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Abstract 

In this thesis, statistical inference is made using reproducing kernel methods. Kernel 

methods are a versatile tool, and allow a seamless transition from parametric to non-

parametric methods. A flagship example of the use of kernel methods is the support 

vector machine. 

An effective and elegant method for classification problems, the support vector ma-

chine is one of many many applications of kernel methods. By embedding penalised 

splines within kernel methods, the support vector machine is given an interpretable, 

even additive structure. Addressed in detail are the large scale computational issues 

involved with support vector machines. 

Kernel methods are further used to make explicit links to longitudinal data analy-

sis. In doing so, the broad kernel machine methodology can incorporate the repeated 

measurements of longitudinal data analysis. Additionally, the links are made explicit 

between the degrees of freedom and kernel methods. 

Bayes methodology is addressed with kernel methods. A variational Bayes approach 

is used for linear mixed models and generalised linear mixed models. The approach is 

shown to be computationally efficient. Moreover, classical methods such as restricted 

maximum likelihood and penalised quasi-likelihood are shown to be special cases of 

variational Bayes. 

The final chapter of this thesis addresses the issue of model selection with only 

minimal assumptions. The robustness of such an approach is verified through extensive 

testing. 
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Chapter One 

Introduction 

This thesis is devoted to the use of kernel methods for the analysis of data. Many of 

the topics explored are on the interplay between traditional statistical approaches and 

those of machine learning. A particular focus is therefore on nonparametric regression 

and classification tasks. For classification tasks, the Machine Learning literature focuses 

on decision functions, while traditional statistics tends to focus more on the conditional 

probabilities. Such conditional probabilities may be obtained through either a frequen-

tist or Bayesian framework. 

There are some major drivers in the push towards effective, large-scale machine 

learning capabilities. Firstly, there is an ever increasing availability of computational 

power. Secondly, there has been a massive increase in the availability of large-scale, 

quality data to analyse. The data come from such areas as detecting credit card fraud, 

search engine optimisation, medical applications, handwritten document recognition 

and bioinformatics. 

Kernel methods are an adaptive and versatile tool. Recent years have seen kernel 

methods used extensively in statistics, medicine, computer science and engineering. The 

support vector machine is one such example of the use of kernel methods to produce 

high quality inference. On large data sets, there are also computational advantages to 

using support vector machines. With Vapnik and Lerner (1963), Wahba (1969) and Boser, 

Guyon and Vapnik (1992), support vector machines were derived through geometric 

arguments. Nowadays, support vector machines are investigated primarily as special 

cases of kernel machines (Steinwart and Christmann, 2008). An important question of 

support vector machines, and of kernel machines generally, is the optimal choice of 

parameters. 

An attractive aspect of the support vector machine is the lack of assumptions on the 

underlying probability distribution. Traditionally, statistical models impose normality 

and homoscedasticity, however real-life data will rarely hold to such high standards. We 

need to be able to model the data without imposing unnecessary assumptions - it is the 

data that is to guide the model. 



2 1 Introduction 

1.1 Thesis Overview 

The thesis is structured around topics on support vector machines, penalised splines, 

longitudinal data analysis, regression, classification, quantile regression, robust regres-

sion, variational Bayes, degrees of freedom, optimisation techniques and kernel meth-

ods. The rest of the thesis is divided into six chapters. 

Chapter 2: Penalised Splines and Reproducing Kernel Methods 

This chapter is largely based on Pearce and Wand (2006). We show how penalised 

splines are embedded in the class of reproducing kernel methods. Penalised splines have 

a simple structure that may be used in conjunction with the support vector machine and 

other reproducing kernel methods. Key computational benefits are achieved without 

significant losses in accuracy. 

Chapter 3: Explicit Links Between Longitudinal Data Analysis and Kernel Machines 

Much of the material in Chapter 3 originally appeared in Pearce and Wand (2009). Lon-

gitudinal data is characterised by repeated measurements of individuals over time. The 

chapter gives explicit links between longitudinal data analysis and kernel machines. In-

deed, it is shown that many longitudinal data analysis techniques are special types of 

kernel machines. The links shown in this chapter allow kernel machine methodology to 

incorporate repeated measurements. 

Chapter 4: Semiparametric Regression via Variational Bayes 

In here we present a variational Bayes approach to parameter selection. The Bayesian 

approach will often lead to intractable integrals, but with variational Bayes, the objective 

becomes obtainable. We show that there exists a close relationship between variational 

Bayes, and classical approaches such as restricted maximum likelihood and penalised 

quasi-likelihood. 

Chapter 5: Impact of Kernel Parameters on Degrees of Freedom 

The degrees of freedom of a model is an established concept in the Statistical literature. 

The degrees of freedom give a intuitive and scale free assessment of the amount of 

fitting applied. In this chapter, we investigate the relationship between the degrees of 
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freedom and the model parameters. The degrees of freedom is extended to encompass 

such instances as quantile regression and support vector machines. 

Chapter 6: Active Set Optimisation of Support Vector Machines 

The fast and reliable training of support vector machines remains a topic of much in-

terest in the Machine Learning community. With Chapter 6, a large scale optimisation 

algorithm is detailed for support vector machine trairung. The algorithm, active set 

support vector machine (AS-SVM), allows for the fast training of an support vector ma-

chines despite the large scale nature of the problem. Experimental evidence of time 

comparisons with existing methods show significant improvements in the time it takes 

to train a support vector machine. 

