
Efficient Core Computation in Bipartite and Multilayer Graphs

Author:
Liu, Boge

Publication Date:
2020

DOI:
https://doi.org/10.26190/unsworks/22012

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/69712 in https://
unsworks.unsw.edu.au on 2024-04-24

http://dx.doi.org/https://doi.org/10.26190/unsworks/22012
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/69712
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Efficient Core Computation in Bipartite

and Multilayer Graphs

by

Boge Liu

B.E. Tsinghua University, 2016

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN THE SCHOOL

OF

Computer Science and Engineering

Thursday 16th July, 2020

All rights reserved.

This work may not be reproduced in whole or in part,

by photocopy or other means, without the permission of the author.

© Boge Liu 2020

i

Thesis/Dissertation Sheet

Surname/Family Name : Liu

Given Name/s : Boge

Abbreviation for degree as give in the University calendar : PhD

Faculty : Engineering

School : Computer Science and Engineering

Thesis Title : Efficient Core Computation in Bipartite and Multilayer Graphs

Abstract 350 words maximum: (PLEASE TYPE)

Graphs are widely used to model the relationships of entities in a large spectrum of applications including social

networks, world wide web, collaboration networks, and biology. Cohesive subgraph mining, as a fundamental graph

problem, extracts highly connected structures from large graphs. Among the cohesive subgraph models, the core model,

in which each node from the subgraph subject to a minimum degree constraint, has attracted great attention due to its

elegant property and effectiveness in graph analysis. However, the massive graph volume and rapid evolution present

huge challenges for core computation, which need highly efficient solutions. In this thesis, we study the problems of core

computation in bipartite graphs and multilayer graphs.

Firstly, we study the problem of (𝛼, 𝛽)-core computation in bipartite graphs. We present an efficient algorithm for

(𝛼, 𝛽)-core computation based on a novel index such that the algorithm runs in linear time regarding the result size. We

prove that the index only requires 𝑂(𝑚) space where 𝑚 is the number of edges in the bipartite graph. We also devise an

efficient algorithm with time complexity 𝑂 (𝛿 ⋅ 𝑚) for index construction where 𝛿 is bounded by √𝑚 and is much

smaller than √𝑚 in practice.

Secondly, we study the problem of (𝛼, 𝛽)-core maintenance when the bipartite graph is dynamically updated. We show

that we can decide whether a node should be updated or not by visiting its neighbours. Based on this locality property,

we propose an efficient maintenance algorithm which only needs to visit a local subgraph near the inserted or removed

edge. Furthermore, we discuss how to implement our maintenance algorithm in parallel.

Finally, we study the problem of core computation in multilayer graphs, which is challenging due to the various

combinations of layers. We propose a novel concept named CoreCube, which records the results of core computation on

every combination of layers. We develop efficient algorithms to compute the CoreCube and devise a hybrid storage

method that achieves a superior trade-off between the size of CoreCube and the query time. Extensive experiments on

real-life datasets demonstrate our algorithms are effective and efficient.

Declaration relating to disposition of project thesis/dissertation

I hereby grant to the University of New South Wales or its agents a non-exclusive licence to archive and to make available (including to members of the
public) my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known. I acknowledge that I retain
all intellectual property rights which subsist in my thesis or dissertation, such as copyright and patent rights, subject to applicable law. I also retain the
right to use all or part of my thesis or dissertation in future works (such as articles or books).

……………………………………………………………
 Signature

……….……………………...…….…
 Date

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction
for a period of up to 2 years can be made when submitting the final copies of your thesis to the UNSW Library. Requests for a longer period of
restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research.ii

iii

ORIGINALITY STATEMENT

‘I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for the
award of any other degree or diploma at UNSW or any other educational
institution, except where due acknowledgement is made in the thesis. Any
contribution made to the research by others, with whom I have worked at
UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that
the intellectual content of this thesis is the product of my own work, except to
the extent that assistance from others in the project's design and conception or
in style, presentation and linguistic expression is acknowledged.’

Signed ……………………………………………..............

Date ……………………………………………..............

iv

 COPYRIGHT STATEMENT

‘I hereby grant the University of New South Wales or its agents the right to
archive and to make available my thesis or dissertation in whole or part in the
University libraries in all forms of media, now or here after known, subject to the
provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent
rights. I also retain the right to use in future works (such as articles or books) all
or part of this thesis or dissertation.
I also authorise University Microfilms to use the 350 word abstract of my thesis in
Dissertation Abstract International (this is applicable to doctoral theses only).
I have either used no substantial portions of copyright material in my thesis or I
have obtained permission to use copyright material; where permission has not
been granted I have applied/will apply for a partial restriction of the digital copy of
my thesis or dissertation.'

Signed ……………………………………………...........................

Date ……………………………………………...........................

 AUTHENTICITY STATEMENT

‘I certify that the Library deposit digital copy is a direct equivalent of the final
officially approved version of my thesis. No emendation of content has occurred
and if there are any minor variations in formatting, they are the result of the
conversion to digital format.’

Signed ……………………………………………...........................

Date ……………………………………………...........................

v

vi

INCLUSION OF PUBLICATIONS STATEMENT

UNSW is supportive of candidates publishing their research results during their candidature
as detailed in the UNSW Thesis Examination Procedure.

Publications can be used in their thesis in lieu of a Chapter if:
• The candidate contributed greater than 50% of the content in the publication and is the

“primary author”, ie. the candidate was responsible primarily for the planning, execution
and preparation of the work for publication

• The candidate has approval to include the publication in their thesis in lieu of a Chapter
from their supervisor and Postgraduate Coordinator.

• The publication is not subject to any obligations or contractual agreements with a third
party that would constrain its inclusion in the thesis

Please indicate whether this thesis contains published material or not:

☐ This thesis contains no publications, either published or submitted for publication

☒
Some of the work described in this thesis has been published and it has been
documented in the relevant Chapters with acknowledgement

☐
This thesis has publications (either published or submitted for publication)
incorporated into it in lieu of a chapter and the details are presented below

CANDIDATE’S DECLARATION
I declare that:

• I have complied with the UNSW Thesis Examination Procedure

• where I have used a publication in lieu of a Chapter, the listed publication(s) below
meet(s) the requirements to be included in the thesis.

Candidate’s Name

Signature

Date (dd/mm/yy)

vii

viii

Abstract

Graphs are widely used to model the relationships of entities in a large spectrum

of applications including social networks, world wide web, collaboration networks,

and biology. Cohesive subgraph mining, as a fundamental graph problem, extracts

highly connected structures from large graphs. Among the cohesive subgraph mod-

els, the core model, in which each node from the subgraph subject to a minimum

degree constraint, has attracted great attention due to its elegant property and

effectiveness in graph analysis. However, the massive graph volume and rapid evo-

lution present huge challenges for core computation, which need highly efficient

solutions. In this thesis, we study the problems of core computation in bipartite

graphs and multilayer graphs.

Firstly, we study the problem of (α, β)-core computation in bipartite graphs.

The (α, β)-core is an induced subgraph of a bipartite graph with node degrees

not smaller than α in the upper layer and not smaller than β in the lower layer,

respectively. We present an efficient algorithm for (α, β)-core computation based

on a novel index such that the algorithm runs in linear time regarding the result

size (thus, the algorithm is optimal since it needs at least linear time to output the

result). We prove that the index only requires O(m) space where m is the number

of edges in the bipartite graph. We also devise an efficient algorithm with time

complexity O(δ ·m) for index construction where δ is bounded by
√
m and is much

ix

smaller than
√
m in practice.

Secondly, we study the problem of (α, β)-core maintenance when the bipartite

graph is dynamically updated. We show that we can decide whether a node should

be updated or not by visiting its neighbors. Based on this locality property, we

propose an efficient maintenance algorithm which only needs to visit a local sub-

graph near the inserted or removed edge. Furthermore, we discuss how to handle

the case when a batch of edges are inserted/removed and how to implement our

maintenance algorithm in parallel.

Finally, we study the problem of core computation in multilayer graphs, which

is challenging due to the various combinations of layers. We propose a novel con-

cept named CoreCube, which records the results of core computation on every

combination of layers. We develop efficient algorithms to compute the CoreCube

and devise a hybrid storage method that achieves a superior trade-off between the

size of CoreCube and the query time. Extensive experiments on real-life datasets

demonstrate our algorithms are effective and efficient.

x

Publications

• Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, Jingren Zhou.

Efficient (α, β)-core Computation: an Index-based Approach. WWW 2019.

(Chapter 3)

• Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, Jingren Zhou.

Efficient (α, β)-core Computation in Bipartite Graphs. VLDB Journal 2020.

(Chapter 4)

• Boge Liu, Fan Zhang, Chen Zhang, Wenjie Zhang, Xuemin Lin. CoreCube:

Core Decomposition in Multilayer Graphs. WISE 2019. (Chapter 5)

• Chen Zhang, Fan Zhang, Wenjie Zhang, Boge Liu, Ying Zhang, Lu Qin,

Xuemin Lin. Exploring Finer Granularity within the Cores: Efficient (k, p)-

Core Computation. ICDE 2020.

xi

Dedication

To my parents

my relatives

my friends

For their love and support

xii

xiii

Acknowledgements

First and foremost, I would like to deliver my sincere gratitude to my supervisor

Prof. Wenjie Zhang and co-supervisor Prof. Xuemin Lin for their support and

guidance on my Ph.D study. I have benefited greatly from their sincere conversa-

tions, harsh criticism and continuous encouragement. They not only enlighten me

with knowledge and encourage me to overcome the difficult time, but also affect

me with their passion, diligence, and earnestness in the research.

Secondly, I am grateful to have the opportunity to work closely with Dr. Long Yuan

and Dr. Fan Zhang who gave me constant encouragement and much invaluable

advice. They are active and inspiring in discussions and shared with me a lot of

insightful ideas. They have walked me through all the stages of the writing of this

thesis. Without their consistent and illuminating instructions, this thesis could not

have reached its present form.

Thirdly, I am glad to work in a wonderful Database Research Group. I would

like to thank the following group members: Prof. Ying Zhang, Dr. Xin Cao, Dr.

Zengfeng Huang, Dr. Longbin Lai, Dr. Weiwei Liu, Dr. Yuan Long, Dr. Xiang

Wang, Dr. Xiaoyang Wang, Dr. Fan Zhang, Dr. Yixiang Fang, Dr. Jianye Yang,

Dr. Shiyu Yang, Dr. Xing Feng, Dr. Shenlu Wang, Dr. Xubo Wang, Dr. Fei Bi,

Dr. Wei Li, Dr. Haida Zhang, Dr. Chen Zhang, Dr Yang Yang, Ms. Xiaoshuang

Chen, Ms. Yuting Zhang, Mr. Xuefeng Chen, Mr. You Peng, Mr. Kai Wang, Mr.

xiv

Qingyuan Linghu, Mr. Yizhang He, Mr. Jiahui Yang. The time we spent together

will be memorized forever.

Finally, I would like to thank my family members, for their continued affection and

support throughout my Ph.D.

xv

Contents

Abstract ix

Publications xi

Dedication xii

Acknowledgements xiv

List of Figures xx

List of Tables xxii

List of Algorithms xxiv

1 Introduction 1

1.1 Motivations . 2

1.1.1 (α, β)-core Computation in Bipartite Graphs 2

1.1.2 (α, β)-core Maintenance in Bipartite Graphs 7

1.1.3 Core Decomposition in Multilayer Graphs 8

1.2 Contributions . 11

1.2.1 (α, β)-core Computation in Bipartite Graphs 11

1.2.2 (α, β)-core Maintenance in Bipartite Graphs 12

xvi

1.2.3 Core Decomposition in Multilayer Graphs 13

1.3 Organization . 14

2 Related Work 15

2.1 Cohesive Subgraph Detection in Unipartite Graphs 15

2.2 Dense Subgraphs in Bipartite Graphs 16

2.3 Bipartite Graph Models . 17

2.4 Multilayer Graphs . 17

3 Efficient (α,β)-core Computation in Bipartite Graphs 19

3.1 Introduction . 19

3.2 Preliminaries . 24

3.3 Space-Efficient Index and Time-Optimal Query Processing 26

3.3.1 BiCore-Index . 27

3.3.2 Optimal Query Processing 31

3.3.3 Space Complexity of BiCore-Index 33

3.4 Index Construction Algorithm . 34

3.4.1 A Basic Core Decomposition Algorithm 35

3.4.2 A Computation-sharing Core Decomposition Algorithm . . . 40

3.4.3 Index Construction Algorithm 45

3.5 Parallel Algorithms for Index Construction 46

3.6 Performance Studies . 47

3.6.1 Performance of Querying Processing 50

3.6.2 Performance of Index Construction 52

3.6.3 Parallel Index Construction 55

3.7 Conclusion . 57

xvii

4 (α, β)-Core Maintenance in Bipartite Graphs 58

4.1 Introduction . 58

4.2 Preliminaries . 61

4.3 Index Maintenance In Dynamic Graphs 63

4.3.1 Basic Algorithms For Index Maintenance 63

4.3.2 Locality-based Algorithm For Index Maintenance 70

4.4 Batch Update. 84

4.5 Parallel Algorithms for Index Construction 86

4.6 Performance Studies . 87

4.6.1 Dynamic Maintenance . 89

4.6.2 Parallel Index Maintenance Algorithms 93

4.7 Conclusion . 96

5 CoreCube: Core Decomposition in Multilayer Graphs 99

5.1 Introduction . 99

5.2 Problem Definition . 102

5.3 CoreCube Computation . 104

5.3.1 Basic CoreCube Algorithm 104

5.3.2 Computation-sharing CoreCube Algorithm 105

5.4 CoreCube Storage . 112

5.5 Experimental Evaluation . 115

5.5.1 Experimental Setting . 115

5.5.2 CoreCube Computation . 117

5.5.3 CoreCube Storage and Query Processing 118

5.5.4 Case Study on DBLP . 120

5.6 Conclusion . 121

xviii

6 Conclusion and Future Work 122

6.1 Conclusions . 122

6.2 Directions for Future Work . 124

Bibliography 126

xix

List of Figures

3.1 Part of a customer-movie network 20

3.2 A bipartite graph G . 27

3.3 Naive Index . 27

3.4 BiCore-Index and procedure of QueryOPT for Q1,3 29

3.5 The procedure of computing βmax,2(∗) with computeβmax. Nodes

removed during each iteration are marked in gray. 38

3.6 Decomposition procedure of Algorithm 2, dark cells are the values

updated in each iteration . 39

3.7 Decomposition procedure of Algorithm 5. Dark cells are the values

updated in each iteration . 44

3.8 Query performance on different datasets 50

3.9 Query time for different α (β) . 51

3.10 Index construction time for different datasets 52

3.11 Scalability of index construction algorithms 54

3.12 ParallelDecom with varying number of cores 55

3.13 Scalability of parallel algorithms . 56

4.1 Illustration of βmax,1(∗) (the first value) and βmax,2(∗) (the second

value) before and after the insertion of edge (u4, v6). Red number

is the value (if changed) after insertion. 72

xx

4.2 Time cost for index maintenance 90

4.3 Scalability of edge insertion algorithms 92

4.4 Scalability of edge removal algorithms 94

4.5 ParallelIns with varying number of cores 95

4.6 ParallelRem with varying number of cores 96

4.7 Scalability of parallel algorithms . 97

5.1 Multilayer Core Decomposition and CoreCube of a Graph 101

5.2 Computing multilayer core decomposition in CoreCube-TD 111

5.3 CoreCube computation time in all datasets 117

5.4 The number of visited nodes in CoreCube computation in all datasets117

5.5 CoreCube computation time with varying number of layers 119

5.6 CoreCube storage in all datasets . 119

5.7 Core Number Query Processing Time 120

5.8 Multilayer core decomposition on DBLP 120

xxi

List of Tables

3.1 Summary of Notations . 26

3.2 Statistic for the graphs . 49

4.1 Summary of Notations . 62

5.1 Summary of Notations . 102

5.2 Statistics of Datasets . 115

xxii

List of Algorithms

1 QueryOPT . 32

2 BasicDecom . 35

3 computeβmax (G,α) . 36

4 computeαmax (G, β) . 37

5 ComShrDecom . 41

6 computeβ+
max (G,α) . 42

7 computeα+
max (G, β) . 43

8 IndexCon (G) . 46

9 ParallelDecom . 47

10 BiCore-Index-Ins . 64

11 updateαmaxIns (G+, α, τα) . 65

12 updateβmaxIns (G+, β, τβ) . 66

13 BiCore-Index-Rem . 68

14 updateβmaxRem (G−, α, τα) . 69

15 updateαmaxRem (G−, β, τβ) . 70

16 BiCore-Index-Ins∗ . 76

17 RemoveCandidates(w, α, φα, T, C,G
+) 77

18 BiCore-Index-Rem∗ . 81

19 AddCandidates(w, S ′, α, τα, T, C,G
−) 82

xxiii

xxiv

20 BiCore-Index-Batch . 85

21 ParallelFramework . 87

22 Core-BU(G, L′) . 106

23 CoreCube-BU(G) . 106

24 Core-TD(G, L′, CL′) . 109

25 CoreCube-TD(G) . 110

26 Hybrid-Storage(G, C) . 113

27 Core-Retrieve(G, L′) . 114

Chapter 1

Introduction

Graphs are widely used to model the relationships of entities in a large spectrum

of applications including social networks, world wide web, collaboration networks,

and biology. Cohesive subgraph mining, as a fundamental graph problem, extracts

highly connected structures from large graphs. The cohesive subgraph model of

k-core has attracted great attention due to its elegant property and linear-time

computation [Sei83]. Given a graph G, k-core is a maximal subgraph of G such

that every node in the subgraph is connected to at least k other nodes within

the same subgraph. It has a wide range of applications such as social conta-

gion [UBMK12], [ZZQ+17], influential spreader identification [KGH+10], collapse

prediction [MDFM19], anomalies detection [SEF16], core resilience [LSE+18], and

user engagement study [MV13].

Despite the power of k-core decomposition in mining cohesive subgraphs and

analyzing the graph structure, k-core is basically defined based on general (single-

layer and unipartite) graphs. It is worth noting that general graphs sometimes are

inadequate in expressing inherent properties in real-graphs. For example, many

real-world relationships across various entities are inherently modelled as bipar-

1

2 Chapter 1. Introduction

tite graphs, such as customer-product networks [WDVR06], user-page networks

[BXG+13], gene co-expression networks [KKND11], collaboration networks [Ley02],

etc. At the same time, there are usually multiple types of interactions (edges)

among entities (nodes) in real-life graphs, e.g., the relationship between two users

in a social network can be friends, colleagues, relatives and so on. The entities and

interactions are usually modelled as a multilayer graph, where each layer records

a certain type of interaction among entities [DMR16]. Using the traditional k-core

model defined on general graphs cannot fully exploit such inherent properties in

these graphs. Furthermore, considering that the graph usually undergoes highly

dynamic updates nowadays and the requests for core computation can be issued

frequently in real applications, it is too expensive to compute core from scratch

each time. Therefore, in this thesis, we concentrate on extending the traditional

k-core model to bipartite graphs and multilayer graphs, and developing efficient

core computation and maintenance algorithms for them.

Section 1.1 briefly describes the background and motivations of investigating

the above problems, explain the challenges faced by these problems, and intro-

duce the main ideas of our solutions. Section 1.2 summarizes the contributions

of this thesis for each problem investigated. Thesis organization is presented in

Section 1.3.

1.1 Motivations

1.1.1 (α, β)-core Computation in Bipartite Graphs

With the proliferation of bipartite graph applications, research efforts have been

devoted to many fundamental problems in managing and analyzing bipartite graph

data. Among them, the problem of computing (α, β)-core of a bipartite graph for

Chapter 1. Introduction 3

given α and β has been recently studied in [CB15, DLHM17]. Formally, a bipartite

graph G = (U, V,E) is a graph with the nodes divided into two separate sets, U

and V , such that every edge connects one node in U to another node in V . Given

G = (U, V,E) and two integers α and β, the (α, β)-core of G consists of two node

sets U ′ ⊆ U(G) and V ′ ⊆ V (G) such that the subgraph induced by U ′ ∪ V ′ is the

maximal subgraph of G in which all the nodes in U ′ have degree at least α and all

the nodes in V ′ have degree at least β.

Applications. Computing (α, β)-cores has many real applications.

(1) Online group recommendation. Group recommendation aims at recommend-

ing products to a group of users who may or may not share similar tastes, e.g.,

recommending movies for friends to watch together [AYRC+09, YCL14, CM13,

GLRW13]. Fault-tolerant group recommendation is proposed to deal with missing

values in incomplete data and has shown its effectiveness in group recommendation

[GMRS11, PG09, NSRK14]. A key step in fault-tolerant group recommendation is

to compute fault-tolerant subspace clusters for each user in the group. For a given

user uq, a subspace cluster is a set of uq’s similar users, which is exploited by collab-

orative filtering [NSNK12] to compute the relevance of products to uq. Recently,

to accelerate the computation of fault-tolerant subspace clustering, [DLHM17] has

shown that (α, β)-core is an efficient way of computing fault-tolerant subspace

clustering. For a user uq and user-specific parameters α and β, all the users in the

(α, β)-core are treated as uq’s fault-tolerant subspace cluster. Since the α and β

values can vary greatly based on users’ preference and the degree of tolerance for

missing values [DLHM17], efficiently computing (α, β)-core is a critical procedure

for online fault-tolerant group recommendation.

(2) Fraudsters detection. In social networks, such as Facebook and Twitter, users

and pages form a user-page bipartite graph in which the edge indicates a user likes

4 Chapter 1. Introduction

a page. To promote certain pages, fraudsters use a larger number of fake accounts

to inflate the Like counts for these pages; this results in a large number (β) of

users liking a few (α) pages. (α, β)-core with small α and large β can facilitate

the detection of such fraudsters [BXG+13, AIB+13]. Similar fraud scenario also

occurs in E-Commence/Online-Shopping, for example, fraudsters may improve the

ranking of certain items by adding items to fake accounts’ shopping lists.

(3) A key step to other problems in bipartite graphs. Computing (α, β)-core can

also serve as a key step to solve other important graph problems, such as biclique

computation [LSH08, ZPR+14] and quasi-biclique computation [LSLW, LLW10].

Motivations. In the literature, an online algorithm [DLHM17] is proposed for the

computation of (α, β)-core. However, it has to traverse the entire graph to compute

the (α, β)-core for given α and β. This makes it impractical to real scenarios,

especially while taking into consideration that real bipartite graphs nowadays can

be very large and the requests for computing (α, β)-core can be issued frequently.

For example, the consumer-product networks of Amazon or Alibaba often reach

billion-scale [LSY03, WHZ+18]; in the application of online group recommendation,

there can be millions of groups issuing recommendation requests at the peak time

[GXL+10, YCL14, LSY03]. To recommend products to these groups, we need to

compute (α, β)-core with different α and β for each user in every group. Therefore,

numerous underlying computations of (α, β)-cores with different combinations of

α and β have to be processed in realtime (typically within half a second [LSY03]).

However, it is shown in our experiments that, even in Orkut dataset with 327

million edges, existing method spends 236 seconds to compute (α, β)-core for a

group of ten users. For fraud detection case, we also need to do lots of (α, β)-

core computations to union results together because fraudsters may hide behind

different combinations of α and β values [BXG+13, AIB+13] and we don’t want

Chapter 1. Introduction 5

to miss out the suspicious people. Motivated by this, we aim to devise an index-

based optimal algorithm (linear time with respect to the result size) to compute

the (α, β)-core for given α and β.

Challenges. To achieve our goal, we adopt an index-based approach. Straight-

forwardly, if we store the (α, β)-cores for all possible α and β combination, we

can obtain the (α, β)-core in optimal time for given α and β. Nevertheless, this

approach will take O(n3) space to store all results where n is the number of nodes

in a bipartite graph. Obviously, this is prohibitive for a very large graph. Below,

we present the challenges to be overcome in this paper.

• Challenge 1: Optimal (α, β)-core computation vs Space Efficiency. Consid-

ering that even one particular (α, β)-core for a given (α, β) may have O(n)

size and there could be O(n2) different combinations of α and β values, it is

a challenge to develop a compact index such that we can compute (α, β)-core

for given α and β in optimal time.

• Challenge 2: Efficient index construction. The proposed index is built upon

the results of core decomposition on bipartite graphs. Note that core de-

composition on general (single-layer and unipartite) graphs [BZ03] requires

O(m) time, simply extending this strategy to bipartite graphs with two dis-

joint node sets will lead to O(dmax ·m) time, where dmax is the maximum

degree of nodes and m is the number of edges in G. dmax could be very large

in real graphs (e.g., dmax > 107 in Web Trackers dataset), such method is

impractical for large graphs. Hence, it is a challenge to devise an efficient

algorithm to construct the index.

Our Solutions. In this paper, we address the above challenges. Regarding chal-

lenge 1, we propose an index-based algorithm to process the (α, β)-core queries. We

6 Chapter 1. Introduction

observe that although the relationships among (α, β)-cores with arbitrarily given α

and β values are complicated, for a fixed α(β), the (α, β)-cores are monotonously

included with respect to the increase of β(α). Following this observation, we de-

fine βmax,α and αmax,β for the nodes in U and V respectively, and we prove that for

given α and β, the corresponding (α, β)-core can be determined through βmax,α and

αmax,β uniquely. However, using βmax,α and αmax,β alone cannot achieve the goal

of optimal (α, β)-core query processing. Therefore, we further organize nodes and

devise an index structure named BiCore-Index. Based on BiCore-Index, to answer

an (α, β)-core query, our query processing algorithm only needs to visit the nodes

contained in the (α, β)-core once, which means the running time of the algorithm

is only dependent on the result size rather than the size of the given graph (thus,

optimal).

Regarding challenge 2, although BiCore-Index is functional and can support op-

timal (α, β)-core query processing, it is compact and we non-trivially prove that

the size of BiCore-Index can be bounded by O(m), where m is the number of edges

in G. In addition, to efficiently construct the BiCore-Index, we first present a ba-

sic algorithm by iterating the entire graph dmaxU + dmaxV times, where dmaxU

and dmaxV are the maximum degree of nodes in U and V , respectively, and its

time complexity is O(dmax · m), where dmax = max{dmaxU , dmaxV }. However,

dmax could be very large in real graphs [BA99]. Therefore, we improve the basic

algorithm and further propose an efficient algorithm by sharing the computation

during the index construction. We show that the time complexity of our proposed

algorithm is O(δ · m), where δ is the maximum value such that the (δ, δ)-core in

G is nonempty and is bounded by
√
m. In our experiments, it is shown that δ is

much smaller than
√
m in practice.

Chapter 1. Introduction 7

1.1.2 (α, β)-core Maintenance in Bipartite Graphs

Although, BiCore-Index is useful in bipartite graphs for online group recommenda-

tion and frustrater detection [LYL+19], in real applications, such as online social

networks [KNT10], web graph [OZZ07], and collaboration network [AHL12], graphs

are generally dynamic, i.e., the graphs are frequently updated by node/edge inser-

tion/deletion. For example, Facebook has more than 1.3 billion users and approx-

imately 5 new users join Facebook every second [OMK15]; Twitter has more than

300 million users and 3 new users join Twitter every second [OMK15]. Therefore,

supporting graph updates efficiently is important for the practical applicability

of a graph algorithm in real applications. In the literature, numerous studies on

the fundamental graph problems on dynamic graphs have been conducted, such as

core maintenance problem in unipartite graphs [SGJS+13, ZYZQ17], reachability

[FLL+11], densest subgraphs [ELS15], and pattern matching [ZLWX14].

Motivated by this, we aim to develop efficient BiCore-Index maintenance algo-

rithms in dynamic graphs. Furthermore, as today’s graphs grow in scale [LGHB07,

DBS18] and current commodity servers are generally equipped with multi-cores

[SB13], it is natural to solve graph problems in parallel [DBS18, SRM14]. There-

fore, we also investigate the problem of implementing our algorithms in parallel.

Challenges and our solutions. As graphs are frequently updated in many

applications, BiCore-Index should support efficient maintenance when the graph

is dynamic. The state-of-art core maintenance algorithms on unipartite graphs

(general graphs) require extra neighbor information for each node and auxiliary

data structures [ZYZQ17] to maintain an order of nodes. Although the state-of-

art core maintenance algorithms only need to use O(n) extra space on general

graphs, extending the techniques for general graphs to maintain index in bipartite

graphs makes the space cost reach O(dmax·n) because the containment relationship

8 Chapter 1. Introduction

of (α, β)-core is more complicate than general k-core. Hence, it is a challenge to

devise efficient algorithms that can maintain BiCore-Index without extra space cost.

Moreover, existing core maintenance algorithms [LYM13, ZYZQ17, WQZ+16] focus

on single-core computation because the insertion/removal of edges spreads influence

among nodes in a complicate way and it is hard to predict the core change without

processing nodes in a certain order. Therefore, it is a challenge to maintain BiCore-

Index in a parallel manner. In summary, we need to answer the following two

questions:

• How to update BiCore-Index in dynamic graphs efficiently?

