX,Y)=(Z,[X,Y]) =(Z,[AX, AY)) = (JzAX,AY) = (A71JzAX,Y)
for all X,Y € v, Z € 3, whence AJz = JzA for all Z € 3. We claim that the map
p:0d3da—-0vd3da; (X, Z,t)— (AX, Z,1)
satisfies ¢ € M. Since ¢ is orthogonal, this amounts to showing that
¢ (TP ®Rp) = T) ® Rypp
forallp=(X,Z,t)€s. fv e T,S2) @ Rp, then
v=((u+Jw)t—J2)X, (1Z> + ) W, (1Z)? + t?) u)
for some u € R, W € 3, so

v = (Au+ Jw)(t = J2)X, (12> + ) W, (12 + ?) u)
= ((u+ Jw)(t = J2)AX, (1Z* + ) W, (1Z)? + t?) u)
€ Tq(,f,) @ Royp.

The result is therefore true in this case with A = 1.
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Now suppose that A, B satisfy the hypotheses of the theorem and that det(B)

is positive. Write
B =T\ByT,

where T3, T are orthogonal and By is diagonal with positive eigenvalues Ay, ... , Aq.
Since det(B) > 0, we can ensure that det(77) = det(73) = 1. We may then write T}
and T5 as the product of an even number of reflections in hyperplanes perpendicular

to given elements of 3, that is,
Ty = (—pz,) " (—pz,)

for some unit vectors Z;,,...,Z; € 3, and similarly for T,, where pz is (as usual)
the reflection in the hyperplane (RZ)'. The identity (3.10)

[sz, JzY] = —pz[X, Y]

for all X,Y € v, Z € 3, |Z| = 1 implies that (Jz, —pz) is a graded automorphism of
v @ 3. Furthermore (Jz, —pz) is the restriction to n of the map (Jz, —pz, I) which
is in M by Lemma 3.4. Consequently

(A4, B) = mq|, (Ao, Bo) ma|, (3.25)

for some my,my € M and Ay € GL(b), where (Ao, Bo) is a graded automorphism of
v @D 3. Now

(AT, A0X, YY) = (i AoX, AoY) = (Z:, [AoX, AoY)) = (Zi, Bo[X, Y))
= (BoZ;, [X,Y]) = X (Z;, [X,Y]) = X\ (JiX,Y)

for all X,Y € v, 1 < i < q, so AjJ;Ag = \J; for all such i. It follows that
AP = (det(Ap))? for all 1 < i < g, where n = dim(vb). That is, By = Al for some
A > 0, whence

(A) B) = 6/\ mll“ (AI)I) m2|n7

where (A;, I) is a graded automorphism of n. The above special case demonstrated
that (A, I) = m|, for some m € M, thus the result follows in this case.

Finally, suppose det(B) < 0. Since ¢ = dim(3) is odd, we may write
B =T\ByT,
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where T, T € SO(3) and By is diagonal with negative eigenvalues A1, Ag,... , Ay < 0.
As before,

(A: B) = mlln (AO, BO) m2ln

for some m;, my € M and Ay € GL(v), where (Ao, By) is a graded automorphism
of b @ 3. By the argument following (3.25), we see that A\? = (det(Ap))? for all
1 < i < g, so that By = I for some A < 0, whence there exists A; € GL(b) such
that (A;, —I) is a graded automorphism of b @ 3. It follows that A{JzA; = —Jz for
all Z € 3. By a similar argument to one used at the beginning of this proof, we can
show that

A JJ, = J;Jp Ay
for all 1 < i,k < q. It follows that
AlKA, =-K

where K = J;---J,; as before. We have already demonstrated that K = £I. It
follows that

AtA = I
which is clearly impossible, for if X € v\{0} then
— (X, X) = (ALA X, X) = (A1 X, A1 X) > 0

which is a contradiction. It follows that det(B) > 0, establishing the result. O

In light of this theorem and Theorem 3.1(i), we have the following result.

Corollary Let Aut,(n) denote the set of graded automorphisms of n where n is as
in Theorem 3.5. Then

M = Aut,(n)/R*.

Essentially, Pansu’s argument shows that any quasiconformal map of the bound-
ary of Sp(1,n)/Sp(n) or Fy_20)/Spin(9) has a derivative almost everywhere which,
where it exists, is a graded automorphism of the tangent space, considered as a
Lie algebra isomorphic to n. The decomposition of this derivative as the product
of a dilation and an isometry provides the requisite conformality. See [Pu] for details.
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Chapter 4

The Geometry of the Spaces

Constructed

In this chapter we examine the Riemannian geometry of the symmetric spaces con-
structed, finding the geodesics and two formulae for distances in B. We also define
distance formulae on the boundaries of B and D and establish that the Cayley trans-
form extends to a quasiconformal map with respect to these distances. Except where

noted we assume that n = v @ 3 is an H-type algebra satisfying the J2 condition.

4.1 Geodesics and Distance Formulae

In the previous chapter we defined a Riemannian metric on B, the unit ball of
s =0 ®3®a. In this section we find the associated geodesics and two equivalent
formulae for the distances in B. One of these distance formulae is not a prior: sym-

metric; the other uses the J? condition to provide the symmetry.

Let P, denote the orthogonal projection onto 3. Forany p€ s = 0@ 3 ® a, let
P, denote the orthogonal projection onto Rp & T?. (See (3.18) and (3.19).)