Chapter 7: On Model Validation and Selection 

Chapter 7 presents a new method for both model validation and selection. Model val-

idation involves the testing of a parametric null against a nonparametric alternative. 

Naturally, the question is then raised, if not parametric, how do we decide what the 

nonparametric fit should be? This chapter puts forward a novel criterion, called the 

parameter information criterion. The parameter information criterion gives a regression 

fit to data, and does so with minimal assumptions. 





Chapter Two 

Penalised Splines and Reproducing Kernel 

Methods 

2.1 Introduction 

The mid-1990s saw the parallel emergence of two important areas of data analysis re-

search.^ Although built on ideas that had accumulated over the previous decades, they 

were both ignited by several key papers and results. One area of data analysis research, 

as found in the Statistics literature, is a nonparametric regression technique known as 

penalised splines. The other area, reproducing kernel methods, are founded primarily in the 

Machine Learning literature, and have been used in a broad range of applications. This 

chapter builds a bridge between these two sets of literature. 

The main stimulus for the emergence of penalised spline research was Eilers and 

Marx (1996), while another key reference is Hastie (1996). The essential underlying ideas 

have been around for much longer, such as those given in Schoenberg (1969); Parker and 

Rice (1985) and Wahba (1990, Chapter 7). The focus of this penalised spline research is 

the generalisation of ordinary smoothing splines to knot sequences different from, and 

usually much smaller than, the observed predictor variables. Hastie (1996) and Marx 

and Eilers (1998) illustrated the benefits for additive models. Brumback, Ruppert and 

Wand (1999) identified simple mixed model representations which allowed, for example, 

straightforward incorporation of longitudinal data into nonparametric regression. Other 

developments include simpler incorporation of measurement error (Berry, Carroll and 

Ruppert, 2002) and geostatistical data (Kammann and Wand, 2003). Much of the work 

on penalised splines up until about 2002 is summarised in the book by Ruppert, Wand 

and Carroll (2003). 

A major stimulus in the emergence of both support vector machines and reproducing 

kernel methods was Boser, Guyon and Vapnik (1992), with Cortes and Vapnik (1995) being 

^Thls chapter is based on the publication: Pearce, N. D. and Wand M. P. (2006). Penalized Splines and 

Reproducing Kernel Methods. The American Statistician, 60, 233-240. 
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another key reference. An essential idea behind the early development of the support 

vector machine, margin maximisation, is much older, with Vapnik and Lerner (1963) and 

Wahba (1969). Around the same time, with Aizerman, Braverman and Rozonoer (1964), 

reproducing kernel methods were researched. The support vector machine has since 

blossomed into a huge literature, and has been the main catalyst for what have become 

known as reproducing kernel methods, or simply kernel methods, in machine learning. These 

titles should not be confused with kernel smoothing methods in the nonparametric 

regression literature (e.g.. Wand and Jones, 1995). 

A comprehensive overview of reproducing kernel methods is provided by Burges 

(1998); Evgeniou, Pontil and Poggio (2000); Cristianini and Shawe-Taylor (2000); 

Scholkopf and Smola (2002); Berlinet and Thomas-Agnan (2004) and Steinwart and 

Christmann (2008). Before the emergence of support vector machines, reproducing 

kernel methods were prominent in the nonparametric regression literature as a frame-

work for smoothing spline methodology, as summarised in Wahba (1990). However, the 

adoption of these ideas by the machine learning community has widened the scope of 

reproducing kernel methods considerably. 

This chapter shows how penalised splines are embedded in the class of reproducing 

kernel methods and thus builds a bridge between these two bodies of research. Re-

producing kernel representation of penalised splines is relatively simple compared with 

smoothing splines representation. It is envisaged that support vector machine research 

has the most to gain from this connection. The reduced knot aspect of penalised splines 

allows for big savings in computational complexity, as we explain in Section 2.7. This 

last feature is particularly relevant since sample sizes in classification applications are 

subject to continual increase. In addition, much of the support vector machine research 

is done within the machine learning discipline, and largely oblivious to many statistical 

principles such as interpretation, model building, diagnosis, low-dimensional structure 

and proper accounting for data dependencies. Kernels based on penalised splines offer 

the opportunity to incorporate some of these principles more straightforwardly than 

commonly used kernels. Similar recent work has been done using the ideas of smooth-

ing spline analysis of variance; see Lin and Zhang (2006) and Lee, Kim, Lee and Koo 

(2006). 

An illustration of a support vector machine classifier which utilises low-dimensional 

structure and is immediately interpretable is given in Figure 2.1. It arises from use of 

additive model penalised spline kernels (Sections 2.5.3 and 2.7) to build a classifier for 
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the "spam'' data, described in Hastie, Tibshirani and Freidman (2001), with spam e-

mail messages coded as + 1 and ordinary messages coded as —1. Each panel shows the 

slice of the classification surface for the labelled predictor, with all other predictors set to 

their medians. It is seen, for example, that frequency of the word "free" has a monotonic 

effect on classification while frequency of exclamation marks (ch!) has a non-monotonic 

effect. 
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Figure 2.1. Visualisation of a penalised spline support vector classifier for the "spam" data. Each 

panel shows the slice of the classifier with all other predictors set to their medians. The tick-marks 

show the predictor values: spam e-mail messages along the top, ordinary e-mail messages along 

the bottom. 