• Can we develop effective parallel algorithms for BiCore-Index maintenance?

Regarding the first question, we first propose an algorithm to maintain BiCore-

Index in dynamic graphs by reducing unnecessary computation during the procedure

of updating BiCore-Index. Then, we show that we can decide whether a node in

BiCore-Index should be updated or not by visiting its neighbors locally. Based on

this locality property, we further devise a locality-based algorithm that updates

BiCore-Index locally. Regarding the second question, we find that the updating

process can be split into independent subprocesses which can be executed based

on the BiCore-Index before update. To update BiCore-Index, we merge the results

by selecting the largest (insertion) or smallest (removal) value computed among all

subprocesses. Moreover, we discuss about how to maintain BiCore-Index when a

batch of edges are inserted and removed.

1.1.3 Core Decomposition in Multilayer Graphs

In real-life networks, there are usually multiple types of interactions (edges) among

entities (nodes), e.g., the relationship between two users in a social network can

Chapter 1. Introduction 9

be friends, colleagues, relatives and so on. The entities and interactions are usu-

ally modelled as a multilayer graph, where each layer records a certain type of

interaction among entities [DMR16]. Because of the strong modeling paradigm

to handle various interactions among a set of entities, there are significant exist-

ing studies of multilayer graphs, e.g., [BGHS12, LSQ+18]. Previous works usually

focus on mining dense structures from multilayer graphs according to given param-

eters, e.g., [ZZL18]. Nevertheless, graph decomposition, as a fundamental graph

problem [WQZ+16], remains largely unexplored on multilayer graphs.

Core decomposition (or k-core decomposition), as one of the most well-studied

graph decomposition, is to compute the core number for every node in the

graph [Sei83]. It is a powerful tool in modeling the dynamic of user engagement

in social networks. In practice, a user u tends to adopt a new behavior if there

are a considerable number of friends (e.g., the core number of u) in the group who

also adopted the same behavior [MV13]. Core decomposition is also theoretically

supported by Nash equilibrium in game theory [BKL+15]. It has a variety of ap-

plications, e.g., graph visualization [AHDBV05a], internet topology [CHK+07] and

user engagement [ZLZ+18, ZZZ+17]. Extending the single-layer core decomposi-

tion to multilayer graphs is a critical task which can benefit a lot of applications

considering the various real-world interactions between entities.

Given a multilayer graph, the multilayer k-core on a set of layers is defined as

a set of nodes whose minimum degree in the induced subgraph of each layer is at

least k. The core number of a node on a set of layers is the largest k such that the

multilayer k-core on these layers contains the node. Multilayer core decomposition

on a set of layers is to compute the core number for each node on these layers. In

this paper, we propose CoreCube which records the core numbers of each node for

every combination of layers in a multilayer graph. In the following, we show the

10 Chapter 1. Introduction

details for some application examples.

User Engagement Evaluation. In social networks, users may participate in multi-

ple groups with different themes, where each group forms a layer in the multilayer

graph. For instance, the authors in a coauthor network have different coauthor rela-

tionship on different venues (conferences or journals). For any given user-interested

combination of venues (correspond to layers), CoreCube of the coauthor network

can immediately answer the engagement level for each author, i,e, the core num-

bers [MV13]. Given a degree constraint k, we can also immediately retrieve a

cohesive user group from CoreCube, i.e., the multilayer k-core.

Biological Module Analysis. In biological networks, different interactions between

the modules are detected with different methods due to data noise and technical

limitations [HYH+05]. Analyzing module structure according to single method,

i.e., on a single layer, may not be accurate. CoreCube allows us to study the

connections between modules for any combination of potential methods. Thus, we

can find co-expression clusters and verify the effectiveness of detection methods.

Challenges and Our Solutions. To conduct core decomposition in multilayer

graphs, we face two main challenges: computation and storage.

• Challenge 1: Efficient CoreCube Computation. Although core decomposition

on a single-layer graph can be computed in linear time, it becomes very chal-

lenging on a multilayer graph because the combination number of layers is

exponential to the number of layers. In the general case, no polynomial-time

algorithm may exist for computing the CoreCube. To the best of our knowl-

edge, there is only one similar work [GBG17] where the algorithms can be

adapted to compute the CoreCube while it is hard to share the computation

among different combination of layers.

Chapter 1. Introduction 11

• Challenge 2: Effective CoreCube Storage. Furthermore, in order to efficiently

retrieve multilayer k-core from CoreCube, we need to store the computation

results into disks. Considering the result size is exponential to the number of

layers, it is a challenge to develop a storage method which uses as few space

as possible while supports quick retrieval of query results.

Regarding Challenge 1, we develop an efficient algorithms that assigns an upper

bound of core number to each node and gradually converges the upper bound to

its real value. The initial upper bound is carefully selected based on previous

computation results such that our algorithm can save as much computation as

possible. Regarding Challenge 2, we devise a method which avoids duplicated

storage by only recording the difference between core number in each layer. With

our storage methods, multilayer k-core can be quickly retrieved by summing up all

the values stored in related files.

1.2 Contributions

In this section, we summarize the contributions of our thesis. We propose efficient

and effective approaches to handle the three problems discussed above. For each

of these problems, our contributions are briefly summarized below.

1.2.1 (α, β)-core Computation in Bipartite Graphs

For (α, β)-core computation in bipartite graphs, the main contributions of this

thesis are summarized below.

1. The first space-efficient index-based work to compute (α, β)-core . We pro-

pose a non-trivial space-efficient index structure, BiCore-Index, with the size

bounded by O(m). To the best of our knowledge, this is the first linear space

12 Chapter 1. Introduction

index structure to support the optimal computation of (α, β)-core in bipartite

graphs.

2. Efficient algorithms to construct the index. We carefully consider the compu-

tation sharing between two node sets of the bipartite graph when conducting

the core decomposition and devise an efficient algorithm to construct the

BiCore-Index. We show that the time complexity of our proposed algorithm

is O(δ ·m), where δ is the maximum value such that the (δ, δ)-core in G is

nonempty and is bounded by
√
m. In our experiments, it is shown that δ is

much smaller than
√
m in practice.

3. Parallel implementation of index construction algorithms. To further acceler-

ate the computation of BiCore-Index, we discuss the parallel implementation

of our index construction and maintenance algorithms.

4. Extensive performance studies on real datasets from various domains. We

conduct extensive performance studies on ten real graphs and two synthetic

graphs. The experimental results demonstrate the efficiency of our proposed

algorithms. The experimental results on real and synthetic graphs (more

than 1 billion edges) demonstrate that our algorithms achieve up to 5 orders

of magnitude speedup for computing (α, β)-core, and up to 3 orders of mag-

nitude speedup for index construction compared with existing techniques.

1.2.2 (α, β)-core Maintenance in Bipartite Graphs

For core maintenance in bipartite graphs, the main contributions of this thesis are

summarized below.

1. Efficient index maintenance algorithm for dynamic graphs. We develop a

locality-based algorithm to update BiCore-Index, which decide whether a node

Chapter 1. Introduction 13

in BiCore-Index should be updated or not by visiting its neighbors locally.

Moreover, we discuss about how to maintain BiCore-Index when a batch of

edges are updated.

2. Efficient parallel maintenance algorithm. We devise an efficient parallel index

maintenance algorithms by splitting the updating process into independent

subprocesses and merging the results by selecting the largest or smallest value

computed among all subprocess.

3. Extensive experiments on real datasets. We demonstrate the efficiency of our

proposed algorithm with ten real graphs and two synthetic graphs. The exper-

imental results show that our algorithm achieves up to 4 orders of magnitude

speedup for index maintenance compared with existing techniques.

1.2.3 Core Decomposition in Multilayer Graphs

For core computation in multilayer graphs, the main contributions of this thesis

are summarized below.

1. We propose efficient algorithms to compute the CoreCube. Several theorems

reveal the inner characteristics of multilayer core decomposition.

2. We devise a hybrid storage method which has a superior trade-off between

query processing time and storage size.

3. Extensive experiments demonstrate that our CoreCube computation and

query processing are faster than baselines by more than one order of magni-

tude.

14 Chapter 1. Introduction

1.3 Organization

This rest of this thesis is organized as follows.

• Chapter 2 provides a survey of the related work.

• Chapter 3 presents the structure of our space-efficient BiCore-Index which

answers (α, β)-core query in optimal time, and propose our BiCore-Index con-

structions algorithms.

• Chapter 4 describes our BiCore-Index maintenance algorithm and explains

how to implement it in parallel.

• Chapter 5 presents our CoreCube computation algorithms and space-efficient

CoreCube storage method.

• Chapter 6 concludes the thesis and discusses several possible directions for

future work.

Chapter 2

Related Work

In this chapter, we will provide an overview of some works related to the three

problems discussed in this thesis.

2.1 Cohesive Subgraph Detection in Unipartite

Graphs

Seidman first introduces k-core in [Sei83]. [BZ03] gives an efficient linear-time

algorithm for core decomposition. Given a graph, the k-core of every input k

naturally forms a hierarchical graph decomposition. Core decomposition is ap-

plied to many areas of importance, e.g., graph visualization [AHDBV05a], internet

topology [CHK+07] and so on. Core decomposition is also studied in weighted

graphs [GTV11b], attributed graphs [FCLH16, FCL+17, FCC+17, FWC+18a],

multilayer graphs [LZZ+19], and directed graphs [GTV11a, FWC+18b]. Al-

gorithms for core number maintenance in dynamic graphs are proposed in

[SGJS+13, SGJS+16, ZYZQ17]. Application of k-core can be found in social

networks [GTV11b, YQL+17a, PZZ+18, WCL+18, FCL+18, WYL+19], graph

15

16 Chapter 2. Related Work

visualization[AHDBV05b, ZP12], protein interaction network analysis [WA05,

BH03] and so on. Other cohesive subgraph models are also studied recently, such

as clique [YQL+15, YQL+16a, FYC+19, YQZ+18], k-edge connected component

[YQL+16b, YQL+17b], and k-mutual-friend subgraph model [ZYZ+18]. A variety

of cohesive subgraph models are proposed to handle different scenarios. One of the

earliest model is clique [LP49] where every vertex is adjacent to every other vertex

in the subgraph. The over-restrictive definition of clique leads to many relaxed

models, e.g., n-clique [Luc50], k-plex [SF78], and quasi-clique [ARS02]. Cohesive

subgraph models have a lot of applications on different disciplines, such as social

networks [MV13, ZZQ+18, ZYZ+18], protein networks [AUANK+03] and brain sci-

ence [DJN+13].

2.2 Dense Subgraphs in Bipartite Graphs

(α, β)-core is first introduced in [ABF+07]. [CB15], [DLHM17], and [LYL+19] ex-

tend the linear k-core mining algorithm to compute (α, β)-core. [Hoc98] generalizes

the k-clique on unipartite graph to biclique on bipartite graphs. [Pee03] proves that

finding the maximum edge biclique is NP-complete. [ZPR+14] proposes an efficient

algorithm to enumerate all bicliques. [SLGL06, LSLW08] relax the definition of

biclique to introduce quasi-biclique on bipartite graphs and propose heuristic al-

gorithms to enumerate all quasi-bicliques. [SP18] defines a framework of bipartite

subgraphs based on the butterfly motif (2,2-biclique) to model the dense regions in

a hierarchical structure. [SMST18] proposes efficient algorithms for counting the

butterfly motif.

Chapter 2. Related Work 17

2.3 Bipartite Graph Models

[GL04] shows that all complex networks can be decomposed into underlying bipar-

tite structures sharing some important statistics. [GL06] model bipartite graphs by

assigning degree distribution to each node set separately. [KTV97] uses a Markov

chain rewiring algorithm to generate bipartite graphs. Preferential attachment pro-

cess, which is popularly use in generating scale free networks, is studied on bipartite

graphs by [GL06]. [AKP17] extends block two-level Erdős-Rényi model [KPPS14]

to bipartite graphs and reproduces both degree distributions and degreewise meta-

morphosis coefficients like real graphs. Application-specific generative bipartite

graph models are also widely studied, including pollination networks in ecology

[DFBG09, SRTU09], and protein-domain networks in biology [NOHA09].

2.4 Multilayer Graphs

As a powerful paradigm to model complex networks, multilayer graphs received a

lot of interests in the literature [DMR16]. Most existing works focus on mining

dense structures on multilayer networks. Zhang et al. [ZZQ+17] detect cohesive

subgraphs on a 2-layer graph where one layer corresponds to user engagement and

the other corresponds to user similarity. Wu et al. [WJZZ15] find subgraphs where

each subgraph is dense on one layer and connected on the other layer. Jethava and

Beerenwinkel [JB15] study the densest common subgraph problem to find a sub-

graph maximizing the minimum average degree on all the layers of a graph. They

propose a greedy algorithm without approximation guarantees. Zhu et al. [ZZL18]

introduce the notion of coherent cores on multilayer graphs and search diversi-

fied coherent k-cores with top sizes on multilayer graphs. Li et al. [LSQ+18] find

persistent k-cores on a temporal graph where each layer corresponds to a time

18 Chapter 2. Related Work

span. Galimberti et al. [GBG17] study core decomposition and densest subgraph

extraction on multilayer graphs.

Chapter 3

Efficient (α,β)-core Computation

in Bipartite Graphs

3.1 Introduction

Many real-world relationships across various entities can be modelled as bipar-

tite graphs, such as customer-product networks [WDVR06], user-page networks

[BXG+13], gene co-expression networks [KKND11], collaboration networks [Ley02],

etc. With the proliferation of bipartite graph applications, research efforts have

been devoted to many fundamental problems in managing and analyzing bipartite

graph data. Among them, the problem of computing (α, β)-core of a bipartite

graph for given α and β has been recently studied in [CB15, DLHM17]. Formally,

a bipartite graph G = (U, V,E) is a graph with the nodes divided into two separate

sets, U and V , such that every edge connects one node in U to another node in V .

Given G = (U, V,E) and two integers α and β, the (α, β)-core of G consists of two

node sets U ′ ⊆ U(G) and V ′ ⊆ V (G) such that the subgraph induced by U ′ ∪ V ′

is the maximal subgraph of G in which all the nodes in U ′ have degree at least α

19

20 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

Figure 3.1: Part of a customer-movie network

and all the nodes in V ′ have degree at least β

Applications. Computing (α, β)-cores has many real applications.

(1) Online group recommendation. Group recommendation aims at recommend-

ing products to a group of users who may or may not share similar tastes, e.g.,

recommending movies for friends to watch together [AYRC+09, YCL14, CM13,

GLRW13]. Fault-tolerant group recommendation is proposed to deal with missing

values in incomplete data and has shown its effectiveness in group recommendation

[GMRS11, PG09, NSRK14]. A key step in fault-tolerant group recommendation is

to compute fault-tolerant subspace clusters for each user in the group. For a given

user uq, a subspace cluster is a set of uq’s similar users, which is exploited by collab-

orative filtering [NSNK12] to compute the relevance of products to uq. Recently,

to accelerate the computation of fault-tolerant subspace clustering, [DLHM17] has

shown that (α, β)-core is an efficient way of computing fault-tolerant subspace

clustering. For a user uq and user-specific parameters α and β, all the users in the

(α, β)-core are treated as uq’s fault-tolerant subspace cluster. Since the α and β

values can vary greatly based on users’ preference and the degree of tolerance for

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 21

missing values [DLHM17], efficiently computing (α, β)-core is a critical procedure

for online fault-tolerant group recommendation.

Example 1.1: Figure 3.1 shows part of the customer-movie network in the IMDB

(https://www.imdb.com/) where each node in U represents a user, each node in V

represents a movie and each edge indicates the customer has a preference for the

movie. Assume that u3 and u7 are given as a group and the user-specific α and β for

u3 and u7 are (3, 2) and (2, 3), respectively. Fault-tolerant group recommendation

method first computes (3, 2)-core and (2, 3)-core, and uses {u2, u3, u4, u5, u6} and

{u4, u5, u6, u7, u8} as fault-tolerant subspace clusters for u3 and u7, respectively.

Then it conducts collaborative filtering based on the subspace clusters to further

calculate the movie preference. In this case, Sci-Fi movies would be recommended

to the group as both u3 and u7 have a preference for Sci-Fi movies. 2

(2) Fraudsters detection. In social networks, such as Facebook and Twitter, users

and pages form a user-page bipartite graph in which the edge indicates a user likes

a page. To promote certain pages, fraudsters use a larger number of fake accounts

to inflate the Like counts for these pages; this results in a large number (β) of

users liking a few (α) pages. (α, β)-core with small α and large β can facilitate

the detection of such fraudsters [BXG+13, AIB+13]. Similar fraud scenario also

occurs in E-Commence/Online-Shopping, for example, fraudsters may improve the

ranking of certain items by adding items to fake accounts’ shopping lists.

(3) A key step to other problems in bipartite graphs. Computing (α, β)-core can

also serve as a key step to solve other important graph problems, such as biclique

computation [ZPR+14] and quasi-biclique computation [LSLW08, LLW10].

Motivations. In the literature, an online algorithm [DLHM17] is proposed for the

computation of (α, β)-core. However, it has to traverse the entire graph to compute

22 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

the (α, β)-core for given α and β. This makes it impractical to real scenarios,

especially while taking into consideration that real bipartite graphs nowadays can

be very large and the requests for computing (α, β)-core can be issued frequently.

For example, the consumer-product networks of Amazon or Alibaba often reach

billion-scale [LSY03, WHZ+18]; in the application of online group recommendation,

there can be millions of groups issuing recommendation requests at the peak time

[GXL+10, YCL14, LSY03]. To recommend products to these groups, we need to

compute (α, β)-core with different α and β for each user in every group. Therefore,

numerous underlying computations of (α, β)-cores with different combinations of

α and β have to be processed in realtime (typically within half a second [LSY03]).

However, it is shown in our experiments that, even in Orkut dataset with 327

million edges, the existing method spends 236 seconds to compute (α, β)-core for

a group of ten users. For fraud detection case, we also need to do lots of (α, β)-

core computations to union results together because fraudsters may hide behind

different combinations of α and β values [BXG+13, AIB+13] and we don’t want to

miss out the suspicious people.

Challenges. To achieve our goal, in this paper, we adopt an index-based approach.

Straightforwardly, if we store the (α, β)-cores for all possible α and β combination,

we can obtain the (α, β)-core in optimal time for given α and β. Nevertheless, this

approach will take O(n3) space to store all results where n is the number of nodes

in a bipartite graph. Obviously, this is prohibitive for a very large graph. Below,

we present the challenges to be overcome in this paper.

• Challenge 1: Optimal (α, β)-core computation vs Space Efficiency. Consid-

ering that even one particular (α, β)-core for a given (α, β) may have O(n)

size and there could be O(n2) different combinations of α and β values, it is

a challenge to develop a compact index such that we can compute (α, β)-core

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 23

for given α and β in optimal time.

• Challenge 2: Efficient index construction. The proposed index is built upon

the results of core decomposition on bipartite graphs. Note that core decom-

position on unipartite graphs (general graphs) [BZ03] requires O(m) time,

simply extending this strategy to bipartite graphs with two disjoint node sets

will lead to O(dmax · m) time (details in Section 3.4.1), where dmax is the

maximum degree of nodes and m is the number of edges in G. However, dmax

could be very large in real graphs (e.g., dmax ≥ 107 in Web Trackers dataset),

such method is impractical for large graphs. Therefore, it is a challenge to

devise an efficient algorithm to construct the index.

Contributions. In this paper, we overcome all the above challenges. The prelim-

inary version is published in [LYL+19]. The main contributions of this work are

summarized as follows:

(1) The first space-efficient index-based work to compute (α, β)-core . In this

paper, we propose a non-trivial space-efficient index structure, BiCore-Index, with

the size bounded by O(m). To the best of our knowledge, this is the first linear

space index structure to support the optimal computation of (α, β)-core in bipartite

graphs.

(2) Efficient algorithms to construct the index. We carefully consider the compu-

tation sharing between two node sets of the bipartite graph when conducting the

core decomposition and devise an efficient algorithm to construct the BiCore-Index.

We show that the time complexity of our proposed algorithm is O(δ ·m), where δ is

the maximum value such that the (δ, δ)-core in G is nonempty and is bounded by

√
m. In our experiments, it is shown that δ is much smaller than

√
m in practice.

(4) Parallel implementation of index construction. To further accelerate the com-

24 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

putation of BiCore-Index and its maintenance on dynamic graphs, we discuss the

parallel implementation of our index construction and maintenance algorithms.

(5) Extensive performance studies on real datasets from various domains. We

conduct extensive performance studies on ten real graphs and two synthetic graphs.

The experimental results demonstrate the efficiency of our proposed algorithms.

Outline. Section 3.2 gives the problem definition and the existing solution. Sec-

tion 3.3 introduces our proposed index, BiCore-Index, and the optimal algorithm to

compute (α, β)-core for arbitrary α and β. Section 3.4 presents algorithms to con-

struct BiCore-Index. Section 3.5 discusses how to implement our index construction

algorithms in parallel. Section 3.6 evaluates our algorithms using extensive exper-

iments and Section 3.7 concludes the paper.

3.2 Preliminaries

A bipartite graph G = (U, V,E) is a graph consisting of two disjoint sets of nodes U

and V such that every edge from E ⊆ U ×V connects one node of U and one node

of V . We use U(G) and V (G) to denote the two disjoint node sets of G and E(G)

to represent the edge set of G. We denote the number of nodes in U(G) and V (G)

as nU and nV , the total number of nodes as n and the number of edges in E(G) as

m. The degree of a node u ∈ U(G)∪V (G), denoted by deg(u,G), is the number of

neighbors of u in G. We also use dmaxU(G) (dmaxV (G)) to denote the maximum

degree among all the nodes in U(G) (V (G)), i.e., dmaxU(G) = max{deg(u,G)|u ∈

U(G)} (dmaxV (G) = max{deg(v,G)|v ∈ V (G)}). For simplicity, we omit G in the

notations if the context is self-evident. For a bipartite graph G and two node sets

U ′ ⊆ U(G) and V ′ ⊆ V (G), the bipartite subgraph induced by U ′ and V ′ is the

subgraph G′ of G such that U(G′) = U ′, V (G′) = V ′ and E(G′) = E(G)∩(U ′×V ′).

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 25

Definition 2.1: ((α, β)-core) Given a bipartite graph G and two integers α and

β, the (α, β)-core of G, denoted by Cα,β, consists of two node sets U ⊆ U(G) and

V ⊆ V (G) such that the bipartite subgraph g induced by U ∪ V is the maximal

subgraph of G in which all the nodes in U have degree at least α and all the nodes

in V have degree at least β, i.e., ∀u ∈ U , deg(u, g) ≥ α ∧ ∀v ∈ V , deg(v, g) ≥ β.

Similar to the traditional k-core in unipartite graph, (α, β)-core is not neces-

sarily connected. Note that when α = β, (α, β)-core degenerates to the k-core in

unipartite graph. An important property of k-core in unipartite graph is that if

k1 ≥ k2, k1-core must be contained in k2. Similar property can also be found in

(α, β)-core. Specifically, Given a bipartite graph G, Cα,β is contained in Cα′,β′ if

β′ ≤ β and α′ ≤ α.

Problem Statement. In this paper, we study the problem of efficient computa-

tion of (α, β)-core for given α and β. For ease of presentation, we refer a request of

computing the (α, β)-core for given α and β as an (α, β)-core query and denote it

as Qα,β. Our object is to design a time-optimal algorithm for processing (α, β)-core

queries on large bipartite graphs.

Existing Solution. Given an (α, β)-core query Qα,β, the state-of-the-art algo-

rithm to compute Cα,β is proposed in [DLHM17]. Intuitively, it computes Cα,β by

iteratively removing nodes in U(G) with degree less than α and nodes in V (G)

with degree less than β until no more nodes can be removed. The above algorithm

adopts an online paradigm to process (α, β)-core queries. For a query Qα,β, its time

complexity to compute Cα,β is O(m) in the worst case. Nevertheless, the graphs are

typically very large in real applications (e.g., there are 327 million edges in Orkut

dataset). Therefore, this algorithm cannot satisfy the real-time requirements for

(α, β)-core queries since it needs to traverse the whole graph for a Qα,β. In our

experiment, we take it as the baseline solution for (α, β)-core computation.

26 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

Table 3.1: Summary of Notations

G = (U, V,E)
a bipartite graph with two node sets U and V , an
edge set E

U(G), V (G), E(G) node sets U , V and edge set E of G

n,m number of nodes and edges of G

deg(u,G) the degree of node u in U(G) ∪ V (G)

dmaxU(G), dmaxV (G) maximum degree of nodes in U , V

Cα,β (α, β)-core

Cα,β.U , Cα,β.V two node sets of (α, β)-core

Qα,β (α, β)-core query

βmax,α(u)
the maximum value of β regarding α such that u
is in the corresponding Cα,β

αmax,β(u)
the maximum value of α regarding β such that u
is in the corresponding Cα,β

I, IU , IV
BiCore-Index, BiCore-Index for nodes in U(G),
BiCore-Index for nodes in V (G)

δ the maximum value s.t. Cδ,δ 6= ∅

3.3 Space-Efficient Index and Time-Optimal

Query Processing

In this section, we organize all the (α, β)-cores into a linear space index structure,

through which an (α, β)-core query can be answered in optimal time, i.e, linear time

with respect to the result size. In Section 3.3.1, we first introduce a naive index

structure, which is based on the fact that when α(β) is fixed, (α, β)-core with larger

β(α) is contained in the one with smaller β(α). After analyzing the problems in

the naive index structure, we present our linear space index structure, BiCore-Index.

In Section 3.3.2, we show that any (α, β)-core query can be answered in optimal

time based on BiCore-Index and present the query processing algorithm. At last

in Section 3.3.3, we prove that for any bipartite graph G, the space complexity of

BiCore-Index can be bpounded by O(m) where m is the number of edges in G.

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 27

v1

u1 u2 u3 u4 u5 u6

v2 v3 v4 v5 v6 v7

Figure 3.2: A bipartite graph G

1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 51 2 3 4 5

u1 u2
u3 u4
u5 u6

(1,1)
u1 u2
u3 u4
u5 u6

(1,2)
u1 u2
u3 u4
u5 u6

(1,3)
u1 u2
u3 u4

u6

(1,4)
u1 u2
u3 u4

u6

(1,5)
u1 u2
u4 u5

u6

(2,1)
u1 u4

(5,1)
u1 u4

(5,2) (5,3) (5,4) (5,5)

…
…

FPT

SPT

Figure 3.3: Naive Index

3.3.1 BiCore-Index

A Naive Index Structure. To support optimal (α, β)-core query processing, a

naive index is as follows: we pre-compute (α, β)-cores for all the possible α and

β and store them in the index. Then, for all possible combination of α and β,

we record the location of the corresponding (α, β)-core in the index through two

level pointer tables. Given a query Qα,β, we can compute Cα,β in optimal time by

visiting the nodes stored in the location referred by the (α, β) value. Note that the

time cost is optimal since we can find the location referred by the α and β value

in O(1) time and output (α, β)-core with time linear to the result size. We show

the naive index in the following example.

Example 3.1: Considering the graph G in Figure 3.2, the naive index of G is

shown in Figure 3.3. For ease of presentation, we only show the nodes in U(G) in

Figure 3.3 and the nodes in V (G) can be indexed similarly. In the index, all the

28 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

pre-computed (α, β)-cores are stored and shown in the bottom bucket of Figure 3.3.

For instance, (1, 3)-core is {{u1, . . . u6}, {v3, v4, v5}}, thus, u1, . . . , u6 are stored in

the grey bucket in Figure 3.3. Since both the maximum possible α value (dmaxU)

and β value (dmaxV) of G are 5, the first-level pointer table (FPT) contains 5

pointers and each sub-table contains 5 pointers. Suppose the given query is Q1,3,

we can compute C1,3 by following bold arrows and obtain C1,3.U = {u1, . . . , u6}. 2

This naive index can achieve optimal query processing time, however, it requires

O(n3) space. Clearly, it is prohibitive for large graphs. In order to make the index

based approach practical, we aim to further reduce the space of the index without

sacrificing the optimal query processing property.

Observing the naive index in Figure 3.3, we can find the following two problems

exist, which leads to its huge space consumption. The first one is that a node may

be stored multiple time in the index. For example, when α = 1, u1 is stored five

times in the index, namely, in C1,1, C1,2, C1,3, C1,4 and C1,5. The same problem also

exists on other nodes and other α values. The second one is that empty entries

are also kept in the index. For example, there exist no C5,3, C5,4 and C5,5 in G.

These entries should be managed to be removed while not affecting the optimal

time complexity.