Definition For any p; = (X, Z;,t;) € 5, i = 1,2, 3, where X3 # 0, we define the
J-product {p1, p2}p, to be the element of 3 such that

Jz,J2, X3 = ']{Plyp2}p3X3 — (21, Zs) X3. (4.1)
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Note that {p;, p2}p, exists, for if Z; = Z} @ Z} with Z} = (Z), Z) | Z|™? Z,, then

Z,,Z
Iz, 2, X3 = JgpJz, X3 + ( |lz |22> J2, X3 = JguXs — (Z1, Z3) Xa
2
for some Z" € 3 by the J? condition, noting that Z L Z, and that J3, = — |Zo)* 1.

We now establish a series of technical lemmas.
Lemma 4.1 For any p; = (X, Zi,t;) € s fori =1,2, (Pp,p1,p2) = (P1,D2) -
Proof By the selfadjointness of the projection operator P,,,
(Ppyp1,p2) = (P1, Ppyp2) = (P1,p2)
since p; € Rp, & T,Sf). O
Lemma 4.2 Forallte R, Z € 3, X,Y € v, we have
(& +121") (X, ) + X, YP) = (X, (¢ + L)Y)* +|IX, (¢ + L)Y

Proof The result is trivial if X = 0, so we assume otherwise. Express Y in the
form aX + JzX +Y' forsomea € R, Z €3, Y’ € (RX ®j(X))*. For any W € 3,

we have
(W, [X,Y']) = (JwX,Y") =0,
that is, [X,Y’] = 0. It follows that
[X,Y]=[X,JzX] = |X|"Z
by equation (3.9). This implies that
JxnX = |X[*JzX = |X|* Bx Y-
Since
XY = (Jxn X, Y) = 1X* (B Y, Y),
we see that
(X, V) + (X, Y]* = 1XI* (Prxeic Y. Y) = Y * (Pryeyn) X, X)

by symmetry. Replacing Y by (¢t + Jz)Y, the result follows by the J? condition.
O
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Lemma 4.3 Let p; = (X;, Z;,t;) € 5,i=1,2. If X € v\ {0}, then
{p1, p2}xI” = 121* |2 — (21, Z2)° .
Proof By definition,
J2:J2: X = Jiprpayx X — (21, Z2) X,

however (J(p, po}x X, X) = 0 and |Jz,Jz,X| = |Z1||Z2| | X|, from which the result
follows easily. O

Lemma 4.4 Under the hypotheses of Lemma 4.3, ({p1,p2}x,Z:) =0 fori=1,2.
Proof We have
1X 1 ({1, P2} x> Z2) = (Jiprpa}x X> J2X) = (J2,J 2. X + (Z1, Z2) X, J7,X) = 0
since (JzY,Y) =0 for any Y € v, Z’ € 3. Furthermore the identity
Jz.Jz, + Jz,Jz, = —2(Z1,Z5) I
implies that

']{Pz,Pl}xX - (Zl’ Z2>X = J22JZ1X = _JZv]ZzX -2 (Zl, Z2> X
= _J{Pl,pz}xX - <Zla Z2) X,

that is, {p1,p2}x = —{p2, 1} x which completes the proof (by symmetry). O
Lemma 4.5 Under the hypotheses of Lemma 4.3, if X1, X # 0, then
({p1, p2}pi» [ X1, X)) = (Jz, X1, J2, X2) — (Z1, Z2) (X1, X2)
fori=1,2.
Proof Now

({p1, 2} pay [ X1, Xa]) = = (Jiprpa}ry X2, X1)
= —(Jz,J2, X2 + (Z1, Z3) Xo, X1)
= (']lel, J22X2> - (Zh Z2> (XlaX2> .

Since

({p2apl}P2? [X2’X1]> = <_{p1,p2}m’ _[Xl’ X2]> )

the result follows by relabelling. 0

The following result links the two forms of the distance formula given in Theo-

rem 4.10.
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Theorem 4.6 For any p1,p2 € 5, p2 # 0, p; = (X, Z;, t;) fori=1,2,

D2

|(1 - <p1’p2>)H+ Pl [pl’p2] + {pl)p2}p| = |p2| Pp2p1 — Ip_2|

)

where p = p; or py if X1, X2 # 0, or p € s\{0} is arbitrary if either X;, X, = 0.

Proof The square of the left-hand expression is

(1 - (plap2))2 + |I)3 [PI,P2] + {plypZ}p|2
=1-2(p1,p2) + (I’l,P2>2 + | P, [p1, 2] + {P1,p2}p|2,

whereas the square of the right-hand expression is

D2
|p2|” | Py |* — 2 <|P2l P,,p1, |P_2|> +1 = |pa|? |Bpyp1|® — 2 (p1,p2) + 1

by Lemma 4.1. We need only show that

P2 | Poy1|* = (p1,22)2 + |P, [p1, p2] + {1, P2},|*

If (Z,t2) # 0 then an orthonormal basis for Rp, & T,Sf ) is given by the vector

{c((ta = J2,)X2,0, 122" + £3) }
and the vectors

{c (Jv(ta = Jz,) X2, (|Za)* +12) Y3,0) = 1,... ,q}

(4.2)

where ¢ = dim(3), ¢ = (|2 +t%)_1/2 lpo| ™ and {Y;}L, is an orthonormal basis
1/2
for 3. (Note that |Jy;(ts — Jz,)Xa| = |Vi [tH — Zo| |Xa| = (122 + )" |Xa]) Tt

follows that

Bl = [(Xa, (t2 = J)Xa) + 1 (126 + £5))’
q

+ > (X1, Jrite — J2,) Xa) + (122 + 83) (24, K))2]

i=1

= 62 I:(Xl, (tg - Jzz)X2>2 + Zq: (}/z, [Xl, (t2 - ']Zz)X2]>2

i=1

+2t1 (|1 Z2)” + 13) (X1, (t2 — J2,) Xo)
q

+2(12:1* +83) Y (21, V) (Y, [(t2 — Jz,) X2, X1])