The next section provides a brief description of the simplest version of penalised 

splines. Section 2.3 describes the basics of reproducing kernel methods. The link be-

tween these two concepts is laid out in Section 2.4. Various extensions are treated in 

Section 2.5. Alternatives to reproducing kernel methods are given in Section 2.6. Sec-

tion 2.7 is devoted to the special case of support vector machines and advantages of the 

penalised spline approach are explained. We close with some summary remarks for this 
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chapter in Section 2.8. 

2.2 Penalised Splines 

For the moment we will consider only the regression situation where the observed data 

are {xi,yi) € IR x R, 1 < / < n, and both variables are continuous. The simplest 

penalised spline model is 

K 
Vi - i3o + Xi + Y^ Ukixi - + (2.1) 

k=l 

Here = max(0, x), ki,...,kk are a set of knots over the range of the Xf's and the are 

independent mean zero random variables with common variance cr̂ . Fitting is typically 

performed via penalised least squares: 

min ^ ( yi - ô - Xi - £ Uj,{xi - Kk)+ + A £ wM (2.2) 
K V 

i=l \ k=l / k=l 

where ^ = {^o, ^i)^, u = (wi,..., Uk)^, and where A > 0 is a smoothing parameter. The 

smoothing parameter controls the trade-off between bias and overfitting. 

A matrix formulation of (2.1) is 

1/ = Xj8 + ZM + £ (2.3) 

where 

^ = [1 Xi]i<i<nf -Z — [(Xi — K]() + 
l<k<K 

l<i<n 

and y and e contain the respective subscripted variables. Thus (2.2) becomes 

lin (\\y - Xj8 - Zuf + A (2.4) i,u V / mm 

where \\v\\ = Vv'^v denotes the norm of the vector v. The solution is 

(X'^Z-'^X)-'^X^Z-^y, u = - X^) (2.5) 

with L = ZZ^ + Ai. The notation of (2.3) suggests a linear mixed model and (2.5) 

corresponds exactly to best linear unbiased prediction if u is treated as a random effects 

vector with covariance matrix (cf/A)/ (Brumback et al, 1999). 

While we use the term "penalised splines'', it should be pointed out that there are 

several alternative names for what is essentially the same general approach. These 

include low-rank splines, P-splines, pseudosplines and reduced knot splines. 
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2.3 Kernel Machines 

In this section, we provide definitions and some fundamental theorems of reproducing 

kernel methods. This facilitates the kernel representation of penalised splines in the next 

section, and representations called upon in later chapters. Reproducing kernel methods 

are performed within the functional analytic structure known as a reproducing kernel 

Hilbert space (RKHS). The theory of RKHSs was developed by Kolmogorov (1941) and 

Aronszajn (1950). Contemporary summaries include Wahba (1990); Evgeniou, Pontil 

and Poggio (2000); Scholkopf and Smola (2002) and Steinwart and Christmann (2008). 

Of particular relevance to penalised splines are penalisations over subspaces that are 

based on projection operators. Relevant background material on Hilbert space projection 

theory may be found in Simmons (1963) and Berg, Christensen and Ressel (1984). 

2.3.1 Review of Reproducing Kernel Hilbert Spaces 

We start with some fundamental definitions and results, beginning with the following 

definition. 

Definition 2.1. Let X be a non-empty set. A function k: X x X R is a kernel on X if 

there exists a Hilbert space, H, and a map X ^H such that for all s, t e X, 

kis,t) = {<t-{s)Mt))-

The map 0 is the feature map and H is the feature space ofk. 

It follows that a kernel k must be symmetric, that is k{s,t) = k(t,s) for all s, t G X. 

Moreover, the function k{s, •): A' ^ R has k{s, •) G H for all s € X. For a given kernel, 

neither the feature map nor feature space are unique. We wish to determine whether a 

function A: is a kernel. It may not be straightforward to find a feature space and feature 

map for the kernel. The following definition of a positive definite function is often 

helpful in determining whether a function is a kernel. 

Definition 2.2. A function k: X x X K is called positive definite if it is symmetric, and 

for all n € N, ^ i , . . jj G IR and xi,..., G X, we have 
n n 

££0Ci0Cjk{xi ,Xj)>0. (2.6) 
1=17-1 

The nxn matrix, K, with entries k{xi,xj), 1 < i,] < n, is called the Gram matrix. 

For a function k being positive definite, the inequality in (2.6) is equivalent to the Gram 
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matrix being positive semidefinite. The following theorem, given as stated by Steinwart 

and Christmann (2008, Theorem 4.16), shows the equivalence between positive definite 

functions and kernels. 

Theorem 2.3. A function is a kernel if and only if it is positive definite. 

We now have necessary and sufficient conditions for a function to be a kernel. In 

particular, a kernel may be expressed as either as a positive definite function, or as an 

inner product, with feature space and feature map. For a kernel, however, it remains 

that the feature space and feature map are not unique. For an element x G A', a Dirac 

functional ^ IR is such that Sx(f) = f{x). That is, 5x maps f e H to the value 

/ has at X. As a linear functional, 3x is bounded if and only if it is continuous (e.g., 

Dudley, 2002, page 190). Making use of the Dirac functional, we have the following 

fundamental definition. 

Definition 2.4. A Hilbert space H is called a reproducing kernel Hilbert space over X if for 

all X e X the Dirac functional 5x is a bounded linear functional 

A well known result is that not only does every RKHS have a unique kernel, but 

every kernel has a unique RKHS. This result is expressed in the following theorem, 

proven by Aronszajn (1950) and attributed to E. H. Moore. 