BiCore-Index Structure. We aim to reduce the space consumption of the naive

index by addressing the two problems discussed above. Given a bipartite graph G,

for a node u ∈ U(G) and a specific α, if we know the (α, β)-core with maximum β

value containing u, we can infer that u is also contained in any (α, β′)-Core of G

where β′ is smaller than the maximum β value. For example, when α = 1, since u1

is contained in C1,5, we know u5 is also contained in C1,1, C1,2, C1,3 and C1,4. In other

word, storing u1 at C1,1, C1,2, C1,3 and C1,4 is redundant regarding (α, β)-core query

processing and we only need to store it at C1,5 (marked with circle in Figure 3.3).

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 29

1 2 3 4 5

1 2 3 4 5 1 2 3 1 2 1 2 1 2

u1

FPT

SPT

NB u5 u1 u2
u3 u4

u6

u6 u5 u1 u2
u4

u2 u1 u4 u1 u4 u1 u4

(1,3) (1,5) (2,1) (2,2) (2,3) (3,1) (3,2) (4,2) (5,2)

1 2 3 4 5

1 2 3 4 5 1 2 1 11 2 3 4 5

v7 v6 v6 v1 v2
v3 v4

v5

v5 v3 v4 v4 v4

(1,2) (1,3) (2,2) (2,5) (3,1) (3,2) (4,1) (5,1)
v1 v2
v3 v4

v5

(1,5)

Figure 3.4: BiCore-Index and procedure of QueryOPT for Q1,3

Therefore, to address the redundant nodes storage problem in the naive index, for

a specific α, we remove the nodes u ∈ U(G) from the (α, β)-cores that contains u

but does not have the maximum β value.

For the empty entry problem, besides the existing empty entries in the index,

the node removal procedure introduced above leads to new empty entries. For

example, in Figure 3.3, after the node removal, C1,1.U is empty. To address this

problem, we can remove the empty entry for (α, β)-core from the index and adjust

the pointer in SPT pointing to (α, β)-core to point to the first (α, β′)-core such

that it is not empty and β′ > β. To compute Cα,β.U , we follow the pointer in

β-th element of the α-th sub-table in SPT (assume the pointed (α, β)-core is Cα,β′)

and collect remaining nodes from Cα,β′ to Cα,β′′ , where Cα,β′′ is the last non-empty

(α, β)-core after the node removal regarding α. The above analysis also holds for

any node v ∈ V (G), a specific β and the naive index structure for nodes in V (G).

Following the above idea, we give the formal definition of our index. Before

that, to character the (α, β)-core with the maximum β (α) value that contains a

node regarding a specific α (β), we define:

Definition 3.1:

1. βmax,α(u). Given a bipartite graph G and an integer α, for each node u ∈

U(G) ∪ V (G), βmax,α(u) is the maximum value of β such that u is contained

30 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

in the corresponding Cα,β. If no such β, βmax,α(u) = 0.

2. αmax,β(u). Given a bipartite graph G and an integer β, for each node u ∈

U(G) ∪ V (G), αmax,β(u) is the maximum value of α such that u is contained

in the corresponding Cα,β. If no such α, αmax,β(u) = 0.

Our index, BiCore-Index, denoted by I, is a three-level tree structure with two

parts for nodes in U(G) and V (G) respectively, denoted by IUand IV . As IU is

symmetrical to IV , we focus on IUhere.

• Node Blocks (NB). The third level of IU , named the node blocks, is a double

linked list. Each block in the list is associated with a (α, β) value and contains

the nodes u ∈ U(G) with βmax,α(u) = β.

• First-level Pointer Table (FPT). The first level of IU is an array with dmaxU

elements. Each element contains a pointer to an array in the second level.

We use IU [α] to represent the α-th element.

• Second-level Pointer Table (SPT). The second level of IUconsists of dmaxU

arrays (sub-table). The α-th array is pointed by IU [α]. The length of the

α-th array is the maximum β value regarding the node block (α, β) pointed

by the α-th array. We use IU [α][β] to denote the β-th element of the α-th

array in SPT. The pointer in IU [α][β] points to the first node block with

associated (α, β′) value, where β′ ≥ β.

Example 3.2: Figure 3.4 shows the BiCore-Index of G. In NB, u1 is in node block

(1, 5) since βmax,1(u1) = 5. In FPT, since dmaxU = 5, the array of FPT contains

5 pointers pointing to the corresponding array in SPT. Different from the naive

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 31

index, the length of the arrays is not unique. For example, the length of the second

array is 3. This is because for α = 2, the (2, β) node block with maximum β value

kept in NB is node block (2, 3). The pointer in the 1st element of the 1st array

in SPT points to node block (1, 3) as node block (1, 1) and (1, 2) do not exist in

NB. A key point needed to note here is that a node block in IUand a node block

in IV may share the same associated (α, β) value, but their meanings are different.

For example, v1 is contained in node block (1, 5) in IV means v1 is contained in

(5, 1)-core while u1 is contained in node block (1, 5) in IUmeans u1 is contained in

(1, 5)-core. 2

3.3.2 Optimal Query Processing

With BiCore-Index, for a query Qα,β, we compute Cα,β by retrieving Cα,β.U through

IUand Cα,β.V through IV . The algorithm, QueryOPT, is shown in Algorithm 1.

Algorithm. For a given Qα,β, if the (α, β)-core is empty, QueryOPT immediately

returns ∅ as the result since either IU [α] or IU [α][β] is empty (line 2-3). If the

(α, β)-core is not empty, it first retrieves Cα,β.U and computes the node block nb

referred by the pointer in IU [α][β] (line 5). After that, it iteratively processes the

node block in IU .NB until the first element of the associated value of nb is not the

given α (line 6 and 10). All the nodes in visited nb are added into Cα,β.U (line 7-9).

The nodes in Cα,β.V are retrieved similarly and Cα,β is returned at the end (line

12-13).

Example 3.3: Figure 3.4 illustrates the procedure of QueryOPT to compute

C1,3. The processing steps are shown in bold arrows and the visited elements

are marked in grey. To compute C1,3.U , QueryOPT follows the pointer kept in

the 1st element in IU .FPT and the 3rd element of the 1st array in IU .SPT and

32 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

Algorithm 1: QueryOPT

Input: I of G and Qα,β

Output: Cα,β of G

Cα,β ← ∅;1

if IU .FPT.size() < α or IU [α].size() < β then2

return ∅3

end if4

nb← node block pointed by IU [α][β];5

while the first element of the associated value of nb = α do6

for each u ∈ nb do7

Cα,β.U ← Cα,β.U ∪ u;8

end for9

nb← next node block in IU .NB;10

end while11

Compute Cα,β.V similarly;12

return Cα,β13

obtains u5 in the node block (1, 3). It continues to visit node block (1, 5) and

stops at node block (2, 1) since the first element of (2, 1) is larger than 1. Thus,

C1,3.U = {u1, u2, u3, u4, u5, u6}. Similarly, QueryOPT follows the pointer kept in the

3rd element in IV .FPT and the 1st element of the 3rd array in IV .SPT and obtains

C1,3.V = {v3, v4, v5}. 2

Correctness. Based on Definition 3.1, we know that Cα,β.U consists of the nodes

u ∈ U(G) with βmax,α(u) ≥ β. Meanwhile, a node u ∈ U(G) is contained in the

node block (α, β) if and only if βmax,α(u) = β. According to pointing strategy used

in SPT, by visiting all the node blocks from the one pointed by IU [α][β] to (α, h)

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 33

where h is the largest value such that (α, h)-core 6= ∅, Algorithm 1 computes Cα,β.U

correctly. Similarly, we can prove that Algorithm 1 computes Cα,β.V correctly.

Theorem 3.1: Given a Qα,β posed on a bipartite graph G, QueryOPT computes

Cα,β in O(|Cα,β.U|+ |Cα,β.V|), which is optimal.

Proof: For a given α, each u ∈ U(G) appears at most once in the node blocks

pointed by the elements in α-th array in SPT. Therefore, no duplicate node is

added in Cα,β.U in line 8. Similarly, no duplicate node is added in Cα,β.V in line 12.

Since all the nodes visited in QueryOPT are exactly the nodes we need to retrieve,

QueryOPT computes Cα,β in O(|Cα,β.U| + |Cα,β.V|) time, which is optimal as it is

linear to the result size. 2

3.3.3 Space Complexity of BiCore-Index

In this section, we prove the linear space complexity of BiCore-Index. We first show

that the size of SPT can be bounded by O(m) in Lemma 3.1. Then, we prove that

the space complexity of BiCore-Index is O(m) in Theorem 3.2.

Lemma 3.1: Given a bipartite graph G, the space of its SPT is bounded by O(m).

Proof: Let u1, u2, u3, . . . , unU be any given sequence of u ∈ U(G). Starting from

an empty graph with only V (G), we add nodes in U(G) with their incident edges

to the graph one by one following the sequence until we finally get G. Suppose

that ui is just added to the graph. As ui cannot be contained in any (α, β)-core

whose α > deg(ui, G), ui only influences the length of the k-th arrays in SPT with

1 ≤ k ≤ deg(ui, G). Since the length of the α-th array increases at most one after

insertion of ui, the size of SPT increases at most deg(ui, G). Thus, the space of

SPT in IU is bounded by O(
∑

u∈U(G) deg(u,G)) = O(m). Similarly, it can be shown

34 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

that the space of SPT in IV is also bounded by O(m). Therefore, the space of SPT

is bounded by O(m). 2

Theorem 3.2: Given a bipartite graph G, the space of its BiCore-Index is bounded

by O(m).

Proof: Since both dmaxU(G) and dmaxV (G) is smaller than m, the size of FPT

can be bounded by O(m). Furthermore, for each node u ∈ U(G) ∪ V (G),

the number of node blocks containing u is deg(u). Hence, the space of NB is

O(
∑

u∈U(G)∪V (G) deg(u,G)) = O(m). According to Lemma 3.1, the space of BiCore-

Index can be bounded by O(m). 2

3.4 Index Construction Algorithm

In this section, we introduce how to construct BiCore-Index efficiently. Based on the

structure of BiCore-Index, if we know βmax,α(u) for each node u ∈ U(G) regarding

all possible α and αmax,β(v) for each node v ∈ V (G) regarding all possible β (in

consistent with the literature on unipartite graphs, we call the procedure as core

decomposition as well), the construction of BiCore-Index is straightforward and can

be finished in O(m) time as shown in Section 3.4.3. Therefore, we first present

techniques to conduct the core decomposition.

In Section 3.4.1, we first propose a basic solution on computing core decompo-

sition. That is for a fixed α(β), we can compute all the (α, β)-core by removing the

edges in the entire graph in one pass. After conducting such computation for α(β)

from 1 to the maximum value, the core decomposition result is obtained. However,

the maximum value of α(β) equals to the maximum degree and is too large in real

graphs. In Section 3.4.2, we propose a computation-sharing algorithm which can

obtain the core decomposition result by only iterating α and β from 1 to δ, where

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 35

δ is the maximum value such that the corresponding (δ, δ)-core is non-empty. Fi-

nally, in Section 3.4.3, we show how to construct BiCore-Index based on the core

decomposition result.

3.4.1 A Basic Core Decomposition Algorithm

Inspired by the algorithm in [DLHM17], considering a node u ∈ U(G) and a specific

α, if u ∈ Cα,β.U and u /∈ Cα,β+1.U , we know βmax,α(u) = β. Moreover, for a specific

α, Cα,β+1 is contained in Cα,β. Therefore, for a specific α, if we compute all the

possible (α, β)-cores in increasing order of β by iteratively removing nodes in U(G)

with degree less than α and nodes in V (G) with degree less than β, we can obtain

βmax,α(u) for all nodes u ∈ U(G) regarding the specific α. Following this way, we

can compute βmax,α(u) for all u ∈ U(G) by iterating all possible α values of G in a

bottom-up manner. αmax,β(v) can be computed similarly.

Algorithm 2: BasicDecom

Input: G = (U ∪ V,E)

Output: βmax,α(u) for u ∈ U(G), αmax,β(v) for v ∈ V (G)

for each α = 1 to dmaxU do1

computeβmax(G,α);2

end for3

for each β = 1 to dmaxV do4

computeαmax(G, β);5

end for6

Algorithm. The basic algorithm, BasicDecom, is shown in Algorithm 2.

BasicDecom first computes βmax,α(u) for nodes in u ∈ U(G). Since the maximum

possible value of α for all nodes in U(G) is dmaxU , it iterates α between 1 and

36 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

Procedure computeβmax(G,α)

G′ ← G;1

while ∃u ∈ U(G′) : deg(u,G′) < α do2

remove u and its incident edges from G′;3

end while4

while G′ 6= ∅ do5

β ← minv∈V (G′) deg(v,G′);6

while ∃v ∈ V (G′) : deg(v,G′) ≤ β do7

remove v and its incident edges from G′;8

while ∃u ∈ U(G′) : deg(u,G′) < α do9

βmax,α(u)← β;10

remove u and its incident edges from G′;11

end while12

end while13

end while14

dmaxU and computes βmax,α(u) for u ∈ U(G) regarding the specific α by invoking

computeβmax (line 1-3). Similarly, αmax,β(v) for v ∈ V (G) are computed in line 4-6.

Procedure computeβmax computes βmax,α(u) for all the nodes in u ∈ U(G) for a

given α. It first removes the nodes and their incident edges in G′ whose degree is

less than α (line 2-4). Then, it processes the nodes in U(G) in increasing of β (line

7). Whenever a node v with deg(v,G′) ≤ β is removed (line 8), if there exists a

node u with deg(u,G′) < α in G′, we know that u ∈ Cα,β but u /∈ Cα,β+1 (line 11),

which means βmax,α(u) regarding α is β (line 10). Procedure computeαmax follows

a similar framework as computeβmax to compute αmax,β(v) for v ∈ V (G) regarding

a given β.

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 37

Procedure computeαmax(G, β)

G′ ← G;1

while ∃v ∈ V (G′) : deg(v,G′) < β do2

remove v and its incident edges from G′;3

end while4

while G′ 6= ∅ do5

α← minu∈U(G′) deg(u,G′);6

while ∃u ∈ U(G′) : deg(u,G′) ≤ α do7

remove u and its incident edges from G′;8

while ∃v ∈ V (G′) : deg(v,G′) < β do9

αmax,β(v)← α;10

remove v and its incident edges from G′;11

end while12

end while13

end while14

Example 4.1: In Figure 3.5, we show the procedure of computing βmax,2(∗) with

computeβmax for the toy graph in Figure 3.2. Since α = 2, computeβmax removes

u3 at line 2-4. After removing u3, we get G′ shown in Figure 3.5 (a), which is a

(2,1)-core. We highlight the nodes removed in each iteration of line 5-14 with gray

color. In the first iteration, β = 1 and computeβmax removes v7 and u6 at line 8

and 10, respectively. And we know that βmax,2(u6) = 1. In the second iteration

(Figure 3.5 (b)), β = 2 and computeβmax successively removes v1, v2, and v6. After

v6 is removed, it finds that deg(u5, G
′) < 2 at line 9. Thus, it removes u5 and

sets βmax,2(u5) = 2. v5 is also removed since the degree of v5 equals to 2 after the

removal of u5. In the third iteration (Figure 3.5 (c)), β = 3 and all the remaining

38 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

v1

u1 u2 u4 u5 u6

v2 v3 v4 v5 v6 v7

v1

u1 u2 u4 u5

v2 v3 v4 v5 v6

u1 u2 u4

v3 v4

(a)

(b) (c)

Figure 3.5: The procedure of computing βmax,2(∗) with computeβmax. Nodes re-
moved during each iteration are marked in gray.

nodes are removed. βmax,2(u1), βmax,2(u2), and βmax,2(u4) are set as 3. 2

Example 4.2: Considering the graph in Figure 3.2, Figure 3.6 shows the procedure

of BasicDecom to conduct the core decomposition. Since the decomposition involves

all the nodes and large number of values, we only show the procedure for two

representative nodes, u1 and v4, for brevity. In iteration 1, BasicDecom invokes

computeβmax with α = 1 and finds that u1 is removed when β = 5. Thus, it

updates βmax,1(u1) as 5. BasicDecom finishes computation in 10 iterations since

both dmaxU and dmaxV are 5. 2

Correctness. The loop invariant of line 5-14 is that for each u ∈ U(G′),

deg(u,G′) ≥ α. To see why, firstly, when G′ enters the loop, all the nodes in U(G′)

with degree less than α are removed at line 2-4. Secondly, whenever there exists

some node in U(G′) whose degree becomes less than α during the loop, it is removed

at line 11. Therefore, the node sets of G′ at line 5 always consists of an (α, β)-core

where β = minv∈V (G′) deg(v,G′). In other words, for u ∈ U(G′), βmax,α(u) ≥ β.

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 39

βmax,α(u1) αmax,β(v4)Iteration
1 2 3 4 5 1 2 3 4 5

1 (α = 1) 5 0 0 0 0 0 0 0 0 0
2 (α = 2) 5 3 0 0 0 0 0 0 0 0
3 (α = 3) 5 3 2 0 0 0 0 0 0 0
4 (α = 4) 5 3 2 2 0 0 0 0 0 0
5 (α = 5) 5 3 2 2 2 0 0 0 0 0
6 (β = 1) 5 3 2 2 2 5 0 0 0 0
7 (β = 2) 5 3 2 2 2 5 5 0 0 0
8 (β = 3) 5 3 2 2 2 5 5 2 0 0
9 (β = 4) 5 3 2 2 2 5 5 2 1 0
10(β = 5) 5 3 2 2 2 5 5 2 1 1

Figure 3.6: Decomposition procedure of Algorithm 2, dark cells are the values
updated in each iteration

.

Now we iteratively remove all the nodes v ∈ V (G′) with deg(v,G′) ≤ β (line 7-13).

If some node u ∈ U(G′) is removed during this process, we know that βmax,α(u) = β

(line 9). It is notable that the removal of any node in U(G′) does not affect the

degree of other nodes in U(G′) but the nodes in V (G′). Similarly, the removal of

any node in V (G′) will only affect the degree of nodes in U(G′). Therefore, we only

need to check whether there is some node u ∈ U(G′) whose degree becomes less

than α after removing some node v in V (G′) (line 8-9). If the degree of u ∈ U(G′)

becomes less than α, we set βmax,α(u) as β (line 10) and remove it from G′ (line 11).

When the while loop at line 11 terminates, if G′ 6= ∅, the node sets in G′ consists

of a new (α, β)-core with larger β, which is the input of the next iteration. Thus,

computeβmax correctly computes βmax,α(∗) for each α. Similarly, we know that

computeαmax correctly computes αmax,β(∗) for each β. Since Algorithm 2 invokes

computeβmax (computeαmax) for each α (β) from 1 to dmaxU (dmaxV), Algorithm 2

conducts core decomposition correctly.

Theorem 4.1: Given a bipartite graph G, Algorithm 2 runs in O(dmax ·m) time,

40 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

where dmax = max{dmaxU , dmaxV }.

Proof: The removal of node v in line 8 and node u in line 3 and 11 can be done in

O(deg(v,G′)) and O(deg(u,G′)) time with the efficient data structure proposed in

[KBST15]. Since each node is removed once, the time complex of computeβmax is

bounded by O(m). Similarly, the running time computeαmax is also O(m). Thus,

the time complexity of BasicDecom is O(dmax ·m). 2

3.4.2 A Computation-sharing Core Decomposition Algo-

rithm

Algorithm 5 processes the nodes in U(G) and V (G) independently and has to

conduct O(dmax) iterations to complete the core decomposition. However, dmax

could be very large in real graphs [BA99], which makes Algorithm 2 impractical.

In this section, we reduce the number of iterations to 2δ by exploring computation-

sharing opportunities coherently during processing the nodes in U(G) and V (G),

where δ is the maximum value such that Cδ,δ is nonempty and is bounded by
√
m.

In Algorithm 2, when finishing the process of a specific α, we actually have

computed all the Cα′,β with α′ ≤ α in G. Meanwhile, for a node v ∈ V (G) and a

given β, αmax,β(v) is the maximum value of α such that v is contained in the corre-

sponding Cα,β. Therefore, when finishing the process of a specific α in Algorithm 2,

we can also obtain αmax,β(v) ≤ α for v ∈ V (G) for free. Similarly, we can obtain

βmax,α(u) ≤ β for u ∈ U(G) after processing a specific β. Moreover, let δ be the

maximum value such that the corresponding Cδ,δ is nonempty, we have:

Lemma 4.1: Given a bipartite graph G, αmax,β(v) ≤ δ, for all β > δ and v ∈ V (G);

βmax,α(v) ≤ δ, for all α > δ and u ∈ U(G).

Proof: Suppose that there exists some v ∈ V (G) and β > δ such that

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 41

αmax,β(v) > δ, based on the definition of αmax,β(v), Cδ+1,δ+1 must be nonempty,

which contradicts the definition of δ. Thus, αmax,β(v) ≤ δ, for all β > δ and

v ∈ V (G). Similarly, the second part is correct. 2

Based on Lemma 4.1, if we iterate α from 1 to δ in Algorithm 2, besides com-

puting βmax,α(u) for each α ≤ δ and each u ∈ U(G) in line 14, we can actually also

obtain αmax,β(v) for each β > δ and each v ∈ V (G). Similarly, if we iterate β from

1 to δ, we can obtain not only αmax,β(v) for each β ≤ δ and each v ∈ V (G) but

also βmax,α(u) for each α > δ and each u ∈ U(G).

Algorithm 5: ComShrDecom

Input: G = (U ∪ V,E)

Output: βmax,α(u) for u ∈ U(G), αmax,β(v) for v ∈ V (G)

δ ← the maximum value such that Cδ,δ 6= ∅;1

for each α = 1 to δ do2

computeβmax(G,α);3

end for4

for each β = 1 to δ do5

computeαmax(G, β);6

end for7

Algorithm. Following above idea, our computation-sharing algorithm,

ComShrDecom, is shown in Algorithm 5. In Algorithm 5, ComShrDecom first com-

putes δ of G. δ can be achieved based on its definition by increasing δ step by

step starting from 1 while iteratively removing nodes from G whose degree is less

than δ. When G is empty, δ is obtained and it can be done in O(m) time. Then,

ComShrDecom iterates α and β from 1 to δ to compute βmax,α(u) for u ∈ U(G) and

αmax,β(v) for v ∈ V (G) by invoking computeβ+
max and computeα+

max, respectively

42 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

Procedure computeβ+
max(G,α)

G′ ← G;1

while ∃u ∈ U(G′) : deg(u,G′) < α do2

remove u and its incident edges from G′;3

end while4

while G′ 6= ∅ do5

β ← minv∈V (G′) deg(v,G′);6

while ∃v ∈ V (G′) : deg(v,G′) ≤ β do7

remove v and its incident edges from G′;8

for each i = 1 to β do9

if αmax,i(v) < α then10

αmax,i(v)← α;11

end if12

end for13

while ∃u ∈ U(G′) : deg(u,G′) < α do14

βmax,α(u)← β;15

remove u and its incident edges from G′;16

end while17

end while18

end while19

(line 2-7).

The main difference between procedure computeα+
max and procedure

computeαmax is that computeαmax updates βmax,α(u) and αmax,β(v) simultaneously

based on the computation result of previous iterations. More specifically, when

computeβ+
max removes a node v ∈ V (G) and its incident edges from G′ (line 8), for

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 43

Procedure computeα+
max(G, β)

G′ ← G;1

while ∃v ∈ V (G′) : deg(v,G′) < β do2

remove v and its incident edges from G′;3

end while4

while G′ 6= ∅ do5

α← minu∈U(G′) deg(u,G′);6

while ∃u ∈ U(G′) : deg(u,G′) ≤ α do7

remove u and its incident edges from G′;8

for each i = 1 to α do9

if βmax,i(u) < β then10

βmax,i(u)← β;11

end if12

end for13

while ∃v ∈ V (G′) : deg(v,G′) < β do14

αmax,β(v)← α;15

remove v and its incident edges from G′;16

end while17

end while18

end while19

each i from 1 to β, if αmax,i(v) < α, it updates the corresponding αmax,i(v) as α (line

9-13). This is because when v is removed, v is in a Cα,β, thus αmax,i(v) is at least

α. After computeβ+
max finishes, the αmax,β(v) ≤ α for nodes v ∈ V (G) are obtained.

Procedure computeα+
max conducts the process symmetrically as computeβ+

max.

Example 4.3: Figure 3.7 shows the procedure of ComShrDecom to compute

44 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

βmax,α(u1) αmax,β(v4)Iteration
1 2 3 4 5 1 2 3 4 5

1 (α = 1) 5 0 0 0 0 1 1 1 1 1
2 (α = 2) 5 3 0 0 0 2 2 2 1 1
3 (β = 1) 5 3 1 1 1 5 2 2 1 1
4 (β = 2) 5 3 2 2 2 5 5 2 1 1

Figure 3.7: Decomposition procedure of Algorithm 5. Dark cells are the values
updated in each iteration

βmax,α(u1) and αmax,β(v4) . ComShrDecom first computes δ = 2, thus it needs 4

iterations to finish the decomposition. Compared with BasicDecom, IterOptDecom

updates both βmax,α(u1) and αmax,β(v4) simultaneously in a single iteration. In it-

eration 2, it invokes computeβ+
max with α = 2 and finds that both u1 and v4 are

removed when β = 3. Thus IterOptDecom updates βmax,2(u1) to 3 and αmax,1(v4),

αmax,2(v4), αmax,3(v4) to 2. 2

Correctness. Following Lemma 4.1, if we iterate α from 1 to δ and invoke

computeβ+
max for the specific α, we can obtain βmax,α(u) regarding α ≤ δ for

u ∈ U(G) and αmax,β(v) regarding β > δ for v ∈ V (G). Similarly, by iterating

β from 1 to δ and invoking computeα+
max for the specific β, we can obtain αmax,β(v)

regarding β ≤ δ for v ∈ V (G) and βmax,α(u) regarding α > δ for u ∈ U(G). Thus,

Algorithm 5 conducts the core decomposition correctly.

Theorem 4.2: Given a bipartite graph G, the time complexity of Algorithm 5 is

O(δ ·m), where δ ≤ d
√
me.

Proof: The difference between computeβmax and computeβ+
max lies in line 9-13.

Since the maximum possible value of β in line 9 can be no larger than deg(v,G),

the time complexity of line 9-13 is O(deg(v,G)). Hence, computeβ+
max runs in O(m)

time. Similarly, computeα+
max also runs in O(m) time. Thus, Algorithm 5 also runs

in O(δ ·m).

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 45

Let g denote the subgraph induced by Cδ,δ. Based on the definition of (α, β)-core

, there are at least δ nodes in g and the degree of each node is at least δ. Thus, we

have δ · δ ≤ E(g) ≤ m. Therefore, δ ≤
√
m. 2

Remark. In fact, the number of iterations in Algorithm 5, which equals to 2 · δ, is

within a constant factor of 2 to the optimal number of iterations we can achieve.

This is because essentially during the decomposition process we needs to compute

each nonempty (α, β)-core at least once. Hence, we should at least iterate α from 1

to δ or iterate β from 1 to δ to compute all the (α, β)-cores whose α ≤ δ∧β ≤ δ. In

other words, the lower bound of the number of iterations required to conduct the

decomposition is δ. Therefore, the number of iterations in Algorithm 5 is within a

constant factor of 2 to the optimal number of iterations.

3.4.3 Index Construction Algorithm

After obtaining the core decomposition result, we can construct BiCore-Index based

on its structure directly. The construction algorithm is shown in Algorithm 8. For

IU , it first constructs IU .NB (line 2-7) and sorting all the node blocks based on

their associated (α, β) value (line 8). After that, the address of the α-th array is

stored in IU [α] (line 10). IU [α][β] stores the address of the first node block (α, β′)

such that β′ ≥ β (line 12-14). IV is constructed symmetrically in line 15 and I is

returned in line 16.

Theorem 4.3: Given a bipartite graph G, the running time of Algorithm 8 is

O(m).

Proof: Since the size of NB is bounded by O(m), line 4-5 is executed in O(m)

times. Furthermore, the running time of line 9 to 14 is bounded by O(m) because

the size of SPT is also bounded by O(m) and we only need to visit each element in

46 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

Algorithm 8: IndexCon (G)

Input: Core decomposition result of G

Output: I of G

I← ∅;1

for each each u ∈ U(G) do2

for each α = 1 to deg(u,G) do3

nb ← node block associated with (α, βmax,α(u));4

nb← nb ∪ u;5

end for6

end for7

sort blocks in IU .NB based on their associated (α, β) value;8

for each α = 1 to αmax do9

IU [α] ← address of the α-th array in SPT;10

end for11

for each β = 1 to βmax,α do12

IU [α][β] ← address of nb satisfying SPT in Section 3.3.1;13

end for14

construct IV similarly as line 2-14;15

return I16

SPT once in line 13. Similarly, line 15 also runs in O(m). Hence, the running time

of Algorithm 8 is O(m). 2

3.5 Parallel Algorithms for Index Construction

Our index construction algorithm ComShrDecom can be easily extended to run in

parallel. We illustrate the parallel algorithm in Algorithm 9. We first compute

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 47

δ similar as ComShrDecom (line 1). Then we dynamically allocate each α and β

between 1 and δ to some thread (line 2-6). Specifically, for index construction, we

modify line 2 and line 5 of ComShrDecom such that it only computes α or β equal

to the allocated value. To avoid race condition, we keep a copy of βmax,α(∗, G)

and αmax,β(∗, G) for each thread. At last, for index construction, βmax,α(∗, G) and

αmax,β(∗, G) are set as the largest value computed among all threads.