=1

(s S g2+
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= c2|(X1, (t2 — Jz) X2)* + |[ X1, (t2 — Jz,) Xo] |
+2(1Zaf* + 83) (11 (X1, (b2 = J2,) X2) — (21, [ X1, (t2 — T2,) X))
+ @+ 12) (28 + )]
= |pa| ™ [(X1, X2)? + |[ X1, Xa)* + 2 ((t1 — Jz,) X1, (2 — J2,) Xa)
+ (12:* + 1) (122 + £3)]
by Lemma 4.2. This expression also holds if (Z2,t2) = 0, for then
Rp, @ T2 = RX, @ j(Xa).
An orthonormal basis for this subspace is given by
{cXo} U{cty,Xs,i=1,...,q}
where ¢ = |X,|™ = |po|™". Then

q
Pl = & | (X0, X0 + 3 (6, JY,.X2>2]

L =1

=c? (Xl,X2>2 + Z (Y5, [Xl’X2])2:I

L =1
= |pal ™ [(X1, X2)* + |[ X1, Xo]°] .
Since Py[p1, p2] = t1Z2 — t2Z1 + [X1, X3], we have
(p1,p2)” + |Py[p1, pa] + {1, P2}
= 1212 4+ (21, Z5)° + (X1, Xo)? + 21ty (X1, Xo) + 2t1ty (21, Zo)
+2(Z1, Zo) (X1, Xa) + {p1, p2}pl* + £ | Zof” + 13 | 21|
+ |[X1, Xa]|? = 2ty (Z1, Za) + 2t1 (Za, [ X1, X))
— 2ty (21, [ X1, Xo]) + 2t1 (Z2, {p1, P2}p)
— 2t (Zy, {Pl,Pz}p> + 2 ([X1, Xa], {P1, P2}»)
= (B +121°) (&5 + 1221*) + (X1, Xo)? + |[ X1, Xo] |

+ 2 ((tl - ‘]ZI)X].) (t2 - JZz)X2>
|2

|2

= |p2|2 lppzpl

by Lemmas 4.3, 4.4 and 4.5, noting that the term ([ X1, X5], {p1,p2},) = 0 if either
X1 or X, are zero whereas the other terms involving {pi, p2}, are independent of p.
That is, (4.2) holds and the result is established. O

78



Before we identify the geodesics of B, we develop two more lemmas.

Lemma 4.7 Given X € v\ {0}, there ezists k' € K such that ¥'(RX) = a and
K((X)) =3

Proof By Corollary 6.7 of [CDKR2], if k' = exp (g (HX' +X ) ~) where X denotes
the unit vector X/ |X]|, then k' is represented by

(00000 0 —1\
00 0 0 -1 0 0
00 0 0 0 -—adXt 0
00 0 I O 0 0
01 0 0 0 0 0
00 adX 0 0 0 0
\10 0 00 o0 0 )

with respect to the coordinates

RXORIwX®((X)oRIwX)DE(X)DRW D (30 RW)da

where W € S is arbitrary. The lemma follows trivially. ([l
Lemma 4.8 Ifte R, ¢ =(1—-1t)/(1+1t) and X € v, then
1
ap(tH + X) = X
t ( ) m

Proof This follows readily from the formula for a, given in Section 3.1.2, however
we may easily calculate it directly. In fact, if C is the Cayley transform given in
(3.14), then

C(X,0,t) = (?il_"t)tgx, 0, (1:52) - (Ti—tx 0, tl) ,

whence
2Vt t 2
at/C’(X, 0, t) = (mX, O, P) = (\/1——_t2X’ O, 1)
and
60(X,0,8) = C~lauC(X,0,¢) = (Lx, 0, o) -1 x
4\ 1-1¢2 1-—1¢2
as claimed. O

We now describe the geodesics of B. As one would expect, Theorem 4.9 below

is consistent with Theorems 1.5 and 1.11.
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Theorem 4.9 The geodesic through p1,ps € s, p1 # p2 is the circular arc through

p1 and ps contained in
2= T® &R(p;—
p1+ (Tp2p, © R(p2 — p1)
which is orthogonal to ¥ N Ss.