Theorem 2.5. Assume H is an RKHS over X, and k: X x X R has the property 

k{sj) = {Ss,6t)u' foralls,i G AT. 

Then H uniquely determines k, and k uniquely determines H. 

Due to this uniqueness property, we can denote the RKHS by H]̂ . Of all Hilbert 

spaces, only for an RKHS does 5x{f) = 0 for all x G Af imply = 0. The adjective 

"reproducing'' arises from the important result 

{ f M ; x ) ) n , = ^ x { f ) = f [ x ) , for a l l / e W ^ . (2.7) 

In particular, 

(k { s r lk { t r ) )n , = = Ks.t). for alls, f G A'. 

A topological space is called separable if it contains a countable dense subset. If X 

is separable, and fc is a continuous kernel on X, then Tijt is also separable (Steinwart, 

2001). 
The steps for a separable RKHS construction from k are: 
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Name k{s,t) 

Linear s^t 

Polynomial (1 + s'^tY 

Gaussian exp(—7||s — 

Laplacian exp(—7||s — i||) 

Table 2.1. Examples of commonly used kernels with input space X = R^. We have 7 > 0 and 

/ e N . 

i) Determine the eigen-decomposition of the kernel, k{s, t) = \j(pj{s)(pj(t), with 

{q e N U 00}. This series is assumed to be well-defined (e.g., uniformly conver-

gent). 

ii) Define the pre-Hilbert space (i.e., an inner product space), Hpre, of real-valued 

functions on X : 

^pre = If' f ^^^^ E ^ì^^j < ~ 1 • 

I /=0 7=0 J 

Hi) Endow Hpre with the inner product 

\M m / ^ j=o 
i-pre 

iv) Complete the pre-Hilbert space. 

A more general construction, allowing for non-separable RKHS, is given by Steinwart 

and Christmann (2008). Trivially, the RKHS norm of f = ^ ^pre is 

We will see that penalised splines give rise to separable, finite dimensional RKHSs. 

Examples of kernels on R^ are given in Table 2.1. Linear and polynomial kernels have 

finite dimensional RKHSs. Gaussian and Laplacian kernels have separable RKHSs; ex-

plicit descriptions of their RKHSs are given by Bach and Jordan (2002) and Steinwart, 

Hush and Scovel (2006). 
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Name C{a,b) 

Squared error R {a - bf 

Absolute value R a-b 

e-insensitive R {a-b -€)+ 

Heaviside { - 1 , 1 } ^{ab<0) + 

Bernoulli log-likelihood { - 1 , 1 } 
Hinge loss { - 1 , 1 } {l-ab)+ 

Table 2.2. Examples of commonly used loss functions, together with appropriate closed domains. 

We have e > 0 and = max(0, b). 

2.3.2 Loss Functions and Objectives 

For regression and binary classification tasks, we wish to find a function^ / : A' —> R, 

so that f{x) is a prediction of y at jc. We measure how good such a predictor is at x 

through the loss function. 

Definition 2.6. Let y CR be closed. A loss function on y is a function C: y xR^ [0, oo). 

The loss function is (strictly) convex z / £ ( y , •) : R [0, oo) is (strictly) convex for all y ey. 

We would interpret C{y,f{x)) as being the cost, or loss, of predicting y by f{x). 

A small C{y,f{x)) is preferred, indicating that a good prediction oi y x has been 

made. Some examples of common loss functions are given in Table 2.2. The most 

commonly used loss function is the squared error loss. The choice of loss can be made 

in consideration of the model application. 

Empirical risk minimisation (ERM) over 7ik involves the directly minimising the aver-

age loss over the observed data, 

(2.8) 

For many loss functions, ERM is an ill-posed problem (Tarantola, 2005). It is not clear 

if even such a minimiser exists. For strictly monotonie loss, such as the Bernoulli log-

likelihood loss, it is well known that there are data sets for which there is no empirical 

risk minimiser. A characterisation of such data sets is given by Silvapulle (1981) and 

^Broader functional forms would encompass instances such as multiclass classification (e.g., Lee, Lin 

and Wahba, 2004; Zhu and Hastie, 2005) and unsupervised learning (e.g., Steinwart, Hush and Scovel, 

2005). 
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Albert and Anderson (1984). We now provide a more general characterisation of the 

existence of an empirical risk minimiser. 

Theorem 2.7. Let C be convex. Then there exist some f eHk such that: 

^^ fi^i) for ^{Vi, •) T^ot monotonically decreasing, 

ii) f{xi) <0 for all C{yi, •) not monotonically increasing, and 

Hi) f(xi) 0 for some C(yi, •) strictly monotonie, 

if and only if there does not exist an empirical risk minimiser over H^. 

The proof of Theorem 2.7 is given in Appendix 2.A.I. For convex loss functions such 

as squared error, e-insensitive and hinge loss, C{y,') is not strictly monotonie for all 

y G As a consequence of Theorem 2.7, for each of these losses, a fit to the ERM exists. 

For non-convex loss, the resulting ERM optimisation in (2.8) may be NP-hard. In 

particular, for Heaviside loss, minimising the ERM is NP-hard (Minsky and Papert, 

1988). The hinge loss serves as a convex upper bound for the Heaviside loss. ERM with 

hinge loss then gives an upper bound to ERM with Heaviside loss, and ensures that the 

minimisation problem is tractable (Lin, Lee and Wahba, 2002). 