Algorithm 9: ParallelDecom

δ ← the maximum value such that Cδ,δ 6= ∅;1

for each α = 1 to δ do2

dynamically run computeβ+
max (G,α) in parallel;3

end for4

for each β = 1 to δ do5

dynamically run computeα+
max (G, β) in parallel;6

end for7

merge results by selecting the largest value computed in all threads;8

3.6 Performance Studies

This section presents our experimental results. All experiments are performed

under a Linux operating system on a machine with an Intel Xeon 3.4GHz CPU

and 64GB RAM.

Dataset. We evaluate the algorithms on ten real graphs and two synthetic graphs.

All the real graphs are downloaded from KONECT1. For the synthetic graphs, we

generate a power-law graph (PL) in which edges are randomly added such that the

1http://konect.uni-koblenz.de/networks

48 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

degree distribution follows a power-law distribution and a uniform-degree graph

(UD) in which all edges are added with the same probability. The details of these

graphs are shown in Table 3.2. Note that we remove isolated nodes and duplicate

edges in graphs and their sizes listed are based on the processed graphs.

Algorithms. We implement and compare following algorithms:

• (α, β)-core decomposition algorithms.

• Baseline: the state-of-the-art existing solution proposed in [DLHM17]

(introduced in Section 3.2).

• QueryOPT: Our (α, β)-core query processing algorithm (Algorithm 1).

• BasicDecom: Our proposed index construction algorithm based on basic

decomposition algorithm (Algorithm 2 + Index construction algorithm

in Section 3.4.3).

• ComShrDecom: Our proposed index construction algorithm based on

computation-sharing decomposition algorithm (Algorithm 5 + Index

construction algorithm in Section 3.4.3).

• Parallel algorithms for (α, β)-core computation.

• ParallelDecom: Our parallel algorithm for index construction (Algo-

rithm 5 implemented with Algorithm 9).

All algorithms are implemented in C++, using gcc compiler at -O3 optimization

level. The time cost is measured as the amount of wall-clock time elapsed during

the program’s execution. All the experiments are repeated 5 times and we report

the average time.

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 49

T
ab

le
3.

2:
S
ta

ti
st

ic
fo

r
th

e
gr

ap
h
s

D
at

as
et

T
y
p

e
|U
|

|V
|

|E
|
|G
|(M

B
)
|I
|(

M
B

)
dm

ax
√
m

δ

W
C

(W
ik

ip
ed

ia
-e

n
)

T
ex

t
1.

85
M

0.
18

M
3.

80
M

45
.5

6
30

.1
0

11
,5

93
1,

94
8

19

F
G

(F
li
ck

r)
S
o
ci

al
0.

40
M

0.
10

M
8.

55
M

70
.6

6
70

.6
1

34
,9

89
2,

92
3

14
8

E
P

(E
p
in

io
n
s)

R
at

in
g

0.
12

M
0.

76
M

13
.6

7M
11

3.
63

11
7.

27
16

2,
16

9
3,

69
7

15
2

D
E

(W
ik

ip
ed

ia
-d

e)
A

u
th

or
sh

ip
0.

43
M

3.
20

M
26

.0
1M

23
1.

50
22

0.
13

27
8,

99
8

5,
10

0
15

6

R
E

(R
eu

te
rs

)
T

ex
t

0.
78

M
0.

28
M

60
.5

7M
48

1.
52

53
2.

30
34

5,
05

6
7,

78
2

19
2

T
R

(T
R

E
C

)
T

ex
t

0.
56

M
1.

17
M

83
.6

3M
66

6.
87

74
8.

74
45

7,
43

7
9,

14
4

50
9

D
U

I
(D

el
ic

io
u
s)

F
ol

k
so

n
om

y
0.

83
M

33
.7

8M
10

1.
80

M
1,

06
5.

71
79

9.
81

29
,2

40
10

,0
89

18
4

L
J

(L
iv

eJ
ou

rn
al

)
S
o
ci

al
3.

20
M

10
.6

9M
11

2.
31

M
98

5.
93

93
1.

60
1,

05
3,

67
6

10
,5

97
10

9

W
T

(W
eb

T
ra

ck
er

s)
H

y
p

er
li
n
k

27
.6

7M
12

.7
6M

14
0.

61
M

1,
41

4.
34

1,
49

2.
43

11
,5

71
,9

52
11

,8
58

43
8

O
G

(O
rk

u
t)

A
ffi

li
at

io
n

2.
78

M
8.

73
M

32
7.

04
M

2,
64

4.
93

2,
64

5.
46

31
8,

24
0

18
,0

84
46

7

P
L

(P
ow

er
L

aw
)

P
ow

er
-l

aw
5M

5M
1,

01
2M

8,
08

0.
00

8,
00

3.
39

40
,3

54
31

,8
12

37
4

U
D

(U
n
if

or
m

D
eg

re
e)

U
n
if

or
m

-d
eg

re
e

5M
5M

1,
06

7M
8,

10
2.

00
8,

00
0.

62
27

7
32

,6
65

16
9

50 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

3.6.1 Performance of Querying Processing

In this section, we evaluate the performance of our proposed (α, β)-core query

processing algorithm QueryOPT with the state-of-the-art algorithm Baseline. The

running time we report is based on answering the query 10 times. We first test the

algorithms on all the twelve datasets with the same query Q10,10. Then, we report

the performance of the algorithms to process Qα,β when varying α (β) regarding

fixed β (α).

0.01

0.1

1

10

100

1K

10K

TR LJ WT OG PL UD

T
im

e
 (

s
)

Baseline
QueryOPT

Figure 3.8: Query performance on different datasets

Exp-1: Query performance on different datasets. Figure 3.8 shows the

running time of two query processing algorithms to process Q10,10. We only show

the results on the six largest datasets due to the similar trends. Since QueryOPT

is optimal, it is always the fastest algorithm in all cases. For example, on DUI,

the running time of QueryOPT is 0.04s, which achieves three order of magnitude

improvement compared with Baseline (86.8s).

Exp-2: Varying α (β). The running time of Baseline and QueryOPT when varying

α (β) is reported in Figure 3.9. We just show the results on four real graphs due

to the similar trends. As shown in Figure 3.9, QueryOPT is far more efficient

than Baseline on all datasets under every α (outperforms Baseline by 3-7 orders of

magnitude). This is because QueryOPT is a time-optimal algorithm. As α grows,

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 51

Baseline QueryOPT

80 160 240 320 400

10−3

10−2

10−1

100

101

Ti
m

e
(s

)

(a) TR (β = 400)

80 160 240 320 400

10−2

10−1

100

101

102

Ti
m

e
(s

)

(b) OG (β = 400)

80 160 240 320 400
10−4
10−3
10−2
10−1
100
101
102

Ti
m

e
(s

)

(c) WT (β = 400)

80 160 240 320 400

10−1

100

101

102

103

Ti
m

e
(s

)

(d) PL (β = 400)

80 160 240 320 400

10−3

10−2

10−1

100

101

Ti
m

e
(s

)

(e) TR (α = 400)

80 160 240 320 400

10−2

10−1

100

101

102

Ti
m

e
(s

)

(f) OG (α = 400)

80 160 240 320 400
10−4
10−3
10−2
10−1
100
101
102

Ti
m

e
(s

)

(g) WT (α = 400)

80 160 240 320 400

10−1

100

101

102

103

Ti
m

e
(s

)

(h) PL (α = 400)

Figure 3.9: Query time for different α (β)

the time cost of Baseline is relatively stable since no matter what α is, Baseline

needs to visit the entire graph. The gap between QueryOPT and Baseline increases

52 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

as α grows. This is because as α grows, the size of Cα,β decreases and the running

time of QueryOPT depends on the size of Cα,β while that of Baseline depends on

the size of input graph. The results when varying β is similar to varying α.

3.6.2 Performance of Index Construction

In this section, we report the size of BiCore-Index for the datasets and evaluate the

performance of two index algorithms BasicDecom and ComShrDecom. In this set

of experiments, we set the maximum running time for each test as 48 hours. If a

test does not stop within the time limit, we denote its processing time as INF.

Exp-3: Index size |I|. The BiCore-Index size |I| of all the datasets is reported in

Table 3.2. For ease of comparison, we also report the graph size in Table 3.2. As

shown in Table 3.2, the size of BiCore-Index is linear to the size of its corresponding

graph. For example, the size of OG is 2, 644.93 MB while the size of its BiCore-

Index is 2, 645.46 MB. The results are consistent with our theoretical analysis in

Section 3.3.3.

1

10

100

1K

10K

100K

INF

WC FG EP DE RE TR DUI LJ WT OG PL UD

T
im

e
 (

s
)

BasicDecom ComShrDecom ParallelDecom

Figure 3.10: Index construction time for different datasets

Exp-4: Index construction time for different datasets. In this experiment,

we evaluate the time cost for constructing BiCore-Index on different datasets using

BasicDecom and ComShrDecom. The results are reported in Figure 3.10. As shown

in Figure 3.10, ComShrDecom is faster than BasicDecom on all datasets and on

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 53

average achieves over 1000x improvement. For example, in EP, ComShrDecom

spends 56 seconds while BasicDecom spends 14,818 seconds.

Exp-5: Comparison of dmax,
√
m and δ. To better demonstrate the efficiency

of BasicDecom and ComShrDecom, we report dmax,
√
m and δ in Table 3.2 as

these values directly relates to their running time. As shown in Table 3.2, δ is at

least two order of magnitude smaller than dmax for all datasets, which explains

the outstanding performance of ComShrDecom. Furthermore, δ is much smaller

than
√
m on real and power-law graphs, which means ComShrDecom hardly runs

in worst case and is very efficient in practice. The results confirm our analysis in

Section 3.4 and are consistent with the results in Exp-4.

Exp-6: Scalability of index construction. In this experiment, we evaluate

the scalability of BasicDecom and ComShrDecom. To test the scalability, we vary

the number of nodes and the number of edges by randomly sampling nodes and

edges respectively from 20% to 100% and keeping the induced subgraphs as the

input graphs. We only show the results on TR, WT, OG, and PL in Figure 3.11

since trends are similar on all other datasets. As shown in Figure 3.11, when

varying the number of nodes, the running time for both algorithms stably increases.

ComShrDecom has better performance in all cases and outperforms BasicDecom

over two orders of magnitude on average. For example, on WT, the running time

of ComShrDecom increases from 35s to 2,953s while BasicDecom cannot terminate

within 48 hours for all cases of WT. Varying the number of edges has a similar

trend as varying the number of nodes. The results verify that ComShrDecom has a

good scalability in practice.

54 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

BasicDecom ComShrDecom

0.2 0.4 0.6 0.8 1.0
101

102

103

104

105

Ti
m

e
(s

)

(a) TR (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0

102

103

104

105

Ti
m

e
(s

)
(b) TR (Vary |E|)

0.2 0.4 0.6 0.8 1.0

102

103

104

105

INF

Ti
m

e
(s

)

(c) WT (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0

103

104

105

INF

Ti
m

e
(s

)

(d) WT (Vary |E|)

0.2 0.4 0.6 0.8 1.0

102

103

104

105

INF

Ti
m

e
(s

)

(e) OG (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0

103

104

105

INF

Ti
m

e
(s

)

(f) OG (Vary |E|)

0.2 0.4 0.6 0.8 1.0

102

103

104

105

INF

Ti
m

e
(s

)

(g) PL (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0

103

104

105

INF

Ti
m

e
(s

)

(h) PL (Vary |E|)

Figure 3.11: Scalability of index construction algorithms

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 55

Running Time Speedup

2 4 6 8 101214161820

100

200

300

400

T
im

e
 (

s
)

2.5

5.0

7.5

10.0

12.5

S
p
e
e
d
u
p
 f

a
c
to

r

(a) TR

2 4 6 8 101214161820

500

1000

1500

2000

T
im

e
 (

s
)

2

4

6

8

10

S
p
e
e
d
u
p
 f

a
c
to

r

(b) WT

2 4 6 8 10 12 14 16 18 20

1000

2000

3000

T
im

e
 (

s
)

2

4

6

8
S
p
e
e
d
u
p
 f

a
c
to

r

(c) OG

2 4 6 8 101214161820

1000

2000

3000

T
im

e
 (

s
)

5

10

S
p
e
e
d
u
p
 f

a
c
to

r

(d) PL

Figure 3.12: ParallelDecom with varying number of cores

3.6.3 Parallel Index Construction

In this section, we implement parallel index construction and maintenance algo-

rithms ParallelDecom using C++11 thread class and test them with 12 cores in

default.

Exp-7: ParallelDecom on different datasets. The running time of ParallelDecom

on all datasets is reported in Figure 3.10. ParallelDecom achieves one order mag-

nitude improvement compared with its non-parallel partners, e.g., ComShrDecom.

For example, on OG, the running time of ParallelDecom is 732s while ComShrDecom

costs 4,103s.

Exp-8: ParallelDecom with varying cores. We report performance of

ParallelDecom on TR, WT, OG, and PL with different number of cores in Fig-

56 Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs

ParallelDecom ParallelIns ParallelRem

0.2 0.4 0.6 0.8 1.0

10−2

10−1

100

101

102

Ti
m

e
(s

)

(a) TR (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0
10−2

10−1

100

101

102

Ti
m

e
(s

)
(b) TR (Vary |E|)

0.2 0.4 0.6 0.8 1.0
10−2

10−1

100

101

102

Ti
m

e
(s

)

(c) WT (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0
10−1

100

101

102

Ti
m

e
(s

)

(d) WT (Vary |E|)

0.2 0.4 0.6 0.8 1.0
10−3
10−2
10−1
100
101
102

Ti
m

e
(s

)

(e) OG (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0
10−2

10−1

100

101

102

Ti
m

e
(s

)

(f) OG (Vary |E|)

0.2 0.4 0.6 0.8 1.0

10−2
10−1
100
101
102
103

Ti
m

e
(s

)

(g) PL (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0
10−2
10−1
100
101
102
103

Ti
m

e
(s

)

(h) PL (Vary |E|)

Figure 3.13: Scalability of parallel algorithms

Chapter 3. Efficient (α,β)-core Computation in Bipartite Graphs 57

ure 3.12. For ease of comparison, we also draw the speedup factors in each figure.

The experiment results show that the running time of ParallelDecom decreases as

the number of cores increases. For example, for index construction on OG, the

running time reduces from 3000s to 500s as the number of cores increases from 2

to 20. The running time of ParallelDecom is almost inversely proportional to the

number of cores, which shows that it is efficient in practice.

Exp-9: Scalability of ParallelDecom. We evaluate the scalability of ParallelDecom

on TR, WT, OG, and PL in Figure 3.13. All the graphs are sampled in the same

way as Exp-6. As shown in this experiment, the time cost of ParallelDecom increases

when varying the number of nodes or edges. Furthermore, the growth trends of

ParallelDecom is similar to its non-parallel partners in Exp-6, which verifies that

ParallelDecom performs well as the graph size grows.

3.7 Conclusion

In this chapter, we study the problem of efficient (α, β)-core computation. We

devise a compact index BiCore-Index whose size can be bounded by O(m). Based

on BiCore-Index, we propose an optimal algorithm for (α, β)-core computation and

investigate efficient algorithms to construct the index. Moreover, we also discuss

about how to construct BiCore-Index with parallel algorithm. The experimental

results demonstrate the efficiency of our proposed algorithms.

Chapter 4

(α, β)-Core Maintenance in

Bipartite Graphs

4.1 Introduction

Although, BiCore-Index is useful in bipartite graphs for online group recommenda-

tion and frustrater detection [LYL+19], in real applications, such as online social

networks [KNT10], web graph [OZZ07], and collaboration network [AHL12], graphs

are generally dynamic, i.e., the graphs are frequently updated by node/edge inser-

tion/deletion. For example, Facebook has more than 1.3 billion users and approx-

imately 5 new users join Facebook every second [OMK15]; Twitter has more than

300 million users and 3 new users join Twitter every second [OMK15]. Therefore,

supporting graph updates efficiently is important for the practical applicability

of a graph algorithm in real applications. In the literature, numerous studies on

the fundamental graph problems on dynamic graphs have been conducted, such as

core maintenance problem in unipartite graphs [SGJS+13, ZYZQ17], reachability

[FLL+11], densest subgraphs [ELS15], and pattern matching [ZLWX14].

58

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 59

Motivated by this, we aim to develop efficient BiCore-Index maintenance algo-

rithms in dynamic graphs. Furthermore, as today’s graphs grow in scale [LGHB07,

DBS18] and current commodity servers are generally equipped with multi-cores

[SB13], it is natural to solve graph problems in parallel [DBS18, SRM14]. There-

fore, we also investigate the problem of implementing our algorithms in parallel.

Challenges and our solutions. As graphs are frequently updated in many appli-

cations, our index should support efficient maintenance when the graph is dynamic.

The state-of-art core maintenance algorithms on unipartite graphs (general graphs)

require extra neighbor information for each node and auxiliary data structures

[ZYZQ17] to maintain an order of nodes. Although the state-of-art core mainte-

nance algorithms only need to use O(n) extra space on general graphs, extending

the techniques for general graphs to maintain index in bipartite graphs makes the

space cost reach O(dmax · n) because the containment relationship of (α, β)-core

is more complicate than general k-core. Hence, it is a challenge to devise efficient

algorithms that can maintain BiCore-Index without extra space cost. Moreover, all

the existing k-core maintenance algorithms [LYM13, ZYZQ17, WQZ+16] focus on

single-core computation because the insertion/removal of edges spreads influence

among vertices in a complicate way and it is hard to predict the change with-

out processing vertices in a certain order. Therefore, it is a challenge to maintain

BiCore-Index in a parallel manner. In summary, we need to answer the following

two questions:

• How to update BiCore-Index in dynamic graphs efficiently?

• Can we develop effective parallel algorithms for BiCore-Index maintenance?

Regarding the first question, we first propose an algorithm to maintain BiCore-

Index in dynamic graphs by reducing unnecessary computation in the procedure

60 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

of updating BiCore-Index. Then, we show that we can decide whether a node in

BiCore-Index should be updated or not by visiting its neighbors locally. Based on

this locality property, we further devise a locality-based algorithm that updates

BiCore-Index locally. Regarding the second question, we find that the updating

process can be split into independent subprocesses which can be executed based on

the BiCore-Index before update. To update BiCore-Index, we merge the results by

selecting the largest value computed among all subprocess. Moreover, we discuss

about how to maintain BiCore-Index when a batch of edges are updated.

Contributions. For core maintenance in bipartite graphs, our main contributions

in this chapter are summarized below.

1. Efficient index maintenance algorithm for dynamic graphs. We develop a

locality-based algorithm to update BiCore-Index, which decide whether a node

in BiCore-Index should be updated or not by visiting its neighbors locally.

Moreover, we discuss about how to maintain BiCore-Index when a batch of

edges are updated.

2. Efficient parallel maintenance algorithm. We devise an efficient parallel index

maintenance algorithms by splitting the updating process into independent

subprocesses and merging the results by selecting the largest value computed

among all subprocess.

3. Extensive experiments on real datasets. We demonstrate the efficiency of our

proposed algorithm with ten real graphs and two synthetic graphs. The exper-

imental results show that our algorithm achieves up to 4 orders of magnitude

speedup for index maintenance compared with existing techniques.

Outline. Section 4.2 gives the problem definition and the backgrounds of BiCore-

Index. In Section 4.3, we present efficient algorithms to maintain BiCore-Index in

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 61

dynamic graphs. Section 4.4 discusses how to extend our proposed algorithms

when a batch of edges are inserted/removed. Section 4.5 discusses parallel imple-

mentation of the BiCore-Index construction and maintenance algorithm. Section 4.6

evaluates our algorithms using extensive experiments and Section 4.7 concludes this

chapter.

4.2 Preliminaries

A bipartite graph G = (U, V,E) is a graph consisting of two disjoint sets of nodes U

and V such that every edge from E ⊆ U ×V connects one node of U and one node

of V . We use U(G) and V (G) to denote the two disjoint node sets of G and E(G)

to represent the edge set of G. We denote the number of nodes in U(G) and V (G)

as nU and nV , the total number of nodes as n and the number of edges in E(G) as

m. The degree of a node u ∈ U(G)∪V (G), denoted by deg(u,G), is the number of

neighbors of u in G. We also use dmaxU(G) (dmaxV (G)) to denote the maximum

degree among all the nodes in U(G) (V (G)), i.e., dmaxU(G) = max{deg(u,G)|u ∈

U(G)} (dmaxV (G) = max{deg(v,G)|v ∈ V (G)}). For simplicity, we omit G in the

notations if the context is self-evident. For a bipartite graph G and two node sets

U ′ ⊆ U(G) and V ′ ⊆ V (G), the bipartite subgraph induced by U ′ and V ′ is the

subgraph G′ of G such that U(G′) = U ′, V (G′) = V ′ and E(G′) = E(G)∩(U ′×V ′).

Definition 2.1: ((α, β)-core) Given a bipartite graph G and two integers α and

β, the (α, β)-core of G, denoted by Cα,β, consists of two node sets U ⊆ U(G) and

V ⊆ V (G) such that the bipartite subgraph g induced by U ∪ V is the maximal

subgraph of G in which all the nodes in U have degree at least α and all the nodes

in V have degree at least β, i.e., ∀u ∈ U , deg(u, g) ≥ α ∧ ∀v ∈ V , deg(v, g) ≥ β.

Definition 2.2:

62 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

Table 4.1: Summary of Notations

G = (U, V,E)
a bipartite graph with two node sets U and V , an
edge set E

U(G), V (G), E(G) node sets U , V and edge set E of G

n,m number of nodes and edges of G

deg(u,G) the degree of node u in U(G) ∪ V (G)

G+, G−
new bipartite graph with the insertion/removal
of some edge

(u, v) an edge incident to node u and v

C+α,β new (α, β)-core after the insertion of some edge

C−α,β new (α, β)-core after the removal of some edge

βmax,α(∗, G/G+/G−)
all the βmax,α(u) values regarding nodes in
U(G/G+/G−)

αmax,β(∗, G/G+/G−)
all the αmax,β(v) values regarding nodes in
V (G/G+/G−)

δ the maximum value s.t. Cδ,δ 6= ∅

1. βmax,α(u). Given a bipartite graph G and an integer α, for each node u ∈

U(G) ∪ V (G), βmax,α(u) is the maximum value of β such that u is contained

in the corresponding Cα,β. If no such β, βmax,α(u) = 0.

2. αmax,β(u). Given a bipartite graph G and an integer β, for each node u ∈

U(G) ∪ V (G), αmax,β(u) is the maximum value of α such that u is contained

in the corresponding Cα,β. If no such α, αmax,β(u) = 0.

In order to support efficient (α, β)-core queries, we develop BiCore-Index in pre-

vious chapter, which is a three-level tree structure with two parts for nodes in U(G)

and V (G) respectively, denoted by IUand IV . The vertices in BiCore-Index are ar-

ranged based on their βmax,α(∗) and αmax,β(∗) values. Please refer to Section 3.3

for details.

Problem Statement. In this paper, we study the problem of efficient maintenance

of BiCore-Index when the underlying bipartite graphs are dynamically updated.

The notations that will be used in this chapter are summarized in Table 4.1.

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 63

4.3 Index Maintenance In Dynamic Graphs

In this section, we introduce the algorithms for maintaining BiCore-Index in dynamic

graphs where nodes and edges are inserted or deleted. We mainly focus on the

edge insertion and deletion, because node insertion/deletion can be regarded as a

sequence of edge insertions/deletions preceded/followed by the insertion/deletion

of an isolated node.

In Section 4.3.1, we first propose basic algorithms for index maintenance. It is

based on the fact that for a given α(β), after an edge (u, v) is inserted/removed,

we only need to recompute those (α, β)-cores whose β(α) is no less/larger than

the minimum value among βmax,α(u) and βmax,α(v) (αmax,β(u) and αmax,β(v)). In

Section 4.3.2, we improve the basic algorithms in two folds. First, we show that

for a given α(β) we only need to recompute one (α, β)-core . Second, we study

the locality properties of those nodes that will be influenced after an edge being

inserted/removed and show that those nodes can be found through a local search.

4.3.1 Basic Algorithms For Index Maintenance

When a bipartite graph G is updated, a straightforward solution to maintain

BiCore-Index is reconstructing it from scratch on the updated graph. However, since

the graph is typically large and frequently updated, this approach is impractical

due to its inefficiency. In this section, we design an incremental algorithm to main-

tain BiCore-Index in dynamic graphs. For the ease of presentation, we use G+/G−

to represent the updated graph after edge (u, v) is inserted/removed and Cα,β, C+α,β,

and C−α,β to denote the (α, β)-core in G, G+, and G−, respectively. Without lose of

generality, we assume that u ∈ U and v ∈ V . We also use βmax,α(∗, G/G+/G−) and

αmax,β(∗, G/G+/G−) to represent these values for an arbitrary node not specified

64 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

in G, G+ and G−, respectively.

Algorithm 10: BiCore-Index-Ins

Input: G, I and an inserted edge (u, v)

Output: I of G+

G+ ←insert (u, v) into G;1

δ ← the maximum value such that C+δ,δ 6= ∅;2

βmax,α(w,G+)← βmax,α(w,G) for w ∈ U ;3

αmax,β(w,G+)← αmax,β(w,G) for w ∈ V ;4

for each α = 1 to δ do5

τα ← min{βmax,α(u,G), βmax,α(v,G)};6

updateβmaxIns (G+, α, τα);7

end for8

for each β = 1 to δ do9

τβ ← min{αmax,β(v,G), αmax,β(u,G)};10

updateαmaxIns (G+, β, τβ);11

end for12

IndexCon(G+) (Algorithm 8);13

Edge Insertion

Based on the discussion in Section 3.4, the most time-consuming part to construct

BiCore-Index is to compute βmax,α(∗) for each node in U and αmax,β(∗) for each

node in V . Therefore, the key to incrementally maintain BiCore-Index is to identify

those nodes whose βmax,α(∗) or αmax,β(∗) are the same in G and G+, and avoid the

re-computation of these values for these nodes.

Given an inserted edge (u, v) on G, for an integer α, let τα =

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 65

Procedure updateαmaxIns(G
+, α, τα)

for each τ > τα do1

C ← C+α,τ − Cα,τ ;2

for each each w ∈ C ∧ w ∈ U do3

βmax,α(w,G+)← τ ;4

end for5

for each w ∈ C ∧ w ∈ V do6

for each i = 1 to τ do7

if αmax,i(w,G
+) < α then8

αmax,i(w,G
+)← α;9

end if10

end for11

end for12

end for13

min{βmax,α(u,G), βmax,α(v,G)}. Since both u and v are contained in Cα,τα , Cα,β

with β ≤ τα will not change after the insertion of (u, v). Therefore, we have:

Lemma 3.1: Given an inserted edge (u, v) on G, for an integer α, let

τα = min{βmax,α(u,G), βmax,α(v,G)}, if βmax,α(∗, G) < τα, then βmax,α(∗, G) =

βmax,α(∗, G+); for an integer β, let τβ = min{αmax,β(u,G), αmax,β(v,G)}, if

αmax,β(∗, G) < τβ, then αmax,β(∗, G) = αmax,β(∗, G+).

According to Lemma 3.1, βmax,α(∗) (αmax,β(∗)) may increase only if its value

is no less than τα (τβ). Therefore, for a given α(β), we only need to re-compute

(α, β)-cores whose β > τα(α > τβ). Following this idea, we design BiCore-Index-Ins

to handle edge insertion, which is shown in Algorithm 10.

To support the efficient incremental index maintenance, we keep all βmax,α(w,G)

66 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

Procedure updateβmaxIns(G
+, β, τβ)

for each τ > τβ do1

C ← C+τ,β − Cτ,β;2

for each each w ∈ C ∧ w ∈ V do3

αmax,β(w,G+)← τ ;4

end for5

for each w ∈ C ∧ w ∈ U do6

for each i = 1 to τ do7

if βmax,i(w,G
+) < β then8

βmax,i(w,G
+)← β;9

end if10

end for11

end for12

end for13

for w ∈ U(G) (αmax,β(w,G) for w ∈ V (G)). Note that the total size of these values

for all nodes can be bounded by O(m). Thus, the extra space consumption does

not affect the space complexity of BiCore-Index. BiCore-Index-Ins follows a similar

framework as Algorithm 5. It first inserts edge (u, v) into G and computes δ value

of G+ (line 1-2). Then, for all possible α from 1 to δ, it computes τα based on

Lemma 3.1 and invokes updateβmaxIns to update βmax,α(∗, G+) and αmax,β(∗, G+)

for each node w whose βmax,α(w,G) >= τα (line 5-8). β is processed similarly (line

9-12). At last, it updates the BiCore-Index based on the updated βmax,α(∗, G+) and

αmax,β(∗, G+) (line 13). Note that in line 6, βmax,α(v,G) is not kept but it can be

computed online through kept αmax,β(v,G).