Proof This result has already been established in the case when v = 0, for then
¥ = 3®a and s is isomorphic to B™ with the Poincaré metric, where n = dim(3 ®a).
We therefore assume that v # 0. There exists k¥ € K such that k(p; —p;) = X € v.
Let IT = kp; + (RX @j(X)). By linearity, if w € II such that w L (RX ®j(X)), then
II = w+(RX®j(X)). Let k' be as in Lemma 4.7. By transitivity, there exists m € M
such that mk'w = k/(tH) for some t € R. The composition (k') 'mk’ sends RX
and j(X) to themselves and w to tH, hence II' = (k') "'mk’(II) = tH + (RX +j(X)).
Now let ¢/ = (1 —t)/(1+t). By Lemma 4.8,

1
V1 -t

for all s € R, Z' € 3. It follows that kK'avII' = 3 @ a. We claim that B,g, is
totally geodesic in Bs. To see this, note that the isometry (©~!C) maps B,g, onto
{0} x 3 x R* C S; here C is the Cayley transform and © : s — s is the map

&tl(tH'f‘SX-l- JZ/X) =

(SX + JZIX)

(X, 2,1) = (X, Z,t + 7 1X)

for all (X, Z,t) € b+ 3+ a as given in Section 3.1.2. By an argument similar to the
proof of Proposition 2.1 of [CDKR2], we need only show that

(T,U],U)=0
forall U = (0, Z,t), T = (X,0,0), with Z € 3, X € v and t > 0. This holds, for
([T,U),U) = <%tX, (0,2, t)> ~o.

The restriction of the metric on B, to B,g, is the Poincaré metric on B;gq, for if
p € 3@ athen T,S2) @®Rp = 3®a. It follows that the geodesic through k”p; and k"p,

is the circular arc through these points intersecting S,gq orthogonally, where

k" = Kay (k') 'mk'k.
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Since k', k and m are all orthogonal maps which satisfy
f(T® + Rp) = Tp, + Rf(p)
for all p € Bs, f = k', k,m, and also since ay : tH + (X ®j(X)) —» X ®j(X) is

effectively a scaling by (1 — tz)_l/ 2, the result follows. O

We now establish the asymmetric distance formula.

Theorem 4.10 The distance function on Bs is given by

D2

|P2 P,,p1 — —
' p2 Ip2|

I

\/1 — |pa|? \/1 — |po|®

d(p1,p2) =2 cosh™?

for all p1,pa € By, pa # 0.

Proof We first consider the case when v = 0. In this case, since T,Sf ) ®Rp; = 3Da,
we have P,,p; = p;. Now s is isomorphic to B™ with the Poincaré metric, where

n = dim(3 ® a). Using the identity
cosh™'(1+2a) =2cosh™* V1 +a

which holds for all real a, we have

- 2 |p1 --pzl2
d(p1,p2) = cosh™ [ 1+
(1= |pa)(1 = [pal*)

2 2
= 2cosh™! \/1 + lp|” + |p22| 2 <P1,2Pz)
(1 = Ipa[) (X = |p2[")

P \/1 —2(p1,p2) + ;s Ipaf?
(1~ IpaP)(1 - Ip2f")

|P2|;D1 - Pz
|p2

V1=l /1 Ipaf?
as required.

Now assume v # 0. Let w, X,t,k,k',m,t',k” be as in the proof of the previ-

= 2cosh™!

ous theorem. We show that d is preserved under f = k,k’,m,k”. For such f,
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|f(P1)| = Ip1l, |f(p2)] = |p2| and (f(p1), f(P2)) = (p1,p2) by the orthogonality of f.
Furthermore, since Py, f(p1) = f(Pp,p1),

|Pf(P2)f(p1)| = lf(Pp2p1)| = |Pp2p1|

again by the orthogonality of f, therefore d is indeed preserved under f. Now the
expression for d is correct when p;,ps € 3 @ a as seen above, thus to complete the

proof, we need only show that

-1/2 -1/2

d((Xl,O,t),(Xg,O,t))=d((1—t2) X1, (1-#) xz),

that is, d|,y,, is preserved under a,. Since
{(Xla 0) t)’ (X2) 07 t)}Xa = {Xl) X2}X3 =0
for any X3 € v\ {0}, Theorem 4.6 implies that we need only show that

(1— £ — (X1, X3))* + [[X1, Xo]> _ (1= (AX1, AX5))? + [[AX1, AXo] [
(1-82—1X1)") (1 -2 — | X,/ (1= X% (1= |]AX2)?)

where A = (1 — t2)_1/ 2. This equation follows trivially by linearity. O

Note that Theorem 4.6 may be used to give the symmetric form of this formula,

namely

|(1 = {p1,p2))H + By[p1, p2] + {p1, P2}l
\/1 — |pf? \/1 — |ps|®

where p = p; or pg if X3, X5 # 0, or p € 5\ {0} is arbitrary if either X;, X5 = 0.

d(p1,ps) = 2cosh™

4.2 The Boundary

In this section we define a distance function on the boundary S, of B. The J?
condition is crucial in showing that the function is indeed a distance function. In
fact the function is not even symmetric if the J? condition does not hold. We
also demonstrate that if the J2 condition does hold then the Cayley transform
C : B — D, when extended to the boundary, is 1-quasiconformal with respect to a

natural distance function on the boundary of D.
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4.2.1 The Boundary of B

We begin with a technical inequality.
Lemma 4.11 Ifp; € 3 ® a and p; € v, then

|p1 +p2| |Pp1+mp| < Ipll IPp1p| + |p2| |PP2p|
for allp € s.