2.3.3 Régularisation and Representation 

In practice, ERM can lead to overfitting. The fit may follow the data too closely, and 

extrapolate poorly to new observations. It is a standard procedure to minimise the 

empirical loss and squared RKHS norm of the fit. The trade-off is controlled by a 

smoothing parameter, A > 0. A fit over Hk, with respect to {xi,yi), 1 < i < n, C and A, is 

any solution to 

p i ? 1 1 ^iyiJM) + 1 • (2.9) 

feUk J 

Such a combination of loss and RKHS norm penalty is known as a kernel machine. Dis-

covered by Cortes and Vapnik (1995), the use of hinge loss in (2.9) results in what is 

known as support vector classification, while using 6-insensitive loss results in support 

vector regression (e.g., Drucker et al, 1997). Collectively, support vector classification 

and regression are known as support vector machines. Kernel machines with squared 

error loss (e.g., Suykens et al, 2002) include popular statistical methods such as krig-

ing (e.g., Cressie, 1993; Stein, 1999), smoothing splines (e.g., Wahba, 1990; Green and 

Silverman, 1994) and additive models (e.g., Hastie and Tibshirani, 1990). Recently Zhu 
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and Hastie (2005) explored the use of binomial log-likelihood loss in the kernel machine 

framework and coined the term kernel logistic regression. 

The following theorem is often useful when fitting a kernel machine, and was first 

shown for least squares loss by Kimeldorf and Wahba (1971). 

Theorem 2.8 (Representer Theorem I). Let f be a fit over Hk- Then f admits a representa-

tion of the form 

f(x)^Y^Cik{x,Xi). (2.10) 
i=l 

for some Cj G R, 1 < / < n. 

The representation of the fit in (2.10) is known as the dual form of the solution. The 

Ci are dependent on the data and the choice of C and A. A corollary for the uniqueness 

and existence is given by Steinwart and Christmann (2008, pages 168 and 201). 

Corollary 2.9. If the loss is continuous, then a fit exists. If the loss is convex, then any fit is 

unique. 

Even though the fit may be unique, the choice of Ci,.. . ,c„ in the dual form need 

not be. The ''kernel trick'' is that we do not need to calculate the eigenfunctions of k in 

order to find the dual form. The kernel trick is a popular theme in kernel methods, and 

has allowed many linear algorithms to be easily converted into non-linear algorithms 

(Scholkopf and Smola, 2002). The corresponding primal form of the solution is a linear 

combination of the eigenfunctions. When the eigenfunctions are easily calculated, as 

with the linear kernel, the primal form may offer a simpler and more intuitive form of 

the solution. 

It is often desirable that certain functions in Hk are unpenalised. Let HQ be such a 

subspace of Tik for which penalisation is not desired. Mathematically, this means that 

fits over Ho are found by empirical risk minimisation. Let Hi = HQ be the orthogonal 

complement of HQ in Hk, so that Hk = Ho® Hi. The projection operator Pi: Hk ^ Hk 

denotes the orthogonal projection onto Hi. It can be shown (e.g., Aronszajn, 1950) that 

Ho and Hi are reproducing kernel Hilbert spaces in their own right, with kernels ko 

and ki such that ko + ki = k. With respect to the null space Ho, loss function C, and 

smoothing parameter A, we define fits according to 

Pg^ IE^(ViJ i^ i ) ) + WWn, 1 • (2.11) 

f^^k [j^i J 

The following theorem and corollary show the representation and uniqueness of fits 

(Kimeldorf and Wahba, 1971; Scholkopf, Herbrich, Smola and Williamson, 2001). 
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Theorem 2.10 (Représenter Theorem II). Let f be a fit over H^ with respect to null space 

Ho = span{î/?o, ---F^p}, with Hi = HQ. Then f admits a dual representation of the form 

V n 

1 = 0 i=l 
for some ^ieR,0<i <p and ci € IR, 1 < z < n. 

Corollary 2.11. If C is convex then Pif is unique. If C is strictly convex, then f(xi) is unique 

for any 1 < i < n. Furthermore, if the nx {p-\-l) matrix [\pj-i has rank p-\-l, then 
i<;<P+i 

/ is unique. 

Corollary 2.11 shows sufficient conditions for the uniqueness of a solution. The 

corollary does not imply the existence of a solution. From Kimeldorf and Wahba (1971) 

we know that a solution to (2.11) exists for squared error loss. For convex loss, we now 

present necessary and sufficient conditions for the existence of a fit. 

Theorem 2.12 (Existence of a solution). Let Che a convex loss. Then there exists a fit with 

respect to null space Ho if and only if there exists an empirical risk minimiser over Ho-

A proof of Theorem 2.12 is given in Appendix 2.A.2. Theorem 2.12 shows the exis-

tence of a solution to the projected RKHS minimisation (2.11) is equivalent to existence 

of the empirical risk minimiser over the null space (2.8). For squared error, e-insensitive 

and hinge loss, amongst others, the existence of a solution is guaranteed. 

Following Wahba (1990, Chapter 10), we consider changing of the norm of the 

Hilbert space. For RKHS H^ = Hi® - • - ®Hr, let Hk> be an RKHS, and L: Hj, ^ Hk' a 

linear operator, such that for all f EHk and x e X: 

f(x) = Lf{x) and = Ai + • • • + A, ^ 

Then the kernel of Hk> is given by k'{s,t) = YJj=ikj{s,t)/Aj. This fact leads to the 

following theorem of Wahba (1990, page 128). 