Procedure updateβmaxIns follows a similar framework as computeβ+
max in Algo-

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 67

rithm 5. Since it only concerns the nodes with βmax,α(∗, G) >= τα, it computes

C+α,τ for each τ > τα (line 1-2). Note that Cα,τ can be retrieved from BiCore-Index.

After that, it updates βmax,α(w,G+) to τ for each w ∈ U which is newly added to

C+α,τ (line 3-5). For each newly added node w ∈ V , it updates αmax,i(w,G
+) to α

if αmax,i(w,G
+) < α and i ≤ τ (line 6-12). Procedure updateαmaxIns implements

symmetrical procedure as updateβmaxIns.

Theorem 3.1: When an edge(u, v) is inserted into graph G, BiCore-Index-Ins up-

dates BiCore-Index correctly.

Proof: Based on Lemma 3.1 and Lemma 4.1, in line 5-8, BiCore-Index-Ins updates

βmax,α(u) with α ≤ δ and αmax,β(v) with β > δ. In line 9-12, BiCore-Index-Ins

updates αmax,β(v) with β ≤ δ and βmax,α(u) with α > δ. Hence, BiCore-Index-Ins

updates BiCore-Index correctly. 2

Edge Removal

Following the similar idea for handling edge insertion, for edge removal, we have:

Lemma 3.2: Given a removed edge (u, v) on G, for an integer α, let τα =

min{βmax,α(u,G), βmax,α(v,G)} , if βmax,α(∗, G) > τα, then βmax,α(∗, G) =

βmax,α(∗, G−); for an integer β, let τβ = min{αmax,β(u,G), αmax,β(v,G)} , if

αmax,β(∗, G) > τβ, then αmax,β(∗, G) = αmax,β(∗, G−).

According to Lemma 3.2, βmax,α(∗) (αmax,β(∗)) may decrease only if its value

is no more than τα (τβ). Therefore, for a given α(β), we only need to re-compute

(α, β)-cores whose β ≤ τα(α ≤ τβ). Based on this, we design the algorithm, BiCore-

Index-Rem, to handle the edge removal case, which is shown in Algorithm 13.

BiCore-Index-Rem follows the same framework as edge insertion case

(Algorithm 10) except the procedure updateβmaxRem and updateαmaxRem.

68 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

Algorithm 13: BiCore-Index-Rem

Input: G, I and a removed edge (u, v)

Output: I of G−

G− ←remove (u, v) from G;1

δ ← the maximum value such that C−δ,δ 6= ∅;2

βmax,α(w,G−)← βmax,α(w,G) for w ∈ U ;3

αmax,β(w,G−)← αmax,β(w,G) for w ∈ V ;4

for each α = 1 to δ do5

τα ← min{βmax,α(u,G), βmax,α(v,G)};6

updateβmaxRem (G−, α, τα);7

end for8

for each β = 1 to δ do9

τβ ← min{αmax,β(v,G), αmax,β(u,G)};10

updateβmaxRem (G−, β, τβ);11

end for12

IndexCon(G−) (Algorithm 8);13

updateβmaxRem iterates τ from τα to 1 for the specific α and computes C−α,τ (line

1-2). For each w ∈ U which is removed from Cα,τ , we set βmax,α(w,G−) as τ − 1

(line 3-5) because w is no longer contained in (α, τ)-core and the largest possible

value of βmax,α(w,G−) is τ − 1. Similarly, for each w ∈ V which is removed from

Cα,τ , we set αmax,i(w,G
−) to α − 1 if αmax,i(w) > α − 1 and i ≥ τ (line 6-12) be-

cause the largest possible value of αmax,i(w,G
−) is α−1. Procedure updateαmaxRem

implements similar procedure as updateβmaxRem.

Theorem 3.2: When an edge (u, v) is removed from G, BiCore-Index-Rem updates

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 69

Procedure updateβmaxRem(G−, α, τα)

for each τ ≤ τα do1

C ← Cα,τ − C−α,τ ;2

for each w ∈ C ∧ w ∈ U do3

βmax,α(w,G−)← τ − 1;4

end for5

for each w ∈ C ∧ w ∈ V do6

for each i = τ to deg(w,G+) do7

if αmax,i(w,G
−) > α− 1 then8

αmax,i(w,G
−)← α− 1;9

end if10

end for11

end for12

end for13

BiCore-Index correctly.

Proof: Based on Lemma 3.1 and Lemma 4.1, in line 5-8, BiCore-Index-Rem updates

βmax,α(u) with α ≤ δ and αmax,β(v) with β > δ. In line 9-12, BiCore-Index-Rem

updates αmax,β(v) with β ≤ δ and βmax,α(u) with α > δ. Hence, BiCore-Index-Rem

updates BiCore-Index correctly. 2

Complexity analysis

For a given α(β), we can compute all the (α, β)-core with a continuous range

of β(α), e.g., α ≥ τα or α ≤ τα by visiting the entire graph once. Therefore, the

computation complexity of both BiCore-Index-Ins and BiCore-Index-Rem are approx-

imately the same as ComShrDecom since they need to visit the entire graph once

70 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

Procedure updateαmaxRem(G−, β, τβ)

for each τ ≤ τβ do1

C ← Cτ,β − C−τ,β;2

for each w ∈ C ∧ w ∈ V do3

αmax,β(w,G−)← τ − 1;4

end for5

for each w ∈ C ∧ w ∈ U do6

for each i = τ to deg(w,G+) do7

if βmax,i(w,G
−) > β − 1 then8

βmax,i(w,G
−)← β − 1;9

end if10

end for11

end for12

end for13

for each α and β from 1 to δ. The efficiency of BiCore-Index-Ins and BiCore-Index-

Rem comes from the fact that they update βmax,α(∗, G+/G−) and αmax,β(∗, G+/G−)

based on a continuous subrange of β(α) for each α(β). As shown in our experiment

Exp-8, they are typically faster than ComShrDecom which computes BiCore-Index

from scratch. The space cost of both algorithms is O(m) because they only require

extra space to store βmax,α(∗, G) for each node in U and αmax,β(∗, G) for each node

in V .

4.3.2 Locality-based Algorithm For Index Maintenance

The shortcoming of both BiCore-Index-Ins and BiCore-Index-Rem is that they always

need to re-compute (α, β)-core of the entire graph for each α or β. To overcome

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 71

this defect, in this section, we propose a locality-based algorithm to handle edge

insertion or removal. We first prove that although the insertion of an edge affects

many (α, β)-cores, we actually only need to care about one specific β(α) for a

given α(β). Next, we discuss how to update βmax,α(∗, G+) and αmax,β(∗, G+) for

each α(β) by locally visiting a subgraph instead of the entire graph. Note that the

state-of-the-art core maintenance algorithm [ZYZQ17] is not suitable for (α, β)-core

maintenance due to the extra space cost. We discuss this at the end of this section.

Locality-based Edge Insertion

According to Lemma 3.1, for a given α(β), we need to re-compute all the C+α,β

whose β > τα(α > τβ). This is because the insertion of an edge can change more

than one (α, β)-core for a given α(β).

Example 3.1: For the bipartite graph G shown in Figure 4.1, edge (u4, v6) is

inserted. We can see that for α = 1, both (1, 4)-core and (1, 5)-core are changed.

(1, 4)-core has one more node u4 and (1, 5)-core is newly formed. 2

Hence, to improve the efficiency of insertion algorithm, an intuitive way is to

re-compute as few (α, β)-cores as possible for a given α(β). In the following part,

we mainly focus on updating βmax,α(∗, G+) and αmax,β(∗, G+) for some given α as

the case of β can be analyzed similarly.

Suppose that edge (u, v) is inserted into graph G. For some integer α, let

η = max{βmax,α(u,G), βmax,α(v,G)}. It is easy to see that we have C+α,β = Cα,β for

any β ≥ η + 2. The reason is that v is not contained in Cα,η+1 and if both u and

v are contained in C+α,η+2, by deleting edge (u, v) from G+, v must be contained

in Cα,η+1. Therefore, for a given α, we only need to re-compute these (α, β)-cores

which satisfy τα < β ≤ η + 1.

Example 3.2: In Figure 4.1, edge (u4, v6) is inserted. τα = 3 and η = 4 when α = 1

72 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

u1 u2 u3 u4 u6 u7

v7

u8

v8

v2 v3 v4 v6 v7 v8v1

u5

v5

3|3 3|3 3|3 3(5)|2(3) 4(5)|2 4(5)|3 4(5)|3 4(5)|3

3|3 3|3 3|2(3) 2|2 2|2 4(5)|3 3|3 3|3

Figure 4.1: Illustration of βmax,1(∗) (the first value) and βmax,2(∗) (the second value)
before and after the insertion of edge (u4, v6). Red number is the value (if changed)
after insertion.

because βmax,1(u4, G) = 3 and βmax,1(v6, G) = 4. Hence, we need to re-compute

(1, 4)-core and (1, 5)-core for α = 1. After the computation, we find that u4 is

newly added to (1, 4)-core and u4, u5, u6, u7, u8, and v6 are newly added to (1, 5)-

core. Thus, βmax,1(∗) of u4, u5, u6, u7, u8, and v6 should be 5 after the insertion of

edge (u4, v6). 2

We have shown that for a given α, the β value of (α, β)-cores which need to be

re-computed is between τα and η + 1. However, this range can still be very large.

For instance, in Figure 4.1, if the degree of v6 is 2000, βmax,1(v6, G) is 2000 and the

range of β is from 4 to 2001 for α = 1. To further reduce computation, we have

the following lemma:

Lemma 3.3: Given an inserted edge (u, v) on G, for any integer α, let bα =

max x s.t. |{w|w ∈ nbr(u,G+) ∧ w ∈ Cα,x}| ≥ α, then C+α,β = Cα,β ∪ {u} for

each βmax,α(u,G) ≤ β ≤ bα; for any integer β, let bβ = max x s.t. |{w|w ∈

nbr(v,G+)∧w ∈ Cx,β}| ≥ β, then C+α,β = Cα,β ∪{v} for each αmax,β(v,G) ≤ α ≤ bβ.

Proof: We prove the first part as the second part can be proved similarly. Firstly,

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 73

it should be noted that bα ≥ βmax,α(u,G) because u must have at least α neighbors

in (α, βmax,α(u,G))-core. bα may be larger than βmax,α(u,G) because v becomes u’s

neighbor in G+. It is easy to see that u must be contained in C+α,bα because u has

at least α neighbors in G+ which are contained in Cα,bα . On the other hand, the

existence of edge (u, v) has no influence on other nodes in C+α,β for β ≤ bα. The

reason is that all the neighbors of u in C+α,β are already contained in Cα,β. Hence,

we have C+α,β = Cα,β ∪ {u} for each βmax,α(u,G) ≤ β ≤ bα. 2

Example 3.3: In Figure 4.1, βmax,1(v6, G) = 4. After edge (u4, v6) is inserted, we

find that b1 = 4 which means that (1, 4)-core will only have one more node u4. 2

It is worth noticing that for a given α, u cannot be contained in C+α,bα+2. Suppose

that u is contained in C+α,bα+2. If we remove u from G+, all the neighbors of u in

G+ will be contained in (α, bα + 1)-core. Hence, u must have at least α neighbors

in G+ which are contained in Cα,bα+1, which means that bα = bα + 1. Based on this

fact, we further induce the following lemma:

Lemma 3.4: Given an inserted edge (u, v) on G, for any integer α, let φα =

min{bα, βmax,α(v,G)}, we only need to re-compute C+α,φα+1; for any integer β, let

φβ = min{αmax,β(u,G), bβ}, we only need to re-compute C+φβ+1,β.

Proof: For the first part, we discuss two cases.

Case-1 (bα > βmax,α(u,G)): Because u has only one new neighbor v in G+, we

must have βmax,α(u,G) < βmax,α(v,G), otherwise bα must be equal to βmax,α(u,G).

According to the definition of bα, we have bα ≤ βmax,α(v,G). Hence, φα = bα.

Because u cannot be contained in C+α,bα+2, we know that the insertion of edge (u, v)

will not change C+α,β for β > φα + 1. Combined with Lemma 3.3, we only need

to re-compute Cα,φα+1 because for those C+α,β whose β 6= φα + 1 they are either

unchanged (β ≥ φα + 2 or β ≤ βmax,α(u,G)) or contain only one more node u

74 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

(βmax,α(u,G) < β ≤ φα).

Case-2 (bα = βmax,α(u,G)): Under this case, we have φα =

min{βmax,α(u,G), βmax,α(v,G)}. If φα = bα = βmax,α(u,G), u cannot be contained

in C+α,bα+2, we have C+α,β = Cα,β for any β 6= φα + 1. If φα = βmax,α(v,G), v cannot

be contained in C+α,φα+2, otherwise v must be contained in Cα,φα+1. Hence, we still

have C+α,β = Cα,β for any β 6= φα + 1. Therefore, the first part of Lemma 3.4 is

proved. The second part can be proved similarly. 2

According to Lemma 3.4, when an edge (u, v) is inserted into G, we only need

to re-compute C+α,φα+1 for each α, or symmetrically, C+φβ+1,β for each β. To further

improve the efficiency, we aim to locally search all the newly added nodes in C+α,φα+1.

Let U∗ and V ∗ denote the newly added nodes from U and V , respectively. We have

the following lemma:

Lemma 3.5: Given an inserted edge (u, v) on G, let U∗ and V ∗ denote the newly

added nodes in C+α,φα+1 from U and V , respectively, the induced subgraph by U∗∪V ∗

in G+ is connected.

Proof: If a node is newly added into C+α,φα+1, either the node gains a new neighbor

or at least one of its existing neighbors is also newly added into C+α,φα+1. Applying

this recursively, we know that the induced subgraph of U∗ ∪ V ∗ in G+ must be

connected. 2

Lemma 3.5 suggests that we can search for U∗ and V ∗ in a small local region

near the inserted edge. It also implies that if a node is added into C+α,φα+1 it must

have enough neighbors which can participate in C+α,φα+1 together with it.

Let w be the node in U∗ ∪ V ∗ and w′ be the neighbor of w. Since a node is

contained in C+α,φα+1 if it is already contained in Cα,φα+1, we know that w′ must

be w’s neighbor in C+α,φα+1 if βmax,α(w′, G) > φα. Also, if βmax,α(w′, G) < φα, we

know that it cannot be w’s neighbor in C+α,φα+1. This is because if u is removed

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 75

from G+, the rest nodes in C+α,φα+1 must form a (α, φα)-core. In other words, the

rest nodes must be contained in Cα,φα . Note that we have one exception, node u.

According to Lemma 3.3, βmax,α(u,G) may be smaller than φα but βmax,α(u,G+)

may equal to φα+1. This special case can be handled by setting βmax,α(u,G) as bα.

The only thing that is difficult to tell is that whether w′ is w’s neighbor in C+α,φα+1

when βmax,α(w′, G) = φα because w′ may be added into C+α,φα+1 together with w.

To handle this case, we define the local support of a node w as:

Definition 3.1: Local Support (Insertion) Given an node w ∈ U ∪ V and an

inserted edge (u, v), for an integer α, the local support of w is defined as sup(w) =

|{w′ ∈ nbr(w,G+) | w′ ∈ Cα,φα+1 ∨ w′ ∈ U∗ ∪ V ∗}|.

It is not hard to observe that a node w ∈ C+α,φα+1.U if and only if sup(w) ≥

α, and a node w ∈ C+α,φα+1.V if and only if sup(w) ≥ φα + 1. Hence, when

βmax,α(w,G) = φα, we can tell whether w belongs to U∗ ∪ V ∗ or not based on its

local support. Although the local support and U∗ ∪ V ∗ recursively depend on each

other, we can actually compute the upper bound of local support and decrease it

until the local support reaches its true value. The locality-based algorithm BiCore-

Index-Ins∗ which adopts this strategy is given in Algorithm 16.

The basic idea of BiCore-Index-Ins∗ is to compute local support for every visited

node w in such a way that for each w′ ∈ nbr(w,G+) with βmax,α(w′, G) = φα, unless

BiCore-Index-Ins∗ makes sure that w′ is not contained in C+α,φα+1, it assumes w′ is

in U∗ ∪ V ∗. When BiCore-Index-Ins∗ finds a node which cannot be contained in

C+α,φα+1 but was assumed in U∗ ∪ V ∗ before, it will decrease the local support of

its neighbors by 1 and conducts a backward search to find more visited nodes that

should not have been in U∗ ∪ V ∗.

Specifically, for each α from 1 to δ, BiCore-Index-Ins∗ computes φα based on

Lemma 3.4 (line 3-4) and sets βmax,α(u,G+) and βmax,α(u,G) as bα based on

76 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

Algorithm 16: BiCore-Index-Ins∗

Input: G, I and an inserted edge (u, v)

Output: I of G+

line 1-4 of Algorithm 10;1

for each α = 1 to δ do2

bα ← maxx s.t. |{w|w ∈ nbr(u,G+) ∧ w ∈ Cα,x}| ≥ α;3

φα ← min{bα, βmax,α(v,G)};4

βmax,α(u,G+)← bα; βmax,α(u,G)← bα;5

T ← ∅; C ← ∅; S ← empty stack;6

sup(w)← 0 for each w ∈ U ∪ V ;7

/* Assuming βmax,α(u,G) ≤ βmax,α(v,G) */

S.push(u);8

while S 6= ∅ do9

w ← S.pop(); S′ ← S;10

T.insert(w); C.insert(w);;11

for each w′ ∈ nbr(w,G+) do12

if βmax,α(w′, G) > φα or w′ ∈ C then13

sup(w)← sup(w) + 1;14

end if15

else if w′ /∈ T ∧ βmax,α(w′, G) = φα then16

sup(w)← sup(w) + 1;17

S′.push(w′);18

end if19

end for20

if sup(w) ≥ α ∧ w ∈ U or sup(w) ≥ φα + 1 ∧ w ∈ V then21

S ← S′;22

end if23

else24

RemoveCandidates(w,α, φα, T, C,G+);25

end if26

end while27

line 3-12 of Procedure updateαmaxIns;28

end for29

for each β = 1 to δ do30

line 3-28 by swapping u, U , and α with v, V, and β;31

end for32

IndexCon(G+) (Algorithm 8);33

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 77

Procedure RemoveCandidates(w, α, φα, T, C,G
+)

C.remove(w);1

for each w′ ∈ nbr(w,G+) ∧ w′ ∈ C do2

sup(w′)← sup(w′)− 1;3

if sup(w′) < α ∧ w′ ∈ U or sup(w′) < φα + 1 ∧ w′ ∈ V then4

RemoveCandidates(w′, φα, T, C,G
+);5

end if6

end for7

Lemma 3.3 (line 5). Then it issues a DFS to locally compute U∗ and V ∗. Dur-

ing the DFS, only nodes whose βmax,α(w′, G) = φα will be visited since other

nodes are either already in C+α,φα+1 (βmax,α(∗, G) > φα) or cannot be in C+α,φα+1

(βmax,α(∗, G) < φα). BiCore-Index-Ins∗ uses two sets T and C, and a stack S to

record the visited nodes, candidates (nodes that may be added to C+α,φα+1), and

nodes to be visited (line 6). The root node of DFS is selected between u and v

depending on whose βmax,α is smaller (line 8). For the node w that is currently

being visited, BiCore-Index-Ins∗ uses S ′ to record all the unvisited neighbors of w

which are assumed in candidates (line 10). It first marks w as visited and adds

it into candidates (line 11). Then, it computes sup(w) based on w’s neighbors.

For each w′ ∈ nbr(w,G+), if βmax,α(w′, G) > φα or w′ is in candidates, it increases

sup(w) by one (line 12-15). If βmax,α(w′, G) = φα and w′ has not been visited yet,

BiCore-Index-Ins∗ increases sup(w) by one and adds w′ to S ′ for future verification

(line 16-19). After sup(w) is computed, if sup(w) is large enough to support w as

a possible candidate, it will set S as S ′ to find more candidates (line 21-22). Oth-

erwise, RemoveCandidates is invoked to recursively remove candidates (line 24-26).

Finally, it will update βmax,α(∗, G+) and αmax,β(∗, G+) as Algorithm 10 does (line

78 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

28). β from 1 to δ is processed similarly as α (line 30-32).

RemoveCandidates first removes w from candidates (line 1) and decreases

sup(w′) by 1 for each w′ ∈ nbr(w,G+) and w′ in candidates (line 2-3). Then,

it will check whether w′ should be removed from candidates (line 4). If the answer

is yes, it recursively invokes RemoveCandidates to remove w′ from candidates (line

4).

Theorem 3.3: When an edge(u, v) is inserted into graph G, BiCore-Index-Ins∗

updates BiCore-Index correctly.

Proof: For any given α, the induced subgraph of candidate set C in G+ is con-

nected and either u or v is contained in C if C is nonempty. Also, BiCore-Index-Ins∗

will check each node w whose βmax,α(w,G) = φα if it is a neighbor of some node in

C. Therefore, BiCore-Index-Ins∗ will not miss any possible node in U∗∪V ∗. Further-

more, each node w in C satisfies sup(w) ≥ α if w ∈ U , or sup(w) ≥ φα+1 if w ∈ V .

Therefore, C = U∗∪V ∗ when the while loop terminates. Combined with the proof

of Theorem 3.2, we know that BiCore-Index-Ins∗ updates BiCore-Index correctly. 2

Example 3.4: We explain the procedure of BiCore-Index-Ins∗ for α = 2 when edge

(u4, v6) is inserted into the graph in Figure 4.1. When α = 2, φ2 = 2 because b2 = 2

and βmax,2(v6, G) = 3. Starting from u4, BiCore-Index-Ins
∗ first adds u4 to C and T .

It computes sup(u4) = 4 > α and pushes v3, v4, v5 into stack S because v3, v4, v5

are neighbors of u4 and βmax,2(v3/v4/v5, G) = φ2. Note that βmax,2(v6, G) = 3 > φ2

thus v6 is not pushed into S. Then BiCore-Index-Ins∗ pops v5 from S and adds v5 to

C and T . It computes sup(v5) = 2 < φ2+1 because v5 has only two neighbors u4, u5

whose βmax,2(u4/u5, G) = φ2. Hence, BiCore-Index-Ins∗ invokes RemoveCandidates

to remove v5 from C and decrease sup(u4) by 1. v4 is processed similarly as v5.

At this moment, sup(u4) has decreased from 4 to 2 but it is still no less than

α and remains in C. Next, BiCore-Index-Ins∗ pops v3 from S and adds v3 to C

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 79

and T . It computes sup(v3) = 3 ≥ φ2 + 1. Because v3 has only one neighbor u4

whose βmax,2(u4, G) = φ2 and u4 is already in T , BiCore-Index-Ins∗ terminates the

while loop. Since only u4 and v3 remain in C, βmax,2(u4, G
+) and βmax,2(v3, G

+)

are updated as 3. In fact, BiCore-Index-Ins∗ will not update βmax,2(v3, G
+). Instead

based on line 28, it will update αmax,3(v3) as 2, which is not presented in Figure 4.1

for ease of presentation. 2

Locality-based Edge Removal

Following the similar idea for handling edge insertion, for edge removal, we have:

Lemma 3.6: Given a removed edge (u, v) on G, for any integer α, let bα ←

max x s.t. |{w|w ∈ nbr(u,G−) ∧ w ∈ Cα,x}| ≥ α, if bα + 1 < βmax,α(u,G),

then C−α,β = Cα,β − {u} for bα < β < βmax,α(u,G); for any integer β, let

bβ ← max x s.t. |{w|w ∈ nbr(u,G−) ∧ w ∈ Cx,β}| ≥ β, if bβ + 1 < αmax,β(v,G),

then C−α,β = Cα,β − {v} for bβ < α < αmax,β(v,G).

Proof: If bα < βmax,α(u,G), we have βmax,α(u,G−) = bα because u has at least

α neighbors in G− which are also contained in C−α,bα and doesn’t have more than

α neighbors in any (α, β)-core if β > bα. Now, suppose that we insert edge (u, v)

back into G−, according to Lemma 3.3 and Lemma 3.4, we have Cα,β = C−α,β ∪ {u}

for each bα < β < βmax,α(u,G). Hence, we have C−α,β = Cα,β − {u} for each

bα < β < βmax,α(u,G). The second part can be proved similarly. 2

Note that the precondition for Lemma 3.6 is βmax,α(u,G) ≤ βmax,α(v,G). If

βmax,α(u,G) > βmax,α(v,G), we have C−α,β = Cα,β for β 6= βmax,α(v,G). The reason

is that the removal of edge (u, v) does not affect C−α,β for any β > βmax,α(v,G) and

v must be contained in C−α,β for any β < βmax,α(v,G). Specifically, we have the

following lemma:

80 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

Lemma 3.7: Given an removed edge (u, v) on G, for any integer α, let τα =

min{βmax,α(u,G), βmax,α(v,G)}, we only need to re-compute C−α,τα; for any integer

β, let τβ = min{αmax,β(u,G), αmax,β(v,G)}, we only need to re-compute C−τβ ,β.

Proof: Firstly, we have C−α,β = Cα,β for any β > τα since either u or v is not con-

tained in Cα,β for β > τα. Secondly, if τα = βmax,α(u,G), according to Lemma 3.6,

we know that for each C−α,β whose β < τα, it is either unchanged (β ≤ bα) or losing

only one node u (bα < β < τα). If τα = βmax,α(v,G), we have C−α,β = Cα,β for any

β 6= τα. Therefore, for any integer α, we only need to re-compute C−α,τα . The second

part can be proved similarly. 2

According to Lemma 3.7, for a given α, we only need to compute C−α,τα . Let V #

and U# denote the set of nodes from U and V that will be removed from Cα,τα after

the deletion of edge (u, v). We define the local support for each node w ∈ U ∪ V

as:

Definition 3.2: Local Support (Removal) Given an node w ∈ U ∪ V and an

inserted edge (u, v), for an integer α, the local support of w is defined as sup(w) =

|{w′ ∈ nbr(w,G−) | w′ ∈ Cα,τα ∧ w′ /∈ U# ∪ V #}|.

According to Definition 3.2, the local support is the number of w’s neighbors

that will be in C−α,τα . Therefore, a node w ∈ C−α,τα .U if and only if sup(w) ≥ α,

and a node w ∈ C−α,τα .V if and only if sup(w) ≥ τα. Similarly to the idea in edge

insertion, we can compute the upper bound of local support for each node w and

decrease it until it is smaller than α or τα. The locality-based algorithm for edge

removal BiCore-Index-Rem∗ is given in Algorithm 16.

The basic idea of BiCore-Index-Rem∗ is that it first assumes each node w whose

βmax,α(w,G) = τα is not in U# ∪ V #. After sup(w) is computed, if w is found to

be in U# ∪ V #, BiCore-Index-Rem∗ decreases the local support of its neighbors by

1 and checks whether they should be added to U# ∪ V #.

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 81

Algorithm 18: BiCore-Index-Rem∗

Input: G, I and an removed edge (u, v)

Output: I of G+

line 1-4 of Algorithm 13;1

for each α = 1 to δ do2

bα ← maxx s.t. |{w|w ∈ nbr(u,G−) ∧ w ∈ Cα,x}| ≥ α;3

τα ← min{βmax,α(u,G), βmax,α(v,G)};4

T ← ∅; C ← ∅; S ← empty stack;5

sup(w)← 0 for each w ∈ U ∪ V ;6

if βmax,α(u,G) = τα then7

S.push(u); ;8

end if9

line 7-8 by replacing u with v;10

while S 6= ∅ do11

w ← S.pop(); S′ ← S;12

T.insert(w);13

for each each w′ ∈ nbr(w,G−) do14

if βmax,α(w′, G) ≥ τα ∧ w′ /∈ C then15

sup(w)← sup(w) + 1;16

end if17

end for18

if sup(w) < α ∧ w ∈ U or sup(w) < τα ∧ w ∈ V then19

AddCandidates(w, S′, α, τα, T, C,G−);20

S ← S′;21

end if22

end while23

line 3-12 of Procedure updateβmaxRem;24

if βmax,α(u,G−) > bα then25

βmax,α(u,G−)← bα;26

end if27

end for28

for each β = 1 to δ do29

line 3-26 by swapping u, U , and α with v, V, and β;30

end for31

IndexCon(G−) (Algorithm 8);32

BiCore-Index-Rem∗ uses two sets T and C, and a stack S to record the visited

nodes, candidates (nodes that are in U# ∪ V #), and nodes to be visited (line 5).