Proof If either of p; or ps is 0, the result clearly holds. Assume that p;,ps # 0.
Let p = (X1, Z1,t1) and p; = (0, Zo, t3). By (4.2),

1 + 2l | Pyt = (X1,02)” + |[ X1, Pa]|” + 2 (81 — J2,) X1, (2 — J2,)p2)
+ (121 + %) (122" + 85)
1?1 Boupl? = (120 + 82) (122 + £2)
[Pl | Prapl” = (X1,p2)" + [[X1, po]”-

This implies that

(Ip1| | Pyup| + 12| | Poypl)?
= (X1,02)” + |[ X0, 2 + (1212 + ) (12 + £2)
+ 24/ (X0, 2)° + X0, 22lP) (1222 + ) (12 + 83)
= (XI,P2>2 + |[X11p2”2 + ('Z1|2 + t%) (|Z2|2 + tg)
+ 2\/((t1 — Jz) X1, (b2 — Jz,)p2)” + |[(t2 — J20) X1, (2 — J2,)pa]
> (X1,p2)° + X1, 02 * + (1Z0) + &) (122)° + £2)
+ 2 <(t1 - JZI)Xla (t2 - JZz)p2)
= |pl +p2|2 |PP1+P2p|2

by Lemma 4.2. O
Theorem 4.12 Define d, : Ss x Ss — R by
db(p1, p2) = 2V2|Pp,p1 — po|'/?

for all py,ps € Ss. Then dy is a distance function on S;.
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Proof If p;,p; € Ss, then
dy(p1,p1) = 2V2|Bpyp1 — p1|? = 2V2|p1 — p1|/* = 0

as p; € T,Sf) ® Rp,, whereas if dy(p1,p2) = 0, then
P,,p1 = pa.

In this case, write p; = p| @ pY, where p] € T,Szz ) @ Rp,. It then follows that
Pp,p1 = P},

so p}| = ps. Then

i * = lpal” + 1951" = 1+ [p %,

1= |pi)* = [P} + Ip?

whence p{ = 0 and p; = ps. Since dj is nonnegative, it is therefore positive definite.
Also, the symmetry of d;, follows from Theorem 4.6 and the anticommutativity of
[-,-]and {-,-}x (see Lemma 4.4). It remains to verify the triangle inequality.

Let u,v,w € Ss;. Using an isometry k € K, which preserves d, by Theorem 4.10
and orthogonality, we may assume that v = H. Now writing v = (v, Zs,t2) and
w = w; O wy ® ws, with w; € 3@ a and wy € Rvy @ j(v2) = Ruy @Téf), we see that

%(db(u, v))? = |u— Po| = |u — v
where v; = (Za,t3) € 3® a, and
1 2
—8—(db(u, w))* = |lu— Pw| = |u —wy].
Lemma 4.11, with p; = vq, p2 = v5 and p = u — w gives

|Po(u — w)| < |vg| [Py, (u — w)| + [va] | Py (u — w)

= |v1] |u — w1| + |vo] |
since P,, = P,gq, Py,u =0 and P,,w = w,. Next, note that
1—|onf* < 2(1 = [va]) = 2(Jul = [oa]) < 2w — vy
by the triangle inequality for the inner product space v @ 3 ® a, and similarly
1—|wi]? < 2u—w.
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It follows that

oa|? [wal® = (1 — [o1]?) (1 = Jwi]? — |wsl®)
< (1= |ual?) (1= |waf?)
<4|u—v||u—w|
1
= 1—6(db(u,v))2(db(u, w))>.

By the triangle inequality for v @ 3 @ a and the fact that |v;| < 1, we have

1

g(db(v, w))2 = |P,w — |
< |v - Pyu| + |P,u — Pw|
= |v — Pyu| + | Py(u — w)|

< 2 (dy(w,v))* + Jor | [u — wi] + o] |we

— 00| =

< £@(,0))? + 5 w)? + 5 (0s(a,) o, w)

%(db(u, 0) + dy(u, w))?,

establishing the triangle inequality for d, hence d, is indeed a distance function on
Ss. O

Since the preceding proof requires the J? condition, it is natural to ask whether
the function d, is a distance function in the case of H-type algebras not satisfying

this condition. In fact d is not even symmetric if the J2 condition does not hold.

Theorem 4.13 Let n = v @ 3 denote an H-type algebra and s = n @ a where a is
one-dimensional. Assume that n does not satisfy the J? condition. Then the map
dy : Ss X Ss — R defined in the statement of Theorem 4.12 is not symmetric.

Proof Since
|Pyup2 = p1|* = |Ppupal® + |p1|* = 2 (Bpyp2, 1) = | P2l + 1= 2 (p2, p1) ,
the function dj is symmetric if and only if
IPp1p2|2 = |Pp2p1|2

for all p;,ps € Ss.
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Since the J? condition does not hold, we can find orthonormal vectors Z;, Z; € 3
and X € b such that Jz,Jz,X ¢ RX @j(X). As

(Jz,J2,X, X) = —(Jz, X, Iz, X) = — (Z1,Z2) (X, X) =0,
we may set
leJzz.X = kJZSX +Y,

where Z; € 3 is a unit vector, 0 < k< landY € (RX ®j(X))*. Then Z3 L Z;, Zs,

since
(JZIJZQX) JZ1X) = (JZZX,X> =0 and <JZIJ22X, J22X> =0.

Extend Zi, Z,, Z3 to an orthonormal basis {Z;}{_; for 3. Set p; = ¢(X + H) and
p2 = ¢(Jz,X + Z;), where ¢ = 271/2, Then

Rp @ TP = {((u+ Jw)X,W,u) : u € R,W € 3}
for which an (ordered) orthonormal basis is given by
{e(X,0,1),¢(Jz, X, Z1,0),¢(Jz,X, Z5,0), ... ,c(Jz,X, Z,,0)}.