Theorem 2.13 (Representer Theorem III). Let Ho = span{i/?o, ...,ipp}, and Ho, • -. ,Hr 

he mutually orthogonal with Hk = Ho ® " • ® Hr- Furthermore, let Pj : H^ ^ Hk be the 

projection onto Hj, with smoothing parameter \j,for all 1 < j < q. Then, any minimiser of 

Î ^ J { L ^ ( y i J i ^ i ) ) + WPlfWn, + • • • + Ar ||Pr/ 
2 
-Hk 

admits a representation of the form 

/ W = E f t ^ f W + } ' 
i=Q i=l 

for some eR,0 <i <p and ai G R, 1 < / < n. 
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We require the set {'HQ,...,Hr) to be mutually orthogonal. If the set were not 
orthogonal, H = H q ® • • • ^Hy would be a Hilbert space, though would not be an 
RKHS. By the combination of Corollary 2.11, Theorem 2.12 and Theorem 2.13, we have 
a characterisation of the representation, uniqueness, and existence of a fit to the kernel 
machine. 

2.4 Reproducing Kernel Representation of Penalised Splines 

We now show how penalised splines are a special case of reproducing kernel methods. 
In particular, penalised splines correspond to a finite dimensional RKHS. Here we 
explicitly lay out the reproducing kernel representation of penalised splines with its 
terminology and notation. This is very worthwhile as, for example, it allows exponents 
of penalised splines to see how their various principles (e.g., additive modelling) can be 
extended to other settings such as support vector classification. 

Consider the setting of Section 2.2 with pre-specified knots ki,...,kk- The kernel 
that allows penalised splines to be set within an RKHS framework is 

K 
]c{sj) = l + s f+ £(s-Kit)+(i-Kfc) + . 

k=l 

The eigenfunctions are, trivially, 

(Po(x) = 1, (pi{x) = X, (pk+iM = { X - l < k < K 

with eigenvalues Jo = = • - • = J k+ i = 1. A S such, the eigenfunctions also form an 

orthonormal basis. The RKHS is f̂c = =^0 + ^ix + £ Uk{x - 1 
with inner product 

I K K \ K 
i^O + ^ l X + E ""kix - Kk)+, jSo + î lx + £ U'j,{x - ) = iSô i + + ^ 
\ k=i k=i / k=i 

In particular. 

The penalised spline RKHS is a particularly simple Hilbert space in that it is finite-

dimensional and isomorphic to This means that projections in Hk correspond to 

familiar Euclidean projections of the coefficients, as illustrated in the next paragraph. 
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For penalised splines the subspace of unpenalised functions is the linear component 

and the orthogonal complement 

K 

k=l 

is the spline basis function component. The projection oi f eHk onto Hi is given by 

Pi 
\ 

+ ^ + ^ Uk{x - Kk)+ = Ukix - Kk) 

and, hence, = II"IP- Therefore (2.11) is equivalent to (2.4) for squared error 

loss. For more general loss, (2.11) reduces to 

min C{yi, (X/S + Zu)i) + . 

Define Xx = [1 x] and Zx = [(x - k:i)+ - • • {x - kk)+]. Then the primal form of the 

solution is f{x) = XxP + ZxU while the dual form is f{x) = E/Li Ci{XxXj. + ZxZj.) for 

suitable q , 1 < i < n. 

2.5 Extensions 

Sections 2.2 and 2.4 only considered penalised splines for scalar predictors and trun-

cated line basis functions. However, as shown in this section, the reproducing kernel 

representations apply for general penalised spline models such as those involving other 

spline basis functions, higher dimensional smoothing and additive structure. 

2.5.1 Other Spline Basis Functions 

For X G ]R, general penalised spline models can be written as 

f{x) = XxP + ZxU (2.12) 

where Xx = [1 x • • x^] for some p >0 and Zx is a set of spline basis functions. Without 

loss of generality, the penalty on u can be taken to be || m by appropriate transformation 

of the functions in Zx. Beyond the truncated line model (2.2) the simplest basis is 

Zx = [{X-Kk)l], 
l<k<K 
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corresponding to truncated polynomials of degree p. For numerical stability reasons, it 

is usually advantageous to linearly transform the truncated polynomial basis functions 

to, say, B-spline basis functions (e.g., Eilers and Marx, 1996). A suitable adjustment 

needs to be made to the penalisation component. 

Another family of bases is that corresponding to thin plate splines (French, Kam-

mann and Wand, 2001) and takes the form Xx = [1 x • • x^'^ and 

Zr = \X-Kk 

l<k<K 

2m-l n - 1 / 2 
Kk - Kk> 

l<k,k'<K 

Im-l 

These have an advantage of simple extension to higher dimensional x (Section 2.5.2). At 

this level of generality, the appropriate kernel is 

k[s,t)=XsXj +ZsZ], 

and the RKHS representation of (2.12) ensues. 

2.5.2 Higher Dimensional Predictors 

There are a number of ways by which spline basis functions can be extended to ac-

commodate higher dimensional predictors. For example, the extension of the thin plate 

spline bases for x = [xi, ...,Xd) G R^ is 

where the columns of Xx consist of all íí-dimensional polynomials in xi,...,x¿ with 

degree less than m and 

Zx=[rnid{\\x-Kk\\)]Ci Cl=[rmd{\\Kk-Kk'\\) 
l<k<K l<k,k'<K 

with 

rmd{x) = 

rlm-d d odd, 

d even, 

(e.g.. Green and Silverman, 1994). For s, t G R"̂  the appropriate kernel is 

kis,t)=XsXj-{-ZsZj. 