82 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

Procedure AddCandidates(w, S ′, α, τα, T, C,G
−)

C.insert(w);1

for each w′ ∈ nbr(w,G−) do2

if w′ /∈ T ∧ βmax,α(w′, G) = τα ∧ w′ /∈ S ′ then3

S ′.push(w′);4

end if5

else if w′ ∈ T ∧ w′ /∈ C then6

sup(w′)← sup(w′)− 1;7

if sup(w′) < α ∧ w′ ∈ U or sup(w′) < τα ∧ w′ ∈ V then8

AddCandidates(w′, S ′, α, τα, T, C,G
−);9

end if10

end if11

end for12

Since u and v may not be connected in G−, both u and v may be pushed into S

(line 7-10). Different from BiCore-Index-Ins∗, for node w which is currently being

visited, BiCore-Index-Rem∗ only marks w as visited but does not add w to candidates

immediately (line 13) because C only contains nodes which are surely to be in

U#∪V #. For each neighbor w′ of w, sup(w) is increased by 1 if βmax,α(w′, G) ≥ τα

and w′ /∈ C (line 14-16). After sup(w) is computed, if sup(w) < α for w ∈ U or

sup(w) < τα for w ∈ V , w must be in U# ∪ V # since it does not have enough

neighbors in C−α,τα . Hence, BiCore-Index-Rem∗ invokes AddCandidates to add w into

C and use S ′ to record possible candidates which need to be further verified (line

19-21). Finally, it will update βmax,α(∗, G−) and αmax,β(∗, G−) for each node in

G− as BiCore-Index-Rem does (line 24). Note that after all the βmax,α(w,G−) are

updated, if βmax,α(u,G−) > bα, it sets βmax,α(u,G−) as bα based on Lemma 3.6

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 83

(line 29-31). β from 1 to δ is processed similarly as α (line 29-30).

AddCandidates first adds w into candidates (line 1). Then for each w’s neighbor

w′ which has not been visited and βmax,α(w′, G) = τα, w′ is pushed into S ′ if

w′ is not in S ′ (line 2-4). Otherwise, if w′ has been visited but not in candidates,

sup(w′) is decreased by one (line 6-7). After that, if w′ is found to be in candidates,

AddCandidates is recursively invoked to add w′ into candidates (line 8-8).

Theorem 3.4: When an edge (u, v) is removed from graph G, BiCore-Index-Rem∗

updates BiCore-Index correctly.

Proof: Each node in C is connected with either u or v in G−. Also, BiCore-Index-

Rem∗ will check each node w whose βmax,α(w,G) = τα if it is a neighbor of some

node in C, thus it will not miss any node in U#∪V #. Furthermore, each node w in

C satisfies sup(w) < α if w ∈ U , or sup(w) < τα if w ∈ V . Therefore, C = U#∪V #

when the while loop terminates. Combined with the proof of Theorem 3.2, BiCore-

Index-Rem∗ updates BiCore-Index correctly. 2

Complexity analysis

The time complexity of both BiCore-Index-Ins∗ and BiCore-Index-Rem∗ are approxi-

mately the same as ComShrDecom since they need to visit the entire graph for each

α(β) in the worst case. However, both algorithms are efficient in practice because

the subgraph they visit during the local search is usually much smaller than the

entire graph. As shown in our experiments, they can achieve up to four order of

magnitude improvement when compared with BiCore-Index-Ins and BiCore-Index-

Rem. The space cost of BiCore-Index-Ins∗ and BiCore-Index-Rem∗ are O(m) since

there are at most n nodes in the node sets T , C and stack S.

Discussion. The state-of-the-art core maintenance algorithm for edge insertion

in general graphs (unipartite graphs) is an order-based approach proposed in

84 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

[ZYZQ17]. This approach utilizes the order of nodes removed during core decom-

position process, which is call k-order, to perform core maintenance. Each time

when an edge is inserted, it reorders nodes such that the new order is still a k-order

of the updated graph. It finds the nodes that need to be updated based on the

new order. However, for (α, β)-core maintenance, this approach needs to maintain

a k-order for each α, that is the order of nodes removed from graphs when α is

fixed and β is increased from 1 to the largest possible value. Therefore, the space

cost will reach O(dmax · n). Even if we only iterate α from 1 to δ, the space cost is

O(δ · n), which is still much larger than the graph size in practice (see Table 3.2).

Also, considering the hidden constant related to the data structure that supports

fast reordering of k-order, the order-based approach is not suitable for (α, β)-core

maintenance.

4.4 Batch Update.

In this section, we discuss how to update BiCore-Index when a sequence of edges

are inserted/removed.

We first scan the sequence and remove all the operation pairs consisting of

insertion then removal (removal then insertion) of the same edge as these operation

pairs have no effect on the final result. For the remaining edges (effective edges),

we rearrange the order such that all the removed edges come after inserted edges.

Thus, we can treat batch update as first insert a set of edges then removing another

set of edges.

When a set of edges is inserted, for an integer α(β), we set πα(πβ) as the

smallest βmax,α(w,G)(αmax,β(w,G)) where w is incident to at least one inserted

edge. Since all the (α, β)-cores whose β ≤ πα(α ≤ πβ) will not change after the

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 85

Algorithm 20: BiCore-Index-Batch

Input: G, I and a sequence of edges S to be removed/inserted

Output: I of G∗

I ← the set of effective inserted edges in S;1

R← the set of effective removed edges in S;2

G∗ ← insert all the edges in I into G;3

δ ← the maximum value such that Cδ,δ 6= ∅ in G∗;4

for each α = 1 to δ do5

πα ← min{βmax,α(w,G) | w is incident to I};6

line 1-13 of Procedure updateαmaxIns by replacing τα with πα;7

end for8

for each β = 1 to δ do9

line 6-7 by swapping α with β;10

end for11

G∗ ← remove R from G∗;12

δ ← the maximum value such that Cδ,δ 6= ∅ in G∗;13

for each α = 1 to δ do14

πα ← max{βmax,α(w,G∗) | w is incident to R};15

line 1-13 of Procedure updateαmaxRem by replacing τα with πα;16

end for17

for each β = 1 to δ do18

line 15-16 by swapping α with β;19

end for20

IndexCon(G∗) (Algorithm 8);21

86 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

insertions, we only need to re-compute (α, β)-cores whose β > πα(α > πβ) and

update corresponding values using method in BiCore-Index-Ins. Similarly, when a

set of edges is removed, let πα(πβ) be the largest βmax,α(w,G)(αmax,β(w,G)) where

w is incident to at least one removed edge, we only need to re-compute (α, β)-

cores whose β ≤ πα(α ≤ πβ) and update corresponding values using method in

BiCore-Index-Rem.

The algorithm BiCore-Index-Batch is given in Algorithm 20. It first extracts

effective inserted and removed edges into I and R, respectively (line 1-2). Then,

it inserts all the edges from I into G (line 3). For each α from 1 to δ, πα is set

as the smallest value among βmax,α(w,G) such that w is incident to at least one

edge in I (line 5-6). For each node w newly added to (α, β)-core whose β > πα,

BiCore-Index-Batch updates βmax,α(w,G∗) or αmax,β(w,G∗) similar as line 1-13 in

updateαmaxIns (line 7). β is processed similarly (line 9-10). After that, it removes

all the edges in R from G∗ (line 12). It sets πα as the largest βmax,α(w,G) such that

w is incident to at least one edge in R, and updates corresponding values for each

node similar as line 1-13 of updateαmaxRem (line 14-16). β is processed similarly

(line 18-19). Finally, IndexCon is invoked to reconstruct BiCore-Index (line 20).

4.5 Parallel Algorithms for Index Construction

Our index maintenance algorithms, i.e., BiCore-Index-Ins∗ and BiCore-Index-Rem∗

can be easily extended to run in parallel. We illustrate the parallel framework in

Algorithm 21. We first compute δ according to the specific algorithm (line 1). Then

we dynamically allocate each α and β between 1 and δ to some thread (line 2-6).

Specifically, for index maintenance, we modify line 2 and line 30 of BiCore-Index-Ins∗,

and line 2 and line 29 of BiCore-Index-Rem∗ such that each time they only compute

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 87

the allocated value. To avoid race condition, we keep a copy of βmax,α(∗, G+/G−)

and αmax,β(∗, G+/G−) for each thread. At last, for edge insertion, βmax,α(∗, G+)

and αmax,β(∗, G+) are set as the largest value computed among all threads. For

edge removal, βmax,α(∗, G−) and αmax,β(∗, G−) are set as the smallest value among

the results (line 8).

Algorithm 21: ParallelFramework

δ ← the maximum value such that Cδ,δ 6= ∅;1

for each α = 1 to δ do2

dynamically run computeβ+
max (G,α) in parallel;3

end for4

for each β = 1 to δ do5

dynamically run computeα+
max (G, β) in parallel;6

end for7

merge results by selecting the largest value computed in all threads;8

4.6 Performance Studies

This section presents our experimental results. All experiments are performed

under a Linux operating system on a machine with an Intel Xeon 3.4GHz CPU

and 64GB RAM.

Dataset. We evaluate the algorithms on ten real graphs and two synthetic graphs.

All the real graphs are downloaded from KONECT1. For the synthetic graphs, we

generate a power-law graph (PL) in which edges are randomly added such that the

degree distribution follows a power-law distribution and a uniform-degree graph

1http://konect.uni-koblenz.de/networks

88 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

(UD) in which all edges are added with the same probability. The details of these

graphs are shown in Table 3.2 (Section 3.6). Note that we remove isolated nodes

and duplicate edges in graphs and their sizes listed are based on the processed

graphs.

Algorithms. We implement and compare following algorithms:

• BiCore-Index maintenance algorithms.

• BiCore-Index-Ins: Our basic algorithm for handling edge insertion (Algo-

rithm 10).

• BiCore-Index-Rem: Our basic algorithm for handling edge removal (Al-

gorithm 13).

• BiCore-Index-Ins∗: Our locality-based algorithm for handling edge inser-

tion (Algorithm 16).

• BiCore-Index-Rem∗: Our locality-based algorithm for handling edge re-

moval (Algorithm 18).

• BiCore-Index-Batch: Our algorithm for handling batch update (Algo-

rithm 20).

• Parallel algorithms for BiCore-Index maintenance.

• ParallelIns: Our parallel algorithm for handling edge insertion (Algo-

rithm 16 implemented with Algorithm 21).

• ParallelRem: Our parallel algorithm for handling edge removal (Algo-

rithm 18 implemented with Algorithm 21).

All algorithms are implemented in C++, using gcc compiler at -O3 optimization

level. The time cost is measured as the amount of wall-clock time elapsed during

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 89

the program’s execution. All the experiments are repeated 5 times and we report

the average time.

4.6.1 Dynamic Maintenance

In this section, we test the performance of our index maintenance algorithms. We

take the algorithm which invokes ComShrDecom to construct BiCore-Index from

scratch for each update as the baseline solution. For the baseline solution, the run-

ning time is nearly the same for edge insertion and removal, therefore, we just show

one result in the figures. Exp-1: Index maintenance on different datasets.

For BiCore-Index-Rem and BiCore-Index-Rem∗, we randomly remove 5000 distinct

existing edges from the graph and report the average processing time for each edge

removal. For BiCore-Index-Ins and BiCore-Index-Ins∗, we insert the removed edges

back into the graph one by one and report the average processing time for each

edge insertion. For BiCore-Index-Batch, we randomly generate 5000 edges which

are randomly chosen as insertion or removal and we report the average processing

time for each edge. All the results are shown in Figure 4.2.

Generally, the average processing time of our proposed algorithms is much

smaller than the baseline solution. For example, on WT, our proposed algorithms

BiCore-Index-Ins and BiCore-Index-Ins∗ can handle edge insertion in 297s and 7.8s, re-

spectively, while the baseline solution ComShrDecom requires 2,953s. Also, BiCore-

Index-Rem and BiCore-Index-Rem∗ can handle edge removal on WT in 324s and 4.8s,

respectively. This is because our proposed algorithms save lots of unnecessary com-

putation. Compared with BiCore-Index-Ins and BiCore-Index-Rem, BiCore-Index-Ins∗

and BiCore-Index-Rem∗ achieve up to 1000x and 10000x speed up, respectively. This

is because for each α and β, BiCore-Index-Ins∗ and BiCore-Index-Rem∗ only need to

visit a local subgraph rooted at the nodes incident to the inserted or removed edge

90 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

0
.0

1
m

s

0
.1

m
s

1
m

s

1
0
m

s

1
0
0
m

s

1
s

1
0
s

1
0
0
s

1
0
0
0
s

1
0
0
0
0
s

W
C

F
G

E
P

D
E

R
E

T
R

D
U

I
L
J

W
T

O
G

P
L

U
D

Time

C
o

m
S

h
rD

e
c
o

m

B
iC

o
re

-In
d

e
x
-R

e
m

B
iC

o
re

-In
d

e
x
-In

s

B
iC

o
re

-In
d

e
x
-R

e
m

*

B
iC

o
re

-In
d

e
x
-In

s
*

P
a

ra
lle

lR
e

m

P
a

ra
lle

lIn
s

B
iC

o
re

-In
d

e
x
-B

a
tc

h

F
igu

re
4.2:

T
im

e
cost

for
in

d
ex

m
ain

ten
an

ce

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 91

while BiCore-Index-Ins and BiCore-Index-Rem need to visit the entire graph. More-

over, BiCore-Index-Batch can handle batch update on WT and OG in 2.6s and 0.74s

for each edge, respectively. Note that the efficiency of BiCore-Index-Batch benefits

from the number of edges and it becomes inefficient if there are only a few inserted

and removed edges.

BiCore-Index-Ins∗ doesn’t achieve too much improvement compared with BiCore-

Index-Ins in RE and TR. This is because the node set U in both bipartite graphs

is subject to uniform degree distribution2 3 which means nodes in U have similar

βmax,α(∗) value. Thus, BiCore-Index-Ins∗ needs to visit almost the entire graph

before it can compute the nodes that need to be updated. Similar situation also

appears in UD where both node sets U and V are subject to the uniform degree

distribution.

Exp-2: Scalability of index maintenance. In this experiment, we evaluate

the scalability of BiCore-Index-Ins, BiCore-Index-Rem, BiCore-Index-Ins∗ and BiCore-

Index-Ins∗. All the graphs are sampled in the same way as Exp-6. For ease of

comparison, we also plotted ComShrDecom. We report the performance of BiCore-

Index-Ins and BiCore-Index-Ins∗ in Figure 4.3, and performance of BiCore-Index-Rem

and BiCore-Index-Rem∗ in Figure 4.4. We only show the results on TR, WT, OG,

and PL since trends are similar on other datasets. As shown in Figure 4.3 and

Figure 4.4, the running time of all four algorithms grows when varying the number

of nodes or edges. BiCore-Index-Rem∗ always performs better than BiCore-Index-Rem

in all cases and achieves at least two-order magnitude improvement. BiCore-Index-

Ins∗ outperforms BiCore-Index-Ins by at least one-order magnitude except for TR,

which is due to the uniform degree distribution of node set U . Nevertheless, the

2http://konect.uni-koblenz.de/networks/reuters
3http://konect.uni-koblenz.de/networks/gottron-trec

92 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

ComShrDecom BiCore-Index-Ins BiCore-Index-Ins *

0.2 0.4 0.6 0.8 1.0

100

101

102

103

Ti
m

e
(s

)

(a) TR (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0

101

102

Ti
m

e
(s

)
(b) TR (Vary |E|)

0.2 0.4 0.6 0.8 1.0

100

101

102

103

Ti
m

e
(s

)

(c) WT (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0

101

102

103

Ti
m

e
(s

)

(d) WT (Vary |E|)

0.2 0.4 0.6 0.8 1.0
100

101

102

103

Ti
m

e
(s

)

(e) OG (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0

101

102

103

Ti
m

e
(s

)

(f) OG (Vary |E|)

0.2 0.4 0.6 0.8 1.0
100

101

102

103

104

Ti
m

e
(s

)

(g) PL (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0
100

101

102

103

104

Ti
m

e
(s

)

(h) PL (Vary |E|)

Figure 4.3: Scalability of edge insertion algorithms

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 93

experiment results show that our proposed index maintenance algorithms have a

good scalability in practice.

Discussion. As shown in our experiments, the real performance of our mainte-

nance algorithms is from 2 to 4 orders of magnitude faster than the static (α, β)-core

decomposition algorithm. Compared with the static method, our algorithm can

handle the graph update regarding the (α, β)-core query with as less time as pos-

sible and return the query results timely based on the updated graph. Therefore,

our dynamic (α, β)-core algorithm is suitable for the online application scenarios re-

quiring to return the query result timely and react to the changes quickly, in which

re-running the static (α, β)-core method periodically cannot achieve the same goal.

4.6.2 Parallel Index Maintenance Algorithms

In this section, we implement parallel index construction and maintenance algo-

rithms ParallelIns and ParallelRem using C++11 thread class and test them with 12

cores in default.

Exp-3: Parallel maintenance algorithms on different datasets. The run-

ning time of ParallelIns and ParallelRem are reported in Figure 4.2. ParallelIns

and ParallelRem achieve one order magnitude improvement compared with their

non-parallel partners, e.g., BiCore-Index-Ins∗ and BiCore-Index-Rem∗. For example,

ParallelIns and ParallelRem cost 7.07s and 0.068s for index maintenance on OG,

respectively, while BiCore-Index-Ins∗ and BiCore-Index-Rem∗ cost 58s and 0.44s, re-

spectively.

Exp-4: Parallel maintenance algorithms with varying cores. We report

performance of ParallelIns, and ParallelRem on TR, WT, OG, and PL with different

number of cores in Figure 4.5 and Figure 4.6, respectively. For ease of comparison,

we also draw the speedup factors in each figure. The experiment results show

94 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

ComShrDecom BiCore-Index-Rem BiCore-Index-Rem *

0.2 0.4 0.6 0.8 1.0
10−2

10−1

100

101

102

103

Ti
m

e
(s

)

(a) TR (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0
10−2

10−1

100

101

102

103

Ti
m

e
(s

)
(b) TR (Vary |E|)

0.2 0.4 0.6 0.8 1.0
10−1

100

101

102

103

Ti
m

e
(s

)

(c) WT (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0
100

101

102

103

Ti
m

e
(s

)

(d) WT (Vary |E|)

0.2 0.4 0.6 0.8 1.0
10−2
10−1
100
101
102
103

Ti
m

e
(s

)

(e) OG (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0
10−1

100

101

102

103

Ti
m

e
(s

)

(f) OG (Vary |E|)

0.2 0.4 0.6 0.8 1.0

10−1
100
101
102
103
104

Ti
m

e
(s

)

(g) PL (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0
10−1
100
101
102
103
104

Ti
m

e
(s

)

(h) PL (Vary |E|)

Figure 4.4: Scalability of edge removal algorithms

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 95

Running Time Speedup

2 4 6 8 10 12 14 16 18 20

10

20

Ti
m

e
(s

)

2.5

5.0

7.5

10.0

12.5

Sp
ee

du
p

fa
ct

or

(a) TR

2 4 6 8 10 12 14 16 18 20

2

4

6

8

Ti
m

e
(s

)

5

10

Sp
ee

du
p

fa
ct

or

(b) WT

2 4 6 8 10 12 14 16 18 20
10

20

30

40

Ti
m

e
(s

)

2

4

6

8

10
Sp

ee
du

p
fa

ct
or

(c) OG

2 4 6 8 10 12 14 16 18 20

20

40

60

80

Ti
m

e
(s

)

2

4

6

8

10

Sp
ee

du
p

fa
ct

or

(d) PL

Figure 4.5: ParallelIns with varying number of cores

that the running time of all three algorithms decreases as the number of cores

increases. Our parallel algorithms are useful for edge insertion update as they are

relatively time consuming compared with edge removal update. For example, for

index maintenance on OG, the running time reduces from 47s to 8s as the number

of cores increases from 2 to 20. The running time of both algorithms is almost

inversely proportional to the number of cores, which shows that they are efficient

in practice.

Exp-5: Scalability of parallel maintenance algorithms. We evaluate the

scalability of ParallelIns and ParallelRem on TR, WT, OG, and PL in Figure 4.7.

To test the scalability, we vary the number of nodes and the number of edges by

randomly sampling nodes and edges respectively from 20% to 100% and keeping

96 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

Running Time Speedup

2 4 6 8 10 12 14 16 18 20

0.1

0.2

0.3

Ti
m

e
(s

)

2

4

6

8

10

Sp
ee

du
p

fa
ct

or

(a) TR

2 4 6 8 10 12 14 16 18 20
1

2

3

4

Ti
m

e
(s

)

2

4

6

8

Sp
ee

du
p

fa
ct

or

(b) WT

2 4 6 8 10 12 14 16 18 20
0.05

0.10

0.15

0.20

0.25

Ti
m

e
(s

)

2

4

6

8

10

Sp
ee

du
p

fa
ct

or

(c) OG

2 4 6 8 10 12 14 16 18 20

0.4

0.6

0.8

Ti
m

e
(s

)

6

8

10

Sp
ee

du
p

fa
ct

or

(d) PL

Figure 4.6: ParallelRem with varying number of cores

the induced subgraphs as the input graphs. As shown in this experiment, the time

cost of all three parallel algorithms increases when varying the number of nodes

or edges. Furthermore, the growth trends of both parallel algorithms are similar

to their non-parallel partners in Exp-3, which verifies that our parallel algorithms

perform well as the graph size grows.

4.7 Conclusion

In this chapter, we study the problem of efficient (α, β)-core maintenance. We

develop a locality-based algorithm to update BiCore-Index, which decide whether

a node in BiCore-Index should be updated or not by visiting its neighbors locally.

Moreover, we illustrate how to maintain BiCore-Index when a batch of edges are

Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs 97

ParallelDecom ParallelIns ParallelRem

0.2 0.4 0.6 0.8 1.0

10−2

10−1

100

101

102
Ti

m
e

(s
)

(a) TR (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0
10−2

10−1

100

101

102

Ti
m

e
(s

)

(b) TR (Vary |E|)

0.2 0.4 0.6 0.8 1.0
10−2

10−1

100

101

102

Ti
m

e
(s

)

(c) WT (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0
10−1

100

101

102

Ti
m

e
(s

)

(d) WT (Vary |E|)

0.2 0.4 0.6 0.8 1.0
10−3
10−2
10−1
100
101
102

Ti
m

e
(s

)

(e) OG (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0
10−2

10−1

100

101

102

Ti
m

e
(s

)

(f) OG (Vary |E|)

0.2 0.4 0.6 0.8 1.0

10−2
10−1
100
101
102
103

Ti
m

e
(s

)

(g) PL (Vary |U |+ |V |)

0.2 0.4 0.6 0.8 1.0
10−2
10−1
100
101
102
103

Ti
m

e
(s

)

(h) PL (Vary |E|)

Figure 4.7: Scalability of parallel algorithms

98 Chapter 4. (α, β)-Core Maintenance in Bipartite Graphs

updated. Finally, we discuss how to implement our BiCore-Index maintenance al-

gorithms in parallel. The experimental results demonstrate the efficiency of our

proposed algorithms.

Chapter 5

CoreCube: Core Decomposition

in Multilayer Graphs

5.1 Introduction

In real-life networks, there are usually multiple types of interactions (edges) among

entities (nodes), e.g., the relationship between two users in a social network can

be friends, colleagues, relatives and so on. The entities and interactions are usu-

ally modelled as a multilayer graph, where each layer records a certain type of

interaction among entities [DMR16]. Because of the strong modeling paradigm

to handle various interactions among a set of entities, there are significant exist-

ing studies of multilayer graphs, e.g., [BGHS12, LSQ+18]. Previous works usually

focus on mining dense structures from multilayer graphs according to given param-

eters, e.g., [ZZL18]. Nevertheless, graph decomposition, as a fundamental graph

problem [WQZ+16], remains largely unexplored on multilayer graphs.

Core decomposition (or k-core decomposition), as one of the most well-studied

graph decomposition, is to compute the core number for every node in the

99

100 Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs

graph [Sei83]. It is a powerful tool in modeling the dynamic of user engagement

in social networks. In practice, a user u tends to adopt a new behavior if there

are a considerable number of friends (e.g., the core number of u) in the group who

also adopted the same behavior [MV13]. Core decomposition is also theoretically

supported by Nash equilibrium in game theory [BKL+15]. It has a variety of ap-

plications, e.g., graph visualization [AHDBV05a], internet topology [CHK+07] and

user engagement [ZLZ+18, ZZZ+17]. Extending the single-layer core decomposi-

tion to multilayer graphs is a critical task which can benefit a lot of applications

considering the various real-world interactions between entities.

Given a multilayer graph, the multilayer k-core on a set of layers is defined as

a set of nodes whose minimum degree in the induced subgraph of each layer is at

least k. The core number of a node on a set of layers is the largest k such that the

multilayer k-core on these layers contains the node. Multilayer core decomposition

on a set of layers is to compute the core number for each node on these layers. In

this paper, we propose CoreCube which records the core numbers of each node for

every combination of layers in a multilayer graph. In the following, we show the

details for some application examples.

User Engagement Evaluation. In social networks, users may participate in multi-

ple groups with different themes, where each group forms a layer in the multilayer

graph. For instance, the authors in a coauthor network have different coauthor rela-

tionship on different venues (conferences or journals). For any given user-interested

combination of venues (correspond to layers), CoreCube of the coauthor network

can immediately answer the engagement level for each author, i,e, the core num-

bers [MV13]. Given a degree constraint k, we can also immediately retrieve a

cohesive user group from CoreCube, i.e., the multilayer k-core.

Biological Module Analysis. In biological networks, different interactions between

Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs 101

𝑎𝑎 𝑏𝑏 𝑐𝑐

𝑎𝑎𝑏𝑏 𝑎𝑎𝑐𝑐 𝑏𝑏𝑏𝑏

𝑎𝑎𝑏𝑏𝑏𝑏Layer 𝑎𝑎

Layer b

1-core
2-core
3-core

1 layer:

2 layers:

3 layers:

CoreCube
Figure 5.1: Multilayer Core Decomposition and CoreCube of a Graph

the modules are detected with different methods due to data noise and technical

limitations [HYH+05]. Analyzing module structure according to single method,

i.e., on a single layer, may not be accurate. CoreCube allows us to study the

connections between modules for any combination of potential methods. Thus, we

can find co-expression clusters and verify the effectiveness of detection methods.

Figure 5.1 shows an example of CoreCube on a graph G with three layers

and depicts the multilayer core decomposition on layer a and b. The 3-core on

layer a and b contains 5 nodes where each node has a degree of at least 3 in

each layer. There are 7 different combinations of layers in CoreCube of G. For

each combination, we compute its multilayer core decomposition and record the

core numbers in CoreCube. CoreCube can immediately answer a query for core

numbers on any set of layers including the traditional single layer graph.

Challenges and Contributions. Although core decomposition on a single-layer

graph can be computed in linear time, it becomes very challenging on a multilayer

graph because the combination number of layers is exponential to the number of

layers. In the general case, no polynomial-time algorithm may exist for computing

the CoreCube. To the best of our knowledge, there is only one similar work [GBG17]

where the algorithms can be adapted to compute the CoreCube while it is hard

to share the computation among different combination of layers. The algorithms

proposed in this paper can largely speed up the computation of CoreCube. We

102 Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs

Table 5.1: Summary of Notations

Notation Definition

G = (V,E, L) a multilayer graph, where V is a set of nodes, L is a set of layers,
and E ⊆ (V × V × L) is a set of edges

V (G) the node set of G

L′; l L′ ⊆ L is a subset of L; l ∈ L is a layer in L

EL′ the edge set in L′, i.e., EL′ = E ∩ (V × V × L′)
u, v a node in the graph

|V |, |E|, |L| the number of nodes, edges, and layers in G, respectively

NG(v, l) the set of adjacent nodes of v in layer l of G

degG(v, l) the number of adjacent nodes of v in layer l of G

dmax the maximum degree, i.e., dmax = max{degG(v, l) |v ∈ V ∧ l ∈ L}
CkL′ the multilayer k-core on a set of layers L′

CL′(v) the core number of v on a set of layers L′

CL′ the multilayer core decomposition result on a set of layers L′

C the CoreCube of G, i.e., C = {CL′ | L′ ⊆ L}

summarize our contributions as follows:

• We propose efficient algorithms to compute the CoreCube. Several theorems

reveal the inner characteristics of multilayer core decomposition. (Section 5.3)

• We devise a hybrid storage method which has a superior trade-off between

query processing time and storage size. (Section 5.4)

• Extensive experiments demonstrate that our CoreCube computation and

query processing are faster than baselines by more than one order of magni-

tude. (Section 5.5)

5.2 Problem Definition

In this section, we give some notations and formally define CoreCube. The nota-

tions are summarized in Table 5.1.