It is clear that p, is orthogonal to all but the second and third vectors of this basis,
giving
1

P,.p2 = 2\/§(J21X + J2,X + Z1 + Z5).

In particular,

1
|7 P1p2|2 = )
On the other hand,

Rp; ® T = {((u+ Jw)(=Jz)JzX,W,u) : u € R,W € 3}
for which an (ordered) orthonormal basis is given by

{C(—le J22X7 0, 1)) C(JZ2X> Zy, 0)’ C(—J22J21 Jsza Zy, 0)) Vs, ,vq}

where v; = ¢(—Jz,Jz,J2,X, Z;,0) for i = 3,... ,q. We denote the first three vectors

of this basis by vg, v; and v, respectively. Since
(—Jz,J2, X, X) = (Jz, X, Iz, X) = (23, Z1) (X, X) = 0,
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(JZZX,X) =0 and (—JzszlJsz,X) = (JZIJsz, J22X) = 0,

we see that p; is orthogonal to v; and vy and that (vg,p;) = % Furthermore, for

1=3,...,q, we have

1
(—Jz.Jz2,J2, X, X) = —3 (Jz;,(kJz, X +Y), X)

k
(kJ23X +Y,JZ|.X) = —2- i3

(Ui,Pl) =

N = DN =

It follows that
1
Pp2p1 = 2_\/5(—JZIJ22X —kJz,Jz,J2,X + kZ3 + H),
so that
g 1 1
| Ppyp1|” = §(2+ 2k?) < 5
In particular,

| Poop1| # | Pyl

so dp is not symmetric. O

4.2.2 The Boundary of D and the Cayley Transform

In v X 3 X a, the set
| —
0Dy = {(X,Z,t):t=Z|X| }

is evidently the boundary of D. The Cayley transform C defined in (3.14) extends
to a bijection 0B\ {H} — 0D, given by the same formula. In order to define
C at the point H € 0B, we denote the one point compactification of 9D, by
0D = 0D U {0} and define C(H) = oo. The map o defined in (3.16) extends
to a map D — 9D given by the same expression and the conditions o(e) = oo and
o(o0) = e, where e = (0,0,0). We now identify 8Dy with N = v X 3 by restricting
the map (X, Z,t) — (X,Z). The image of e, also denoted by e, is the identity
element of N. We identify 0D with N U {oo} in the same way. The boundary

extension of o is now regarded as a map on N U {oo} satisfying
o(e) = oo, o(0)=e  and
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o(X,Z2)=8B" ((—¥ + Jz) X, —Z) (4.3)

for all (X, Z) # (0,0), where

X4
B(X,Z)=%+|Z|2.

Similarly we regard the extended Cayley transform C as a map from 0B to NU{oo}

given by
C(0,0,1) =C(H) =0
and
1
C(X,Z,t)= 2(1-t+ Jz)X, 27
(%20 = erygp = t+92)X,22)

for all (X, Z,t) € 0B\{H}.
The Campbell-Baker-Hausdorff formula shows that multiplication in N is given
by

(X, 2)(X', 2') = (x + XL Z+ 7+ —;-[X, X'])

for all (X, Z),(X’,Z') € v x 3. Equip N with the left-invariant distance dy defined
by
4 1/4
dn(e, (X,2)) = (% + IZI2> = (B(X, Z))'*.

We may extend this distance to N U {oo} by setting d(z,00) = oo for all z € N.
We shall show that the extended Cayley transform is a 1-quasiconformal map with
respect to the distances d, and dy on OB and N U {oo} respectively. The map
f:(X,dx) — (Y, dy) between metric spaces X and Y is said to be A-quasiconformal
at the point z € X, where A\ > 1, if for all £ > 0 and all sufficiently small » > 0,
there exists R > 0 such that

B(f(z),R) € f(B(z,r)) € B(f(2), (A +¢€)R).

That is, the image of a small ball centred at z is contained within two balls centred
at f(z), the ratio of whose radii is nearly bounded by A. The map f is said to be
A-quasiconformal if it is A-quasiconformal at all x € X. We extend this definition
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in the case where X or Y is N U {00} in the following way. The map f is said to
be A-quasiconformal at oo if fo is A-quasiconformal at e. We use the map o in a
similar way to define A-quasiconformality at a point z such that f(z) = oo.

In order to prove the 1-quasiconformality of C, we first demonstrate that the
inversion 0 : N U {00} — N U{oo} is 1-quasiconformal with respect to dy. In fact
Theorem 5.1 of [CDKR] asserts (amongst other things) the equivalence of the J?
condition holding and the A-quasiconformality of o, for some A > 1. The following

lemma shows that we may take A\ = 1.

Lemma 4.14 The map o : (N U{oo},dn) — (N U{oo},dn) defined in (4.3) above

is 1-quasiconformal.