2.5.3 Additive Models 

For two predictors xi and X2 the linear penalised spline model is of the form 

yi = f{xiux2i)+ei 
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where 

K2 
f{Xi,X2) = + h X l + E UikiXi - Kik)+ + ^2X2 + £ " K2k) + - (2.13) 

k=l k^l 

The fitting criterion is 

( n 2 ) 
min <J^{y i - f (x i i ,X2 i ) ) + (2.14) 

where \\ and A2 are, respectively, smoothing parameters for variables Xi and X2. 

Let Ho, Hi and H2 respectively denote the reproducing kernel Hilbert spaces gener-

ated by the kernels 

k=l 
K2 

and k2(s,t) = - K2k)+(t2 - K2k) + , 
k=l 

where s = [si 52]^ and t = [ti Then 

Hk = HoeHi® H2 

is the RKHS generated by k = kokik2, with Hq, H\ and H2 mutually orthogonal 

subspaces of H\. For f £Hk let Pi/ denote the projection of / onto Hi. Then, using the 

notation of (2.13), 

Pif{xi,X2) = uuixi - Kik)+ and = ^ 
k=l k^l 

The projection operator P2 is defined analogously and (2.14) may be written as 

í^í? \ E (yi - + + A 2 I I P 2 / -Hk 
) 

For general loss functions the criterion is 

i ^ J j + + A2||P2/||̂ , I . 

fe-Hk J 

The extension to other basis functions and several predictors is straightforward. The 

same applies to additive models with higher dimensional components (e.g., Kammann 

and Wand, 2003). 

2.5.4 Semiparametric Regression Models 

General semiparametric regression models contain both smooth functional (nonpara-

metric) and ordinary linear (parametric) components. The simplest is 
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which is often referred to as a partially linear model. If / has representation (2.12) then 

the appropriate kernel isk = ko + ki where 

ko{s,t) = Xs,Xj^+S2t2 and ki{sj) = Zs.Zj^, 

s = [si and t = [ti ti]^. Let Ho and Hi be the reproducing kernel Hilbert spaces 

generated by ko and ki, respectively. Then Hk = Ho® Hi and the problem takes the 

same form as (2.11) with null space Hq. 

2.5.5 Varying Coefficient Models 

With varying coefficient models (Hastie and Tibshirani, 1993), we have both predictor 

variable, x € R, and modifying predictor variable s G R. With varying coefficient 

models, we assume that for fixed predictor variable, the model is linear in terms of the 

modifying predictor variable, 

yi = oc{si)+^{si)xi-\-£i. 

The intercept coefficients, it(.) and slope coefficients, are functions of the modifying 

predictor variable, s. With a penalised spline form for both intercept and slope, the 

penalised spline version of the model is 

yi= f{si,Xi)+ei 

where 
Ki / K2 \ 

f{s,x) = Oio + OilX - + + + 
\ k^l 

X. 
k=l 

Penalising the spline terms, the representation y = Xj8 + ZM + f is obtained by setting 

(Si - Xi {Si - Kk)^ 
l<k<K l<k<K l<i<n 

X — 1 Sj Xj SjXi / — 

we find the appropriate kernel isk = ko + ki where 

ko{sJ)=Xs,Xl + S2t2 and ki{s,t) = Zs.Zj^. 

2.6 Alternative Penalties 

Aside from squared RKHS régularisation, we have also considered empirical risk min-

imisation (2.8). Examples of empirical risk minimisation include ordinary least squares 

and linear quantile regression (e.g., Koenker and Park, 1996). Typically q is small and 
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fixed. Empirical risk minimisation is a special case of the projected squared RKHS norm 

penalty (2.11). Empirical risk minimisation is obtained either through the projection 

operator projecting everything to 0, or more simply, allowing A = 0. There has been 

a considerable amount of research on régularisation penalties. This section considers 

several alternatives to the squared RKHS norm. 

2.6.1 A Generalisation of the RKHS Norm 

More general than the squared RKHS norm penalty is the penalty term Q ( || • where 

O : [0, oo) ^ R is a strictly monotonicly increasing function (Scholkopf and Smola, 2002). 

This more general form can be seen as reparameterisation of A. Suppose that / is a 

solution to the optimisation problem with penalty term Q It is seen that / is 

also a solution to the representation in (2.9), for some A G [0, oo] (Scholkopf and Smola, 

2002, page 90). 

2.6.2 /^-norm Penalty 

An alternative to the RKHS norm is the /^-norm penalty (Tibshirani, 1996; Cristianini 

and Shawe-Taylor, 2000; Antoniadis and Fan, 2001; Koenker, 2005). Here we restrict 

ourselves to the finite dimensional case. Where / = E J ^ O ^ ; ^ / ' ^^^^ P < the /^-norm 

penalty is 

min I £ C{y i J {x i ) ) + A £ 1 • (2.15) 
f^Lj=oaj(pi j=p+i J 

The /^-norm penalty appears to be particularly useful when there are a large number 

of irrelevant variables (Tibshirani, 1996; Candes and Tao, 2007). An attractive computa-

tional aspect of the /^-norm penalty is that if JC is piecewise linear, then the minimisation 

in (2.15) results in a linear program (Zhu, Kosset, Hastie and Tibshirani, 2004). 