We consider an unweighted and undirected multilayer graph G = (V,E, L),

where V represents the set of nodes in G, L represents the set of layers, and

Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs 103

E ⊆ (V × V × L) represents the set of edges. We use |V |, |E|, and |L| to denote

the number of nodes, edges, and layers, respectively. NG(v, l) is the set of adjacent

nodes of v in layer l. We say a node u is incident to an edge, or an edge is incident

to u, if u is one of the endpoints of the edge. We use degG(v, l) to denote the

number of adjacent nodes of u in layer l. When the context is clear, we omit the

the input graph in notations, such as deg(v, l) for degG(v, l).

Definition 2.1: Multilayer k-core. Given a multilayer graph G = (V,E, L), a

set of layers L′ ⊆ L and an integer k, the multilayer k-core of G on L′, denoted by

Ck
L′ , is the maximum node set such that every node v in the subgraph H induced

by Ck
L′ satisfies degH(v, l) ≥ k on each l ∈ L′.

Let kmax be the maximum possible k such that a multilayer k-core of G on

L′ exists. The multilayer k-core for all 1 ≤ k < kmax has the following partial

containment property:

Property 2.1: Given a multilayer graph G = (V,E, L) and a set of layers L′,

Ck+1
L′ ⊆ Ck

L′ for all 1 ≤ k < kmax.

Next, we define the core number for each v ∈ V .

Definition 2.2: Core Number. Given a multilayer graph G = (V,E, L) and a

set of layers L′ ⊆ L, the core number of v on L′, denoted by CL′(v), is the largest k

such that v is contained in multilayer k-core on L′, i.e., CL′(v) = max{k | v ∈ Ck
L′}.

Based on Property 2.1 and Definition 2.2, we can easily derive following lemma:

Lemma 2.1: Given a multilayer graph G = (V,E, L), a set of layers L′, and an

integer k, we have Ck
L′ = {v ∈ V | CL′(v) ≥ k}.

Definition 2.3: Multilayer Core Decomposition. Given a multilayer graph

104 Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs

G = (V,E, L) and a set of layers L′ ⊆ L, the multilayer core decomposition,

denoted by CL′ , computes Ck
L′ for all 1 ≤ k ≤ kmax.

According to Lemma 2.1, multilayer core decomposition on L′ is equivalent to

computing the core number CL′(v) for each v ∈ V . Finally, we give the formal

definition of CoreCube and the problem we tackle in this paper.

Definition 2.4: CoreCube. Given a multilayer graph G = (V,E, L), the Core-

Cube of G, denoted as C, computes multilayer core decomposition on all the subsets

of L, i.e., C = {CL′ | L′ ⊆ L}.

Problem Statement. In this paper, we study the problem of efficiently computing

and compactly storing CoreCube of multilayer graphs.

5.3 CoreCube Computation

In this section, we present our basic CoreCube computation algorithm and then

discuss how to improve the algorithm by sharing computation among multilayer

core decomposition on different sets of layers.

5.3.1 Basic CoreCube Algorithm

Based on Property 2.1, given a multilayer graph G = (V,E, L) and a set of layers

L′ ⊆ L, the multilayer core decomposition on L′ can be computed in a bottom up

manner following the paradigm used for single layer graphs [BZ03], which increases

k step by step and iteratively removing nodes whose degree are less than k. We

give this algorithm Core-BU in Algorithm 22. Core-BU computes multilayer core

decomposition in increasing order of k. Each time, k is selected as the minimum

degree (line 3). Whenever there exists a node v whose degree is no larger than k

in some layer l ∈ L′ (line 4), we know that the core number of v is k (line 5) and

Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs 105

we remove v with all its incident edges from the graph (line 6). The core numbers

are returned in line 9. With the help of bin sort and the efficient data structure

proposed in [KBST15] to maintain the minimum degree, Core-BU can achieve a

time complexity of O(|EL′|+ |V |).

The algorithm CoreCube-BU which computes CoreCube with Core-BU is shown

in Algorithm 23. In Algorithm 23, CoreCube is computed level-by-level. Each

time, we generate all the subsets of L with the same size z (line 3) and compute

multilayer core decomposition on each subset (line 4-5). CoreCube is returned in

line 6.

Complexity. Since there are 2|L| − 1 (expect ∅) subsets of L need to be pro-

cessed and Core-BU runs in O(|EL′| + |V |) for any subset L′, the complexity of

CoreCube-BU is O(2|L| · (|E|+ |V |)).

5.3.2 Computation-sharing CoreCube Algorithm

Core-BU needs to remove all the edges in EL′ when computing multilayer core

decomposition on L′. This is because the core number of a node v is obtained

only when v is removed. Therefore, CoreCube-BU computes each multilayer core

decomposition independently. To improve the efficiency of CoreCube computation,

we aim at devising an algorithm that shares computation among multilayer core

decomposition on different sets of layers. We first extend the locality property of

k-core in single layer graphs [MDPM13] to multilayer graphs.

Theorem 3.1: Given a multilayer graph G = (V,E, L) and a set of layers L′ ⊆ L,

we have the following recursive equations for core number CL′(v) of a node v ∈ V :

∀l ∈ L′ Ml(v) = max k s.t. |{u ∈ N(v, l) | CL′(u) ≥ k}| ≥ k (5.1)

CL′(v) = min{Ml(v) | l ∈ L′} (5.2)

106 Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs

Algorithm 22: Core-BU(G, L′)

Input: G = (V,E, L) : a multilayer graph, L′ : a subset of L

Output: CL′ : the multilayer core decomposition on L′

G′ ← GL′ ;1

while G′ 6= ∅ do2

k ← min{degG′(v, l) | v ∈ V (G′) ∧ l ∈ L′};3

while ∃v ∈ V (G′) and l ∈ L′ : degG′(v, l) ≤ k do4

CL′(v)← k;5

remove v and its incident edges from G′;6

end while7

end while8

return CL′9

Algorithm 23: CoreCube-BU(G)

Input : G : a multilayer graph

Output: C : the CoreCube of G

C ← ∅;1

for each z = 1 to |L| do2

Z ← {all the subsets of L whose size are z};3

for each L′ ∈ Z do4

C ← C ∪ {Core-BU(G,L′)};5

end for6

end for7

return C8

where N(v, l) is the set of adjacent nodes of v in layer l.

Proof. (i) Let kc = min{Ml(v) | l ∈ L′} and S be the multilayer kc-core on L′.

Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs 107

Firstly, S must be nonempty as there exists some node u satisfying CL′(u) ≥ kc.

According to Equation 5.1 and 5.2, we have ∀l ∈ L′, |{u ∈ N(v, l) | CL′(u) ≥ kc}| ≥

kc. Therefore, in each layer l ∈ L′, v has at least kc adjacent nodes in S, which

means v ∈ S. Hence, CL′(v) ≥ kc. (ii) On the other hand, according to Equation 5.1

and 5.2, there must exist some l0 ∈ L′ in which |{u ∈ N(v, l0) | CL′(u) ≥ kc + 1}| <

kc+1. Therefore, CL′(v) < kc+1. Combining the conclusion in (i) and (ii) together,

it holds that CL′(v) = min{Ml(v) | l ∈ L′}.

Following Theorem 3.1, we devise the algorithm Core-TD which computes mul-

tilayer core decomposition on L′ in a top down manner. Core-TD iteratively reduces

the upper bound of core number for each node. Initially, each node v is assigned

an arbitrary upper bound of core number (e.g. the minimum degree of v in L′).

Then Core-TD keeps updating the upper bound using Equation 5.1 and 5.2 until

convergence. The pseudocode of Core-TD is given in Algorithm 24. Here, we use

CL′(v) to denote the upper bound of CL′(v). We also use sup(v, l) (support of v) to

denote the number of adjacent nodes of v in layer l whose upper bound is no less

than CL′(v). That is

sup(v, l) = |{u ∈ N(v, l) | CL′(u) ≥ CL′(v)}| (5.3)

Note that if sup(v, l) < CL′(v), Equation 5.1 does not hold for v in layer l. There-

fore, we can determine whether CL′(v) needs to be updated by comparing CL′(v)

with sup(v, l) for each l ∈ L′ instead of scanning all the adjacent nodes of v.

Core-TD first initializes sup(v, l) for every node based on Equation 5.3 in line

1. Then it updates node v whose upper bound violates Equation 5.1 in some layer

r (line 2). c0 records the value of CL′(v) before being updated (line 3). Core-TD

updates CL′(v) according to Equation 5.1 and 5.2 (line 4-9). Then, for each layer

l ∈ L′, it recomputes sup(v, l) and updates sup(u, l) for each adjacent node u of v

108 Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs

(line 10-17). sup(u, l) is decreased by 1 if v once contributed to sup(u, l) but not

anymore after CL′(v) being updated (line 13-15). Finally, after all the upper bound

converges, Core-TD sets CL′(v) as CL′(v) for each node v ∈ V in line 19 and returns

CL′ in line 20.

Complexity. In Core-TD, each time when the upper bound of some node v is

updated, line 2-18 takes O(
∑

l∈L′(deg(v, l))). Since CL′(v) is at least decreased by

1 whenever being updated, the time complexity of Core-TD is O(
∑

v∈V (CL′(v) ·∑
l∈L′ deg(v, l))), which is bounded by O(dmax · |EL′|) as the maximum degree dmax

can always serve as an upper bound for any node.

Correctness. The correctness of Core-TD is based on Theorem 3.1. When

Core-TD terminates, Equation 5.1 and Equation 5.2 are satisfied for each node.

On the other hand, the value computed for each node cannot be smaller than the

core number because it is always an upper bound of the core number. Hence,

Core-TD correctly computes core number for each node.

The key issue with Core-TD is how to initialize the upper bound tight enough

such that it can quickly converge. To deal with this issue, we introduce the following

lemma: Lemma 3.1: Given a multilayer graph G = (V,E, L) and a node v ∈ V ,

it holds that CL1(v) ≥ CL2(v) if L1 ⊆ L2.

Proof. Let k = CL2(v). Based on the definition of core number, there exists a set

of nodes S ⊆ V such that each node v in the subgraph H induced by S satisfies

degH(v, l) ≥ k for l ∈ L2. Since L1 ⊆ L2, we have CL1(v) ≥ k = CL2(v).

According to Lemma 3.1, the core number of a node v on L′ can serve as an

upper bound of v’s core number on any superset of L′. Note that if we compute

CoreCube level-by-level, we will obtain core numbers on all the subsets of L′ when

computing multilayer core decomposition on L′. Therefore we can exploit previous

Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs 109

Algorithm 24: Core-TD(G, L′, CL′)
Input: G = (V,E, L) : a multilayer graph, L′ : a subset of L, CL′ : upper

bound of core number on L′ for each node in V

Output: CL′ : the multilayer core decomposition

sup(v, l)← |{u ∈ N(v, l) | CL′(u) ≥ CL′(v)}| for each v ∈ V and l ∈ L′;1

while ∃v ∈ V ′ and r ∈ L′: sup(v, r) < CL′(v) do2

c0 ← CL′(v);3

for each l ∈ L′ do4

Ml(v) = max k s.t. |{u ∈ N(v, l) | CL′(u) ≥ k}| ≥ k;5

if CL′(v) > Ml(v) then6

CL′(v)←Ml(v);7

end if8

end for9

for each l ∈ L′ do10

sup(v, l)← |{u ∈ N(v, l) | CL′(u) ≥ CL′(v)}|;11

for each u ∈ N(v, l) do12

if CL′(u) ≤ c0 and CL′(u) > CL′(v) then13

sup(u, l)← sup(u, l)− 1;14

end if15

end for16

end for17

end while18

CL′(v)← CL′(v) for every v ∈ V ;19

return CL′20

110 Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs

Algorithm 25: CoreCube-TD(G)

Input: G : a multilayer graph

Output: C : the CoreCube of G

C ← ∅;1

for z = 1 to |L| do2

Z ← {all the subsets of |L| whose size are z};3

for each L′ ∈ Z do4

for each v ∈ V do5

if z = 1 then6

CL′(v)← deg(v, l) where l ∈ L′;7

end if8

else9

CL′(v)← min{CD(v) |D ⊂ L′ ∧ |D| = |L′|+ 1};10

end if11

end for12

C ← C ∪ {Core-TD (G,L′, CL′)};13

end for14

end for15

return C16

computation as much as possible by initializing CL′(v) with the minimum core

number of v on all the subsets of L′, i.e., CL(v) = min{CP (v)|P ⊂ L′}. Furthermore,

based on Lemma 3.1, we actually only need to consider the subsets whose size is

only one smaller than |L′| because any the subset of L′ whose size is smaller than

|L′| − 1 must be contained in some subset of L′ whose size is |L′| − 1.

The algorithm CoreCube-TD which computes CoreCube with Core-TD is shown

Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs 111

2
2

2
2

3

3

3

3

3

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣7

𝑣𝑣6
𝑣𝑣5
𝑣𝑣4

𝑣𝑣8
𝑣𝑣9

1
2

1
2

2

2

2

1

1

1
2

1
2

2

2

2

1

1

1
2

1
2

2

2

2

1

1

1
1

1
1

2

2

2

1

1

1
1

1
1

2

2

2

1

1

Multilayer core decomposition previously
computed for layer a and layer b

Layer a

Layer b

Layer a

Layer b Layer b

Initialize upper bound of core
number for each node

Converge

Layer a𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣7

𝑣𝑣6
𝑣𝑣5
𝑣𝑣4

𝑣𝑣8
𝑣𝑣9

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣7

𝑣𝑣6
𝑣𝑣5
𝑣𝑣4

𝑣𝑣8
𝑣𝑣9

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣7

𝑣𝑣6
𝑣𝑣5
𝑣𝑣4

𝑣𝑣8
𝑣𝑣9

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣7

𝑣𝑣6
𝑣𝑣5
𝑣𝑣4

𝑣𝑣8
𝑣𝑣9

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣7

𝑣𝑣6
𝑣𝑣5
𝑣𝑣4

𝑣𝑣8
𝑣𝑣9

(a) (b) (c)

Figure 5.2: Computing multilayer core decomposition in CoreCube-TD

in Algorithm 25. Each time before it invokes Core-TD for a set of layers L′, it sets

the upper bound of core number for each node according to Lemma 3.1 (line 10). If

|L′| is 1, it sets the upper bound as the node degree (line 7). Finally, the CoreCube

of G is returned in line 16.

Complexity. In CoreCube-TD, since the number of subsets D processed in line 10

is |L′|, line 5-12 takes O(|L′| · |V |). Considering that there are 2|L| − 1 subsets of

L and Core-TD is invoked for each subset, the time complexity of CoreCube-TD is

bounded by O(2|L| ·(|L|·|V |+dmax ·|E|)). Though the time complexity is apparently

worse than that of CoreCube-BU, we find that much less nodes are visited in our

experiments, especially when the number of layers is large. This is because the

upper bound is initialized very close to the core number and converges quickly in

Core-TD.

Example 3.1: We show the procedure of CoreCube-TD for computing multilayer

core decomposition on the set of layers {a, b} in Figure 5.2. Based on the mul-

tilayer core decomposition previously computed for each single layer (Figure 5.2

(a)), CoreCube-TD initializes the upper bound for each node with the minimum

core number in layer a and layer b (Figure 5.2 (b)). Then it invokes Core-TD to

112 Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs

compute multilayer core decomposition on {a, b}. As sup(v3, a) and sup(v4, a) are

1, which are smaller than their upper bound 2, Core-TD updates their upper bound

as 1 (Figure 5.2 (c)). Finally, Figure 5.2 (c) is returned as the multilayer core de-

composition result. In Figure 5.2, only v3 and v4’s upper bound are updated since

the upper bound of the rest nodes are already equal to their core number before

CoreCube-TD invokes Core-TD. 2

5.4 CoreCube Storage

In this section, we devise a method for compactly storing CoreCube and discuss

how to process queries for core numbers on any set of layers. A straightforward

method is storing core numbers on each set of layers in separate files. Given a

core number query, we can directly retrieve the result from the disk. However, this

method requires large disk space as we need to store each node in every file. To

reduce space usage, we propose two optimization strategies.

Firstly, many nodes’ core number on a set of layers L′ can be zero when |L′|

is large because the core number of a node v is zero if deg(v, l) in some layer

l ∈ L′ equals to 0. Therefore, we do not record the node whose core number is

zero. Secondly, the core number on L′ can remain unchanged when a new layer l

is added to L′ if the core number on L′ is small or the distribution of core number

on l is nearly the same as that in L′. Hence, we can store the difference between

core numbers on different sets of layers instead of directly storing core number for

each node. Here, we call the file that stores nonzero core numbers as absolute

storage and the file that stores the difference as relative storage. The algorithm

Hybrid-Storage which uses both absolute storage and relative storage is given in

Algorithm 26.

Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs 113

Algorithm 26: Hybrid-Storage(G, C)
Input: G = (V,E, L): a multilayer graph, C: the CoreCube of G

Output: the files that stores C

Z ← {all the subsets of |L|};1

for each L′ ∈ Z do2

create a new file F ;3

if |L′| = 1 then4

for each v ∈ V and CL′(v) 6= 0 do5

write v and CL′(v) into F ;6

end for7

end if8

else9

n1 ← the number of non zero values in CL′ ;10

P ← the subset of L′ s.t. |{v ∈ V | CP (v) 6= CL′(v)}| is minimum ∧|P | = |L′| − 1 ;11

n2 ← |{v ∈ V | CP (v) 6= CL′(v)}|;12

if n1 ≤ n2 then13

for each v ∈ V and CL′(v) 6= 0 do14

write v and CL′(v) into F ;15

end for16

end if17

else18

write P as the predecessor into F ;19

for each v ∈ V and CP (v)− CL′(v) 6= 0 do20

write v and CP (v)− CL′(v) into F ;21

end for22

end if23

end if24

end for25

Hybrid-Storage creates a file F for each subset of L (line 3). For the subset

consists of single layer, it uses absolute storage to store the nonzero core number

114 Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs

Algorithm 27: Core-Retrieve(G, L′)

Input: G = (V,E, L): a multilayer graph, L′: a subset of layers

Output: CL′ : the multilayer core number on L′

CL′(v)← 0 for each v ∈ V ;1

flag ← true; P ← L′;2

while flag do3

load the file F corresponding to P from disk;4

if F is relative storage then5

P ← the predecessor in F ;6

end if7

else8

flag ← false;9

end if10

CL′(v)← CL′(v) + F (v) for each v ∈ V ;11

end while12

return CL′13

for each node (line 4-8). For other subsets L′, it first counts the number of nonzero

core number in CL′ as n1 (line 10). Then, it finds the subset P of L′ such that the

number of different values between CL′ and CP is minimum (line 11) and refers this

number as n2 (line 12). If n1 ≤ n2, Hybrid-Storage uses absolute storage (line

13-17). Otherwise, it uses relative storage that stores all the difference between CL′

and CP (line 20-22). It also records P as the predecessor (line 19) so that we can

know from which subset the difference is made when answering queries.

The algorithm which processes queries for core numbers on a set of layers L′ is

shown in Algorithm 27. Core-Retrieve keeps loading files from disk according to

Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs 115

Table 5.2: Statistics of Datasets

Dataset nodes Edges Layers Domain

Homo 18,223 153,922 7 genetic

SacchCere 6,571 247,152 7 genetic

Twitter 2,281,260 3,827,964 3 social

Amazon 410,237 8,132,506 4 co-purchasing

DBLP 2,175,466 8,221,193 10 co-authorship

Flickr 2,302,927 23,350,524 10 social

StackOverflow 6,024,272 28,978,914 10 social

Wiki 25,323,885 132,693,853 10 hyperlinks

the predecessors (line 4-7) until it meets absolute storage (line 8-10). Meanwhile,

Core-Retrieve computes core numbers by summing up the difference stored in

each file (line 11). Note that we use F (v) to represent the value (core number

or difference) associated with node v stored in file F . Finally, core numbers are

returned in line 13. Note that Core-Retrieve loads at most |L′| files.

5.5 Experimental Evaluation

5.5.1 Experimental Setting

Datasets. Eight real-life networks were deployed in our experiments. Table 5.2

shows the statistics of the 8 datasets, listed in increasing order of their edge num-

bers. Home and SacchCere are networks describing different types of genetic in-

teractions between genes. Twitter represents different types of social interac-

tion among Twitter users. Amazon is a co-purchasing temporal network, contain-

ing four snapshots between March and June 2003. DBLP is a co-author network.

Flickr is a social network represents Flickr users and their friendship connections.

StackOverflow is a temporal network represents different types of interactions

on the website Stack Overflow. Wiki contains users and pages from Wikipedia,

connected by edit events.

116 Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs

Algorithms. We test 4 algorithms for CoreCube computation. CoreCube-BU and

CoreCube-TD are our algorithms, e.g., Algorithm 23 and Algorithm 25.

ML-DFS and ML-Hybrid are two state-of-the-art existing solutions proposed in

[GBG17]. They compute cores for all the coreness vector k, where k is a |L|-

dimension vector and the value k in each dimension represents that the degree of

each node is no less than k in the corresponding layer. ML-DFS searches the space

of k through depth-first search strategy. ML-Hybrid adopts both depth-first and

breath-first search strategy. In our experiments, we compute CoreCube by using

cores whose k has the same value in every nonzero dimension. For the sake of

fairness, we extract and report the time spent on computing these cores in ML-DFS

and ML-Hybrid instead of the total running time.

To the best of our knowledge, no existing work investigates the storage of

CoreCube. We test three algorithms Naive-Storage, Nonzero-Storage and

Hybrid-Storage. Naive-Storage stores core numbers without any optimization

strategies. Nonzero-Storage only stores nonzero core numbers. Hybrid-Storage

uses both absolute storage and relative storage, i.e., Algorithm 26.

Core-Retrieve is our algorithm for answering core number queries, i.e.,

Algorithm 27. CoreScratch computes core numbers from scratch for each

query. We divide CoreScratch into two procedures, CoreScratch-Load and

CoreScratch-Comp. CoreScratch-Load is the procedure that loads the graph from

disk into main memory. CoreScratch-Comp is the procedure that computes core

numbers. For CoreScratch-Comp, we test both Core-BU and Core-TD, and report

the running time based on the faster one.

All algorithms are implemented in C++ with -O2 optimization level and tested

on an server equipped with Intel Xeon CPU at 2.8GHz and 128GB main memory.

Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs 117

0.01

0.1

1

10

100

1K

10K

Homo SacchCere Twitter Amazon DBLP Flickr StackOverflow Wiki

T
im

e
 (

s
)

ML-DFS
ML-Hybrid

CoreCube-BU
CoreCube-TD

Figure 5.3: CoreCube computation time in all datasets

10
6

10
8

10
10

10
12

Homo SacchCere Twitter Amazon DBLP Flickr StackOverflow Wiki

#
V

is
it
e
d
 V

e
rt

ic
e
s ML-DFS

ML-Hybrid
CoreCube-BU
CoreCube-TD

Figure 5.4: The number of visited nodes in CoreCube computation in all datasets

5.5.2 CoreCube Computation

In this set of experiments, we set the maximum running time for each test as 48

hours. If an algorithm cannot stop within the time limit, we omit its running time.

Exp-1: CoreCube Computation Time on Different Datasets. We report

the time cost for computing CoreCube on different datasets in Figure 5.3. As

shown in Figure 5.3, our proposed algorithm CoreCube-TD is the fastest algorithm

in all datasets except Amazon and achieves one order of magnitude improvement

on average compared with existing solutions ML-DFS and ML-Hybrid. For example,

in DBLP, CoreCube-BU and CoreCube-TD spend 662s and 375s respectively while

ML-DFS and ML-Hybrid spend 4487s and 3932s respectively. In the three largest

datasets, ML-DFS and ML-Hybrid cannot terminate within 48 hours.

Exp-2: The Number of Visited nodes in CoreCube Computation. To

better demonstrate performance of the four CoreCube computation algorithms, we

report the number of visited nodes in Figure 5.4. The number of visited nodes

represents how many times the value related to a node is modified or accessed,

118 Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs

e.g., removing an edge or decreasing upper bound. For ML-DFS and ML-Hybrid, the

number of visited nodes is collected during the computation of cores that are used

for computing CoreCube. As shown in Figure 5.4, the number of visited nodes

in CoreCube-TD is smallest in all datasets except for Amazon. This is because the

core numbers in Amazon vary a lot on different sets of layers, which leads to slow

convergence in Core-TD. Compared with our algorithms, the number of visited

nodes in ML-DFS and ML-Hybrid is much larger. The reason is that they need to

generate a subgraph that contains some core before computing it.

Exp-3: Scalability of CoreCube Computation. In this experiment, we eval-

uate the performance of four CoreCube computation algorithms with varying the

number of layers. We show results on DBLP and Flickr in Figure 5.5. The trends

are similar in other datasets. As shown in Figure 5.5, the running time of four al-

gorithms stably increases. The gap between existing algorithms and our proposed

algorithms becomes larger as the number of layers increases. Compared with ex-

isting algorithms, our proposed algorithm CoreCube-TD achieves at least 1 order of

magnitude improvement when the number of layers excesses 7. Furthermore, the

gap between CoreCube-BU and CoreCube-TD becomes larger with the increasing of

layers, which shows that the advantages of CoreCube-TD is significant when the

number of layers becomes large.

5.5.3 CoreCube Storage and Query Processing

Exp-4: Disk Usage under Different Storage Methods. In this experiment,

we report the disk usage of storing CoreCube of all datasets in Figure 5.6. As

shown in Figure 5.6, the disk usage of Hybrid-Storage is smallest in all datasets.

For example, in DBLP, the disk usage of Naive-Storage, Nonzero-Storage and

Hybrid-Storage are 21GB, 522MB and 302MB respectively. The gap between

Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs 119

ML-DFS ML-Hybrid CoreCube-BU CoreCube-TD

2 3 4 5 6 7 8 9 10

100

101

102

103

T
im

e
 (

s
)

(a) DBLP (Vary layers)

2 3 4 5 6 7 8 9 10

101

102

103

T
im

e
 (

s
)

(b) Flickr (Vary layers)

Figure 5.5: CoreCube computation time with varying number of layers

1MB

10MB

100MB

1GB

10GB

100GB

Homo SacchCere Twitter Amazon DBLP Flickr StackOverflow Wiki

D
is

k
 U

s
a
g
e

Naive-Storage
Nonzero-Storage

Hybrid-Storage

Figure 5.6: CoreCube storage in all datasets

Naive-Storage and Nonzero-Storage shows that many nodes have zero core num-

ber in CoreCube. Hybrid-Storage further reduces disk usage by storing the dif-

ference between core numbers on different subsets of layers.

Exp-5: Core Number Query Processing Time. In this experiment, we ran-

domly generate 100 core number queries for each dataset. Each core number query

asks for core numbers on a specific set of layers. The total running time of answering

the 100 queries is reported in Figure 5.7. As shown in Figure 5.7, Core-Retrieve

finishes 100 queries within 10ms in all datasets including the time spent on loading

files from disk. CoreScratch spends more than 100s in the largest dataset even if

the graph has already been loaded into memory. In real scenarios, graphs cannot

always be kept in memory. The advantage of Core-Retrieve is more significant

when considering the graph loading time in CoreScratch-Load.

120 Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs

1ms
10ms

100ms
1s

10s
100s

1000s
10000s

Homo SacchCere Twitter Amazon DBLP Flickr StackOverflow Wiki

T
im

e

CoreScratch-Load
CoreScratch-Comp

CoreCube-Retrieval

Figure 5.7: Core Number Query Processing Time

5.5.4 Case Study on DBLP

In this section, we test the effectiveness of multilayer core decomposition on DBLP.

Here, the multilayer graph has two layers. One layer is the coauthor network of

SIGMOD conference. Another one is the coauthor network of KDD conference.

Two authors are connected if they collaborated on at least one paper. Both layers

are extracted from data from 2013 to 2017.

Core number equals 3

Core number equals 4

Core number equals 5

Appear in both layer

Appear in layer KDD

Appear in layer SIGMOD

Figure 5.8: Multilayer core decomposition on DBLP

Exp-6: Case Study on DBLP. We show nodes with core number no less than

3 in Figure 5.8. Edges that appear exclusively in KDD and SIGMOD are col-

ored with blue and red respectively. Edges that appear in both layers are colored

with black. As shown in Figure 5.8, multilayer core decomposition effectively cap-

tures authors with different engagement level in both conferences. Note that the

subgraph induced by multilayer k-core are not necessarily connected.

Chapter 5. CoreCube: Core Decomposition in Multilayer Graphs 121

5.6 Conclusion

In this chapter, we study core decomposition on multilayer graphs and propose the

CoreCube which records the multilayer core decomposition on every combination of

layers. We devise algorithms for efficiently computing and compactly storing Core-

Cube. The experimental results validate the efficiency of our proposed algorithms

and effectiveness of multilayer core decomposition.

Chapter 6

Conclusion and Future Work

In this chapter, we provide a brief summarization of this thesis and show some

possible directions. Specifically, the major contributions of this thesis are concluded

in Section 6.1. Section 6.2 introduces several possible directions for future work.