Proof That o is 1-quasiconformal at the points e and oo is obvious from the
definition and the fact that o is an involution. The lemma now follows from formula
(3.3) in [CDKR] which holds whenever the J? condition holds:

B (o(n)"lo(n)) = B(n)™'B(n')"'B (n~'n) (4.4)
for all n,n’ € N* = N\{e}. In terms of the distance dy, taking fourth roots of this
equation gives

dn(n,n)
dn(n,e)dn(n,e)

for all n,n’ € N*. If we fix n € N* with dy(n,e) = K, and allow n’ to vary subject

dy(o(n),o(n’)) =

to dy(n,n’) = € where € < K, then by the triangle inequality we have

€
K(K +¢)

, 3
S dv(oln), o)) < =

which clearly establishes the lemma.
In order to prove (4.4) we follow the proof of Theorem 4.2 of [CDKR). In partic-

ular, let

AX,Z) = @ +Jz and AX,2)= %ﬁ — Jz.
Then
AX,2)A(X,2) = A(X,Z) A(X,Z) = B(X, Z)
and

o(X,2) = (B(X, 2))"(-AX,-2)
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for all (X,Z) € N*. Now ifn = (X,2), n’ = (X', Z') and A, A, A, A B B
are abbreviations for A(X, Z), A(X', Z"), A(X, Z), A(X',Z"), B(X, Z), B(X', 2"
respectively, a simple calculation (see [CDKR] for details) gives

B(n™'n) = B + B+ 1((X, X')? + |IX, X

+2 (Pﬁlﬂ _(z, Z’)) —(Ax',x) - (AX, X').

(Note that the conjugation bars over A and A’ were incorrectly omitted in formula
(4.5) of [CDKR].) We now apply this formula to o(n) and o(n’) in place of n and
n' respectively, and use the formulae B(o(n)) = B(n)™!, IB“IZX|2 = B1|X|* and

A(o(X,2)) (-B'AX) = -B7'X,
which are easily established. We obtain

B(o(n)"'o(n))

—1/pn\—1 — 9 ., 2
= B }(B)™" (B’ +B+ B—(f)— ((AX AX'Y + ‘[AX, A X') )
|X|2 |X,|2 ! 7' v ) /
+2<1—6—(Z,Z) —<.AX,X>—<AX,X> .
Formula (4.4) now follows from Lemma 4.2. O

Recall that G denotes the full group of isometries of D.

Lemma 4.15 Let Gy denote the connected component of the identity of G. Let G,
denote the subgroup of G generated by N and 0. Then Gy C G;.

Proof It suffices to show that there is no proper Lie subalgebra g’ of g containing
n and On, where 6 : g — g is the differential at the identity of G of the involution
g — ogo. Proposition 4.7(ii) of [CDKR2] asserts that [X,0X] = —|X|* H for all
X € v, whence g’ contains a. By Lemma 4.1(iii) of [CDKR2], p = a® (I —0)n where
p is the —1 eigenspace of . This implies that p C g'. In the proof of Theorem 4.6
of [CDKR2] it is established that [p,p] = ¢, where £ is the Lie algebra of K, the
stabiliser subgroup of (0,0,1) € D. (In fact, ¢ is the +1 eigenspace of §.) This
implies that ¢ C g¢'. Finally, since g = ¢ & p, we conclude that g’ = g as claimed.

O

90



Corollary The group Gy acts I-quasiconformally on (N U {oo},dy).

Proof By Lemma 4.14, ¢ is 1-quasiconformal. Furthermore N acts isometrically
on itself with respect to dy. Since isometries are 1-quasiconformal and any com-
position of 1-quasiconformal maps is itself 1-quasiconformal, the corollary follows.
O
Recall that we use the Cayley transform to transfer isometries of D to isometries

of B, that is,

g=C"lgC
for any isometry g: D — D.

Lemma 4.16 Let Gy denote the connected component of the identity of G. Then
the group K N Gy acts transitively on the boundary N U {oo}.

Proof By the remarks preceding the statement of this lemma, we may instead
establish that Ko = (K N Gy) acts transitively on dB. Fix a point p € dB. Since
K is compact and Gy is closed, Ky is compact, therefore the orbit of p is closed in
dB. Since K is a finite cover of K, and the orbit of p under K is the whole of 8B,
we conclude that the orbit of p is open in B, hence is the whole of 0B. (]

Theorem 4.17 The extended Cayley transform C : (0B,dy) — (N U {00}, dn) is

1-quasiconformal.

Proof It suffices to demonstrate the 1-quasiconformality of C' at the point —H of
0B; for suppose that C is indeed 1-quasiconformal there. Let p € OB be arbitrary.
By Lemma 4.16, there exists k € K N Gy such that k(—H) = p. Furthermore £,
considered as a map from 0B to itself, is an isometry with respect to dp. (This follows
from the orthogonality of k and the relationship between the interior distance d (on
B) and dp.) Since C = kCk™1, k1 is 1-quasiconformal at p, C' is 1-quasiconformal
at —H and k is 1-quasiconformal at e € N = 9B (by the corollary to Lemma 4.15),
we conclude that C is 1-quasiconformal at p.

We therefore need only check the 1-quasiconformality of C at ¢ = —H € 0B.
Fix € > 0 and take p = (X, Z,t) € 0B such that dy(p,q) = . We have

e = dy(p, q) = 2v2|Pp — q|'/*
=2v2|(0, Z,t) - (0,0,-1)[*/2

=2v2(|2]* + (t +1)%) ",
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or

4
- _ — 4 2
|z =1 (t+1)2=46*"—(t+1)%

where we have made the substitution § = ¢/4. Let

2
(X1,21) =C(p) = -7+ |Z|2((1 —-t+Jz)X, Z).