6.1 Conclusions

In this thesis, we study three important problems on core computation in bipartite

graphs and multilayer graphs.

Firstly, we study the problem of (α, β)-core computation, a fundamental prob-

lem in managing and analyzing bipartite graph data. The (α, β)-core of a bipartite

graph G = (U, V,E), denoted by Cα,β, consists of two node sets U ⊆ U(G) and

V ⊆ V (G) such that the bipartite subgraph g induced by U ∪ V is the maximal

subgraph of G in which all the nodes in U have degree at least α and all the

nodes in V have degree at least β. In order to support realtime (α, β)-core query

processing, we propose a non-trivial space-efficient index structure, BiCore-Index,

with the size bounded by O(m). BiCore-Index supports the optimal computation

of (α, β)-core in bipartite graphs. Then, we present ComShrDecom to efficiently

122

Chapter 6. Conclusion and Future Work 123

construct BiCore-Index. ComShrDecom shares the computation between two node

sets of the bipartite graph when conducting the core decomposition. We prove that

the time complexity of ComShrDecom is O(δ ·m), where δ is the maximum value

such that the (δ, δ)-core in G is nonempty and is bounded by
√
m. As shown in

our experiment, our algorithms achieve up to 5 orders of magnitude speedup for

computing (α, β)-core and up to 3 orders of magnitude speedup for index construc-

tion, respectively, compared with existing techniques. Moreover, we discuss how

to implement our index construction algorithms in parallel to further accelerate

BiCore-Index construction.

Secondly, we study the problem of BiCore-Index maintenance when graphs are

dynamically updated. We improve the performance of BiCore-Index maintenance

algorithms in tow folds. First, we show that for a given α(β) we only need to

recompute one (α, β)-core . Second, we study the locality properties of those nodes

that will be influenced after an edge being inserted/removed and show that those

nodes can be found through a local search. Our improved maintenance algorithms

achieve up to four order of magnitude improvement compared with basic solutions.

Then we propose BiCore-Index-Batch to handle the case when a batch of edges are

inserted or removed. We also show that we can extend our BiCore-Index mainte-

nance algorithms to run in parallel by splitting them into independent subprocesses

and merging the results by selecting the largest/smallest value computed among

all subprocess.

Finally, we formulate and investigate the problem of core decomposition on

multilayer graphs. We proposed CoreCube which records the core decomposition

results of each vertex for every combination of layers in a multilayer graph. Then,

we analyze the inner characteristics of multilayer core decomposition and devise

efficient algorithms to compute the CoreCube. Due to the result size is exponential

124 Chapter 6. Conclusion and Future Work

to the number of layers, we devise a hybrid storage method which has a superior

trade-off between query processing time and storage size. Extensive experiments

demonstrate that our CoreCube computation and query processing are faster than

baselines by more than one order of magnitude.

6.2 Directions for Future Work

The investigation on mining cohesive subgraph structure is still far from an end.

New applications are posing new challenges. In this subsection, we propose several

possible directions for future work.

More Cohesiveness Metrics. For structure cohesiveness, apart from the core

model studied in this thesis, other models such as k-truss, nucleus, k-ECC, and

clique have also been proposed in the literature. Thus, it would be interesting

to extend such models to bipartite graphs and multilayer graphs. Furthermore,

many real social networks contain keyword attributes or spatial attributes on the

nodes. In addition to the network structure, community structure may contain

some semantic information, such as attribute-related communities with keyword

constraint, geo-social groups with spatial constraint. There are some studies finding

cohesive subgraphs from attributed graphs like (k, r)-core [ZZQ+17], (k, d)-ECC

[CLZ+18], and r-clique [KA11]. Nevertheless, these works are mainly focusing on

unipartite graphs. Therefore, it would be interesting to extend (α, β)-core model

and multilayer k-core model to attributed bipartite graphs and multilayer graphs.

I/O Efficient or Distributed Algorithms for Core Computation. In real

applications (e.g., Facebook), the graphs may involve trillions of vertices and edges.

For big graphs that cannot be kept by a single machine, existing cohesive subgraph

detection algorithms based on core model may fail to process such real big graphs

Chapter 6. Conclusion and Future Work 125

within reasonable time cost. Therefore, it would be interesting to develop algo-

rithms based on distributed computation platforms (e.g., GraphX), which are able

to process big graphs in a cluster. Moreover, to save memory space, we may keep

the graph data on disk and design I/O-efficient query algorithms.

Bibliography

[ABF+07] Adel Ahmed, Vladimir Batagelj, Xiaoyan Fu, Seok-Hee Hong,

Damian Merrick, and Andrej Mrvar. Visualisation and analysis of

the internet movie database. In Visualization, 2007. APVIS’07.

2007 6th International Asia-Pacific Symposium on, pages 17–24.

IEEE, 2007.

[AHDBV05a] J Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and

Alessandro Vespignani. Large scale networks fingerprinting and vi-

sualization using the k-core decomposition. In NIPS, pages 41–50,

2005.

[AHDBV05b] José Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and

Alessandro Vespignani. k-core decomposition: A tool for the visual-

ization of large scale networks. arXiv, 2005.

[AHL12] Alireza Abbasi, Liaquat Hossain, and Loet Leydesdorff. Betweenness

centrality as a driver of preferential attachment in the evolution of

research collaboration networks. Journal of Informetrics, 6(3):403 –

412, 2012.

[AIB+13] Mohammad Allahbakhsh, Aleksandar Ignjatovic, Boualem Benatal-

lah, Seyed-Mehdi-Reza Beheshti, Elisa Bertino, and Norman Foo.

126

BIBLIOGRAPHY 127

Collusion detection in online rating systems. In Yoshiharu Ishikawa,

Jianzhong Li, Wei Wang, Rui Zhang, and Wenjie Zhang, editors,

Web Technologies and Applications, pages 196–207, Berlin, Heidel-

berg, 2013. Springer Berlin Heidelberg.

[AKP17] Sinan G Aksoy, Tamara G Kolda, and Ali Pinar. Measuring and

modeling bipartite graphs with community structure. Journal of

Complex Networks, page cnx001, 2017.

[ARS02] James Abello, Mauricio G. C. Resende, and Sandra Sudarsky. Mas-

sive quasi-clique detection. In LATIN, pages 598–612, 2002.

[AUANK+03] Md Altaf-Ul-Amine, Kensaku Nishikata, Toshihiro Korna, Teppei

Miyasato, Yoko Shinbo, Md Arifuzzaman, Chieko Wada, Maki

Maeda, Taku Oshima, Hirotada Mori, et al. Prediction of protein

functions based on k-cores of protein-protein interaction networks

and amino acid sequences. Gen. Inf., 14:498–499, 2003.

[AYRC+09] Sihem Amer-Yahia, Senjuti Basu Roy, Ashish Chawlat, Gautam

Das, and Cong Yu. Group recommendation: Semantics and effi-

ciency. Proc. VLDB Endow., 2(1):754–765, August 2009.

[BA99] Albert-László Barabási and Réka Albert. Emergence of scaling in

random networks. Science, 286(5439):509–512, 1999.

[BGHS12] Brigitte Boden, Stephan Günnemann, Holger Hoffmann, and

Thomas Seidl. Mining coherent subgraphs in multi-layer graphs with

edge labels. In SIGKDD, pages 1258–1266, 2012.

[BH03] Gary D Bader and Christopher WV Hogue. An automated method

128 BIBLIOGRAPHY

for finding molecular complexes in large protein interaction net-

works. BMC bioinformatics, 4(1):2, 2003.

[BKL+15] Kshipra Bhawalkar, Jon Kleinberg, Kevin Lewi, Tim Roughgarden,

and Aneesh Sharma. Preventing unraveling in social networks: the

anchored k-core problem. SIAM Journal on Discrete Mathematics,

29(3):1452–1475, 2015.

[BXG+13] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher

Palow, and Christos Faloutsos. Copycatch: stopping group attacks

by spotting lockstep behavior in social networks. In Proceedings of

the 22nd international conference on World Wide Web, pages 119–

130. ACM, 2013.

[BZ03] Vladimir Batagelj and Matjaz Zaversnik. An o(m) algorithm for

cores decomposition of networks. CoRR, cs.DS/0310049, 2003.

[CB15] Monika Cerinek and Vladimir Batagelj. Generalized two-mode cores.

Social Networks, 42:80 – 87, 2015.

[CHK+07] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and

Eran Shir. A model of internet topology using k-shell decomposition.

PNAS, 104(27):11150–11154, 2007.

[CLZ+18] Lu Chen, Chengfei Liu, Rui Zhou, Jianxin Li, Xiaochun Yang, and

Bin Wang. Maximum co-located community search in large scale

social networks. Proceedings of the VLDB Endowment, 11(10):1233–

1246, 2018.

[CM13] Lucas Augusto Montalvão Costa Carvalho and Hendrik Teixeira

Macedo. Users’ satisfaction in recommendation systems for groups:

BIBLIOGRAPHY 129

an approach based on noncooperative games. In Proceedings of the

22nd International Conference on World Wide Web, pages 951–958.

ACM, 2013.

[DBS18] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Theoreti-

cally efficient parallel graph algorithms can be fast and scalable. In

Proceedings of SPAA, pages 393–404, 2018.

[DFBG09] Carsten F Dormann, Jochen Fründ, Nico Blüthgen, and Bernd Gru-

ber. Indices, graphs and null models: analyzing bipartite ecological

networks. 2009.

[DJN+13] Madelaine Daianu, Neda Jahanshad, Talia M. Nir, Arthur W. Toga,

Clifford R. Jack Jr., Michael W. Weiner, and Paul M. Thomp-

son. Breakdown of brain connectivity between normal aging and

alzheimer’s disease: A structural k -core network analysis. Brain

Connectivity, 3(4):407–422, 2013.

[DLHM17] Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis. Ef-

ficient fault-tolerant group recommendation using alpha-beta-core.

In Proceedings of the 2017 ACM on Conference on Information and

Knowledge Management, CIKM ’17, pages 2047–2050, New York,

NY, USA, 2017. ACM.

[DMR16] Mark E Dickison, Matteo Magnani, and Luca Rossi. Multilayer

social networks. Cambridge University Press, 2016.

[ELS15] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. Efficient dens-

est subgraph computation in evolving graphs. In Proceedings of

WWW, pages 300–310, 2015.

130 BIBLIOGRAPHY

[FCC+17] Yixiang Fang, Reynold Cheng, Yankai Chen, Siqiang Luo, and Ji-

afeng Hu. Effective and efficient attributed community search. The

VLDB Journal, 26(6):803–828, 2017.

[FCL+17] Yixiang Fang, Reynold Cheng, Xiaodong Li, Siqiang Luo, and Ji-

afeng Hu. Effective community search over large spatial graphs.

Proceedings of the VLDB Endowment, 10(6):709–720, 2017.

[FCL+18] Xing Feng, Lijun Chang, Xuemin Lin, Lu Qin, Wenjie Zhang, and

Long Yuan. Distributed computing connected components with

linear communication cost. Distributed and Parallel Databases,

36(3):555–592, 2018.

[FCLH16] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. Effec-

tive community search for large attributed graphs. Proceedings of

the VLDB Endowment, 9(12):1233–1244, 2016.

[FLL+11] Wenfei Fan, Jianzhong Li, Jizhou Luo, Zijing Tan, Xin Wang, and

Yinghui Wu. Incremental graph pattern matching. In Proceedings of

the 2011 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’11, pages 925–936. ACM, 2011.

[FWC+18a] Yixiang Fang, Zheng Wang, Reynold Cheng, Xiaodong Li, Siqiang

Luo, Jiafeng Hu, and Xiaojun Chen. On spatial-aware community

search. IEEE TKDE, 31(4):783–798, 2018.

[FWC+18b] Yixiang Fang, Zhongran Wang, Reynold Cheng, Hongzhi Wang, and

Jiafeng Hu. Effective and efficient community search over large di-

rected graphs. IEEE TKDE, 2018.

BIBLIOGRAPHY 131

[FYC+19] Yixiang Fang, Kaiqiang Yu, Reynold Cheng, Laks VS Lakshmanan,

and Xuemin Lin. Efficient algorithms for densest subgraph discovery.

Proceedings of the VLDB Endowment, 12(11):1719–1732, 2019.

[GBG17] Edoardo Galimberti, Francesco Bonchi, and Francesco Gullo. Core

decomposition and densest subgraph in multilayer networks. In

CIKM, pages 1807–1816, 2017.

[GL04] Jean-Loup Guillaume and Matthieu Latapy. Bipartite structure of

all complex networks. Information processing letters, 90(5):215–221,

2004.

[GL06] Jean-Loup Guillaume and Matthieu Latapy. Bipartite graphs as

models of complex networks. Physica A: Statistical Mechanics and

its Applications, 371(2):795–813, 2006.

[GLRW13] Jagadeesh Gorla, Neal Lathia, Stephen Robertson, and Jun Wang.

Probabilistic group recommendation via information matching. In

Proceedings of the 22nd international conference on World Wide

Web, pages 495–504. ACM, 2013.

[GMRS11] S. Gunnemann, E. Muller, S. Raubach, and T. Seidl. Flexible fault

tolerant subspace clustering for data with missing values. In 2011

IEEE 11th International Conference on Data Mining, pages 231–

240, Dec 2011.

[GTV11a] Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis.

D-cores: Measuring collaboration of directed graphs based on de-

generacy. In Data Mining (ICDM), 2011 IEEE 11th International

Conference on, pages 201–210. IEEE, 2011.

132 BIBLIOGRAPHY

[GTV11b] Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis.

Evaluating cooperation in communities with the k-core structure.

In Advances in Social Networks Analysis and Mining (ASONAM),

2011 International Conference on, pages 87–93. IEEE, 2011.

[GXL+10] Mike Gartrell, Xinyu Xing, Qin Lv, Aaron Beach, Richard Han,

Shivakant Mishra, and Karim Seada. Enhancing group recommen-

dation by incorporating social relationship interactions. In Proceed-

ings of the 16th ACM international conference on Supporting group

work, pages 97–106. ACM, 2010.

[Hoc98] Dorit S Hochbaum. Approximating clique and biclique problems.

Journal of Algorithms, 29(1):174–200, 1998.

[HYH+05] Haiyan Hu, Xifeng Yan, Yu Huang, Jiawei Han, and Xianghong Jas-

mine Zhou. Mining coherent dense subgraphs across massive biolog-

ical networks for functional discovery. In International Conference

on Intelligent Systems for Molecular Biology, pages 213–221, 2005.

[JB15] Vinay Jethava and Niko Beerenwinkel. Finding dense subgraphs in

relational graphs. In ECML PKDD, pages 641–654, 2015.

[KA11] Mehdi Kargar and Aijun An. Keyword search in graphs: Finding r-

cliques. Proceedings of the VLDB Endowment, 4(10):681–692, 2011.

[KBST15] Wissam Khaouid, Marina Barsky, Venkatesh Srinivasan, and Alex

Thomo. K-core decomposition of large networks on a single pc.

Proceedings of the VLDB Endowment, 9(1):13–23, 2015.

[KGH+10] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros,

Lev Muchnik, H Eugene Stanley, and Hernán A Makse. Identifica-

BIBLIOGRAPHY 133

tion of influential spreaders in complex networks. Nature physics,

6(11):888–893, 2010.

[KKND11] Mehdi Kaytoue, Sergei O Kuznetsov, Amedeo Napoli, and Sébastien

Duplessis. Mining gene expression data with pattern structures in

formal concept analysis. Information Sciences, 181(10):1989–2001,

2011.

[KNT10] Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and

Evolution of Online Social Networks, pages 337–357. Springer New

York, New York, NY, 2010.

[KPPS14] Tamara G Kolda, Ali Pinar, Todd Plantenga, and Comandur Se-

shadhri. A scalable generative graph model with community struc-

ture. SIAM Journal on Scientific Computing, 36(5):C424–C452,

2014.

[KTV97] Ravi Kannan, Prasad Tetali, and Santosh Vempala. Simple markov-

chain algorithms for generating bipartite graphs and tournaments.

In Proceedings of the eighth annual ACM-SIAM symposium on Dis-

crete algorithms, pages 193–200. Society for Industrial and Applied

Mathematics, 1997.

[Ley02] Michael Ley. The DBLP computer science bibliography: Evolution,

research issues, perspectives. In Proc. Int. Symposium on String

Processing and Information Retrieval, pages 1–10, 2002.

[LGHB07] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and

Jonathan Berry. Challenges in parallel graph processing. Parallel

Processing Letters, 17(01):5–20, 2007.

134 BIBLIOGRAPHY

[LLW10] Xiaowen Liu, Jinyan Li, and Lusheng Wang. Modeling protein inter-

acting groups by quasi-bicliques: Complexity, algorithm, and appli-

cation. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 7(2):354–

364, April 2010.

[LP49] R Duncan Luce and Albert D Perry. A method of matrix analysis

of group structure. Psychometrika, 14(2):95–116, 1949.

[LSE+18] Ricky Laishram, Ahmet Erdem Sariyüce, Tina Eliassi-Rad, Ali

Pinar, and Sucheta Soundarajan. Measuring and improving the core

resilience of networks. In WWW, pages 609–618, 2018.

[LSH08] Sune Lehmann, Martin Schwartz, and Lars Kai Hansen. Biclique

communities. Phys. Rev. E, 78:016108, Jul 2008.

[LSLW] Jinyan Li, Kelvin Sim, Guimei Liu, and Limsoon Wong. Maximal

Quasi-Bicliques with Balanced Noise Tolerance: Concepts and Co-

clustering Applications, pages 72–83.

[LSLW08] Jinyan Li, Kelvin Sim, Guimei Liu, and Limsoon Wong. Maxi-

mal quasi-bicliques with balanced noise tolerance: Concepts and

co-clustering applications. In Proceedings of the 2008 SIAM Inter-

national Conference on Data Mining, pages 72–83. SIAM, 2008.

[LSQ+18] Rong-Hua Li, Jiao Su, Lu Qin, Jeffrey Xu Yu, and Qiangqiang Dai.

Persistent community search in temporal networks. In ICDE, pages

797–808, 2018.

[LSY03] Greg Linden, Brent Smith, and Jeremy York. Amazon. com rec-

ommendations: Item-to-item collaborative filtering. IEEE Internet

computing, (1):76–80, 2003.

BIBLIOGRAPHY 135

[Luc50] R Duncan Luce. Connectivity and generalized cliques in sociometric

group structure. Psychometrika, 15(2):169–190, 1950.

[LYL+19] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and

Jingren Zhou. Efficient (α, β)-core computation: An index-based

approach. In Proceedings of WWW, pages 1130–1141, 2019.

[LYM13] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. Efficient core mainte-

nance in large dynamic graphs. IEEE Transactions on Knowledge

and Data Engineering, 26(10):2453–2465, 2013.

[LZZ+19] Boge Liu, Fan Zhang, Chen Zhang, Wenjie Zhang, and Xuemin Lin.

Corecube: Core decomposition in multilayer graphs. In WISE, pages

694–710. Springer, 2019.

[MDFM19] Flaviano Morone, Gino Del Ferraro, and Hernán A Makse. The k-

core as a predictor of structural collapse in mutualistic ecosystems.

Nature Physics, 15(1):95, 2019.

[MDPM13] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi.

Distributed k-core decomposition. IEEE Transactions on parallel

and distributed systems, 24(2):288–300, 2013.

[MV13] Fragkiskos D. Malliaros and Michalis Vazirgiannis. To stay or not

to stay: modeling engagement dynamics in social graphs. In CIKM,

pages 469–478, 2013.

[NOHA09] JC Nacher, T Ochiai, M Hayashida, and T Akutsu. A mathematical

model for generating bipartite graphs and its application to pro-

tein networks. Journal of Physics A: Mathematical and Theoretical,

42(48):485005, 2009.

136 BIBLIOGRAPHY

[NSNK12] Eirini Ntoutsi, Kostas Stefanidis, Kjetil Nørv̊ag, and Hans-Peter

Kriegel. Fast group recommendations by applying user clustering.

In International Conference on Conceptual Modeling, pages 126–140.

Springer, 2012.

[NSRK14] Eirini Ntoutsi, Kostas Stefanidis, Katharina Rausch, and Hans-Peter

Kriegel. ”strength lies in differences”: Diversifying friends for rec-

ommendations through subspace clustering. In Proceedings of the

23rd ACM International Conference on Conference on Information

and Knowledge Management, CIKM ’14, pages 729–738, New York,

NY, USA, 2014. ACM.

[OMK15] Naoto Ohsaka, Takanori Maehara, and Ken-ichi Kawarabayashi. Ef-

ficient pagerank tracking in evolving networks. In Proceedings of

SIGKDD, pages 875–884, 2015.

[OZZ07] Ricardo V. Oliveira, Beichuan Zhang, and Lixia Zhang. Observing

the evolution of internet as topology. SIGCOMM Comput. Commun.

Rev., 37(4):313–324, August 2007.

[Pee03] René Peeters. The maximum edge biclique problem is np-complete.

Discrete Applied Mathematics, 131(3):651–654, 2003.

[PG09] Ardian Kristanto Poernomo and Vivekanand Gopalkrishnan. To-

wards efficient mining of proportional fault-tolerant frequent item-

sets. In Proceedings of the 15th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, KDD ’09, pages

697–706, New York, NY, USA, 2009. ACM.

[PZZ+18] You Peng, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Lu Qin.

BIBLIOGRAPHY 137

Efficient probabilistic k-core computation on uncertain graphs. In

Proceedings of ICDE, pages 1192–1203. IEEE, 2018.

[SB13] Julian Shun and Guy E. Blelloch. Ligra: a lightweight graph pro-

cessing framework for shared memory. In Proceedings of PPoPP,

pages 135–146, 2013.

[SEF16] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. Corescope:

Graph mining using k-core analysis - patterns, anomalies and algo-

rithms. In ICDM, pages 469–478, 2016.

[Sei83] Stephen B Seidman. Network structure and minimum degree. Social

Networks, 5(3):269–287, 1983.

[SF78] Stephen B Seidman and Brian L Foster. A graph-theoretic gener-

alization of the clique concept. Journal of Mathematical sociology,

6(1):139–154, 1978.

[SGJS+13] Ahmet Erdem Saŕıyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-

Lung Wu, and Ümit V Çatalyürek. Streaming algorithms for k-core

decomposition. PVLDB, 2013.

[SGJS+16] Ahmet Erdem Sarıyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-

Lung Wu, and Ümit V Çatalyürek. Incremental k-core decomposi-

tion: algorithms and evaluation. The VLDB JournalThe Interna-

tional Journal on Very Large Data Bases, 25(3):425–447, 2016.

[SLGL06] Kelvin Sim, Jinyan Li, Vivekanand Gopalkrishnan, and Guimei Liu.

Mining maximal quasi-bicliques to co-cluster stocks and financial

ratios for value investment. In Data Mining, 2006. ICDM’06. Sixth

International Conference on, pages 1059–1063. IEEE, 2006.

138 BIBLIOGRAPHY

[SMST18] Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sariyuce, and Srikanta

Tirthapura. Butterfly counting in bipartite networks. In Proceedings

of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pages 2150–2159. ACM, 2018.

[SP18] Ahmet Erdem Sarıyüce and Ali Pinar. Peeling bipartite networks

for dense subgraph discovery. In Proceedings of the Eleventh ACM

International Conference on Web Search and Data Mining, WSDM

’18, pages 504–512, New York, NY, USA, 2018. ACM.

[SRM14] George M Slota, Sivasankaran Rajamanickam, and Kamesh Mad-

duri. Bfs and coloring-based parallel algorithms for strongly con-

nected components and related problems. In Proceedings of IPDPS,

pages 550–559, 2014.

[SRTU09] Serguei Saavedra, Felix Reed-Tsochas, and Brian Uzzi. A simple

model of bipartite cooperation for ecological and organizational net-

works. Nature, 457(7228):463–466, 2009.

[UBMK12] Johan Ugander, Lars Backstrom, Cameron Marlow, and Jon Klein-

berg. Structural diversity in social contagion. PNAS, 109(16):5962–

5966, 2012.

[WA05] Stefan Wuchty and Eivind Almaas. Peeling the yeast protein net-

work. Proteomics, 5(2):444–449, 2005.

[WCL+18] Kai Wang, Xin Cao, Xuemin Lin, Wenjie Zhang, and Lu Qin. Effi-

cient computing of radius-bounded k-cores. In Proceedings of ICDE,

pages 233–244, 2018.

BIBLIOGRAPHY 139

[WDVR06] Jun Wang, Arjen P De Vries, and Marcel JT Reinders. Unifying

user-based and item-based collaborative filtering approaches by sim-

ilarity fusion. In Proceedings of the 29th annual international ACM

SIGIR conference on Research and development in information re-

trieval, pages 501–508. ACM, 2006.

[WHZ+18] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang

Zhao, and Dik Lun Lee. Billion-scale commodity embedding for

e-commerce recommendation in alibaba. In Proceedings of the 24th

ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining, KDD ’18, pages 839–848, New York, NY, USA,

2018. ACM.

[WJZZ15] Yubao Wu, Ruoming Jin, Xiaofeng Zhu, and Xiang Zhang. Finding

dense and connected subgraphs in dual networks. In ICDE, pages

915–926, 2015.

[WQZ+16] Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu.

I/O efficient core graph decomposition at web scale. In ICDE, pages

133–144, 2016.

[WYL+19] Xudong Wu, Long Yuan, Xuemin Lin, Shiyu Yang, and Wenjie

Zhang. Towards efficient k-tripeak decomposition on large graphs.

In Proceedings of DASFAA, pages 604–621, 2019.

[YCL14] Quan Yuan, Gao Cong, and Chin-Yew Lin. Com: A generative

model for group recommendation. In Proceedings of the 20th ACM

SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’14, pages 163–172, New York, NY, USA, 2014.

ACM.

140 BIBLIOGRAPHY

[YQL+15] Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang.

Diversified top-k clique search. In ICDE, pages 387–398, 2015.

[YQL+16a] Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang.

Diversified top-k clique search. VLDB J., 25(2):171–196, 2016.

[YQL+16b] Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie

Zhang. I/O efficient ECC graph decomposition via graph reduction.

PVLDB, 9(7):516–527, 2016.

[YQL+17a] Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang.

Effective and efficient dynamic graph coloring. PVLDB, 11(3):338–

351, 2017.

[YQL+17b] Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang.

I/O efficient ECC graph decomposition via graph reduction. VLDB

J., 26(2):275–300, 2017.

[YQZ+18] Long Yuan, Lu Qin, Wenjie Zhang, Lijun Chang, and Jianye Yang.

Index-based densest clique percolation community search in net-

works. IEEE Trans. Knowl. Data Eng., 30(5):922–935, 2018.

[ZLWX14] Andy Diwen Zhu, Wenqing Lin, Sibo Wang, and Xiaokui Xiao.

Reachability queries on large dynamic graphs: A total order ap-

proach. In Proceedings of SIGMOD, pages 1323–1334, 2014.

[ZLZ+18] Fan Zhang, Conggai Li, Ying Zhang, Lu Qin, and Wenjie Zhang.

Finding critical users in social communities: The collapsed core and

truss problems. TKDE, 2018.

BIBLIOGRAPHY 141

[ZP12] Yang Zhang and Srinivasan Parthasarathy. Extracting analyzing

and visualizing triangle k-core motifs within networks. In ICDE,

pages 1049–1060, 2012.

[ZPR+14] Yun Zhang, Charles A. Phillips, Gary L. Rogers, Erich J. Baker,

Elissa J. Chesler, and Michael A. Langston. On finding bicliques

in bipartite graphs: a novel algorithm and its application to the

integration of diverse biological data types. BMC Bioinformatics,

15(1):110, Apr 2014.

[ZYZ+18] Fan Zhang, Long Yuan, Ying Zhang, Lu Qin, Xuemin Lin, and

Alexander Zhou. Discovering strong communities with user engage-

ment and tie strength. In DASFAA, pages 425–441, 2018.

[ZYZQ17] Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin. A fast order-based

approach for core maintenance. In Proceedings of ICDE, pages 337–

348, 2017.

[ZZL18] Rong Zhu, Zhaonian Zou, and Jianzhong Li. Diversified coherent

core search on multi-layer graphs. In ICDE, pages 701–712, 2018.

[ZZQ+17] Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin.

When engagement meets similarity: Efficient (k, r)-core computa-

tion on social networks. PVLDB, 10(10):998–1009, 2017.

[ZZQ+18] Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin.

Efficiently reinforcing social networks over user engagement and tie

strength. In ICDE, pages 557–568, 2018.

[ZZZ+17] Fan Zhang, Wenjie Zhang, Ying Zhang, Lu Qin, and Xuemin Lin.

142 BIBLIOGRAPHY

OLAK: an efficient algorithm to prevent unraveling in social net-

works. PVLDB, 10(6):649–660, 2017.

	Title page: Effcient Core Computation in Bipartiteand Multilayer Graphs
	Abstract
	Publications
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms

	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Bibliography