We have
1 4 9 1/4
4= dn(C().C@) = (51Xl +121°)

since C(g) = (0,0). Since |X|>+|Z|*+ 2 =1,

o _ 16(0 -ty +121)" X"
(1-t2+|2])°
61— —|2)"
(1-t2+]2]%)"
_16(1 — 2 — 48 + (1 + 1)2)?
T (1 —t)2 +464— (1+1)2)°
_ 16(2(1 +1) — 48%)°
(464 — 4t)’

| X1

while
4|2
(1=t)2+2]%)°
_ 448t - (t+1)?)
(464 — 4t)*

|1Z,|* =

Thus

(2(1 +t) — 46%)% + 4(46* — (t+1)?)
(464 — 4t)*

1 4 2
= — Z =
16 | X1|* + | Z4|

54
-t

For ¢ (hence 4) sufficiently small, ¢ < 0. From

1ZP+t*<1  and  |Z) 4 (t+1)2 =46
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we obtain

t2 — (t+1)% <1 - 46

or

—t < 1-—26*
Also

(t+1)? < 46*
gives

—t>1-26

since t + 1 > 0. Using these estimates, we see that

h &

4 < _
d* < 54+ (1 - 282) (1—62)2

and

5 5
> = .
=5t +r(1-20%) 1-0°

d4

Since the ratio of these two quantities tends to 1 as § — 0, the map C is indeed
1-quasiconformal at —H. O
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Appendix A

Triality Calculations

In Section 2.4.4 we linked the triality automorphism of Spin(8) with the Lie alge-
braic properties of s0(8), in particular the roots thereof. In this appendix we present

some of the calculations involved.
The Lie algebra g = s0(8) of G = SO(8) consists of all real skew-symmetric
matrices. A basis is given by
{Xjk:0<j<k<T}, Xk = Eji — Ey;.
A maximal torus t is spanned by {Y;}3_, where
Y; = Xoj2i+1
for j =0,1,2,3. If H = Z?zo a;Y; € t for reals a1, az, as, a4, then

[H, Xajok] = —a;Xoj+1.2k — @ X2j2k+1
[H, Xajok+1) = —0; Xaj41,2k+1 + 0k X2j 2k
[H, X2j+1,26) = 0; X059k — akXoj4+1,2k+1

[H, Xoj+1,26+1) = aj Xoj2k+1 + @ Xoj+1,2k

for all 0 < j < k < 3, whereas [H,Y;] =0 for all j = 0,1,2,3. This implies that the

roots are given by
{i(2Y] £ YY) Yocjcksss
with root spaces spanned by
(Xaj2k — Xoj+1,26+1) £ 8(Xoj26+1 + Xoj41,2¢)
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corresponding to the roots +i(Y};* + Y;’) and
(X2j2 + Xoj1,264+1) £ 2(—Xoj 2041 + Xoj1,2¢)

corresponding to the roots +i(Y;* —Yy*), for 0 < j < k < 3.
Let the positive roots be given by

(Y 2Yy), 1<j<k<4,

where Y3 = Y, for convenience. (The subscripts in X x should be taken modulo 8
in order to comply with this renumbering.) An ordered basis is then given by

{"'(Y; - Ys*)’ l(Ya* + Yzl*)» Z(YS* - Y4*)a 7‘(Y1='= - Y2>*)}>

denoted ay, a1, ae, a3 respectively. The Dynkin diagram is depicted in Figure 2.1.
Let © be the rotation of it* defined by

G(ao) = Oy, @(al) = 0O, @(az) = Qag, 9((13) =

and extended by linearity. Clearly © is of order 3 and is given by

1 1 1 -1
1]1 1 -1 1
211 -1 1 1

1 -1 -1 -1

with respect to the basis {iY7*, Yy, iY5, Y }. By a slight abuse of notation, we
may regard © as a map on t by defining it to be induced by the same matrix with
respect to the basis {Y},Ys,Y3, Yy} of . We wish to extend © to a Lie algebra
automorphism of all of g. If Z, is a vector in the root space R, for the root a in
the complexification of g, then [H, Z,] = a(H)Z, for all H € t. As © is to be a Lie

algebra automorphism,
[0H,0Z,) = a(H)0Z, = ((67!)" @) (6H)OZ, = (0)(0H)OZ,
since © is orthogonal. This implies that
O(Ra) = Rea

for all roots a. Clearly we need only ensure that this holds for all positive roots.
For the positive roots a = i(Y;* +Yy), 1 < j < k < 4, define

Xo = Xojok — Xoj+1,2k+1, Yo = Xojok+1 + Xoj+1,2k
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and for the positive roots i(Y;* — Yy), 1 < j < k < 4, define
Xo = s(Xojoe + Xojir2e41), Yo = t(—Xaj k41 + Xojs1,2¢)

where s = 1 except when (j = 1 and k = 3) or (k = 4) in which case s = —1; and
t = 1 except when j = 1,k = 2 in which case t = —1. It is easy to verify that in all

cases,
R, = spanc{X, +iY,}.
Extend © to all of g by requiring that
O(X,) = Xoa and O(Y,) = Yoa

for all positive roots o and extending by linearity. It is easy to verify that © is a
Lie algebra automorphism of order 3. In fact a calculation shows that

O(X;) = (el

for all 0 < j < k < 7, where v is given in Section 2.4.1 and {eo, ... ,e7} is the
standard basis of R8.
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