2.6.3 /^-norm Penalty 

Consider the following optimisation problem 

min 1 1 C{y i J {x i ) ) + A {\ao\' + • • • + { a . ^ M . 

where p > 1. With = 1, we obtain the /^-norm penalty as given directly above. If we 

take p = 2, we obtain the RKHS norm, that is, Cï (a) = a, for a > 0. 
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2.6.4 Banach Space Penalty 

We have seen in Section 2.3 that an inner product space can be developed into a Hilbert 

space. The squared norm of an element in the pre-Hilbert space is then given by the 

inner product, ( / , / ) = II/IIT̂ -̂ Although we have shown that many penalised spline 

formulations may be expressed making use of the Hilbert space norm, the use of the 

Hilbert space norm is restrictive in that the squared norm must be an inner product. 

Banach spaces are defined as complete normed vector spaces. This requires a set of 

functions, {(pOf(pi/ • • •}/ together with some norm, For suitable choices of we 

have the optimisation 

The Banach space norm penalty subsumes the /^-norm penalty, amongst others. The 

completion of the Banach space does not in itself ensure that the minimum exists for 

infinite dimensional case. In practice the squared RKHS norm penalty is, however, the 

more common choice. The squared RKHS norm penalty also subsumes many alterna-

tives, for example Wahba (1990) and the splines of Section 2.5. 

2.7 Support Vector Classifiers 

Squared error and likelihood-based losses (e.g., logistic, Poisson) for penalised splines 

have received a great deal of attention in the literature (e.g., Filers and Marx, 1996; Rup-

pert et ah, 2003). In this section we focus on the case of hinge loss, C[a, b) = {1 — ab)+, 

corresponding to support vector classifiers. In addition, we will focus on the situation 

where the sample size n is much larger than the dimension of the predictors d. The 

reverse situation, sometimes called high dimension/low sample size, has been the sub-

ject of a great deal of attention in the recent literature; especially due to the advent of 

microarray gene expression data (e.g., Dudoit, Fridlyand and Speed, 2002; Liu, Lin and 

Ghosh, 2007). Penalised splines seem to be more advantageous for the classical n > rf 

situation. 

We consider the generalisation of the two-component additive model described in 

Section 2.5.3 corresponding to Xi G IR'̂ : 

fixi) = (X/S + Zu\ = f XjS + ¿ Z,ue) (2.16) 
V S J i 

for design matrices X, Z = [ Z I , . . . , ZL], where each subvector U£ has its own smoothing 
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parameter. The criterion to mirürrüse is then 

(2.17) 

1=1 e=i 

where yi e { - 1 , 1 } . Note that (2.13) and (2.14) correspond to the situation where 

d = L = l, 

X = [1 xii ^2/]i<¿<« and Z = [Zi Z2] = (xn - {x2í - K2k)+ 
l<it<i:i 1<A:<ÍC2 l<i<n 

While this example involves two univariate smooths, it should be noted that higher-

dimensional smooths can also be accommodated by (2.16) and (2.17) (e.g., Kammann 

and Wand, 2003). 

Unlike least squares loss and Bernoulli log-likelihood loss, hinge loss is usually han-

dled via Lagrangian optimisation methods. A summary is provided by Chapter 5 of 

Cristianini and Shawe-Taylor (2000). See also Section 12.2 and 12.3 of Hastíe (1996). 

Minimisation of (2.17) is equivalent to the constrained optímisatíon problem 

subject to > 0, + Zu)i > 1 - for all l<i<n. 

The Lagrangian primal fimction is 

Lp = E + - + - (1 - - L t í Í Í (2.18) 
e=i i=i i=i 2=1 

where it/, Zj > 0 for all 1 < i < n. Setting the derivatives of Lp with respect to m̂  and 

¡i to zero results in the equalities 

Qy) =0} Ui = (2A^)"^ZJ(a; © y), 1 < £ < L; and T/ = 1 - a;¿, 1 < i < n, 

where here, and subsequently, A © B denotes the element-wise product of equal-sized 

matrices A and B. Substitution into (2.18) leads to the Lagrangian dual function 

Ld = l^a - ia'^Da where D = ^{yy'^) Q (ZA'^Z^) (2.19) 

and A = diag(Ail, • •• , A^l). The fitted ccf values are then found by solving the quadratic 

programming problem 

min (̂ oc'̂ Díí - í^a) 
(2.20) 

subject to 0 < oci < 1, for all I <i<n, and Qy) =0. 

The Karush-Kuhn-Tucker constraints include 

ocfyiiX^ + Zu)i - (1 - = 0, Tiii = 0 and yi(X^ -h Zm)¿ - (1 - > 0 
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for all l < i < n . 

Let a be a solution to (2.20). The fitted u is then 

A fitted value for is often determined by the non-bounded support vectors. These 

are given by {xf : 0 < < 1}. Let A4 be the set of 1 < i < n such that is a non-

bounded support vector. For each i e M , i i = 0 and from the first Karush-Kuhn-Tucker 

constraint we obtain the set of equations: 

= ( l / y i ) - { Z u \ = { y - Zu)i, i G M . (2.21) 

(the last equahty follows from yi € {—1,1}). 

If p is the length of and m is the cardinality of M then (2.21) represents a system 

of p unknowns with m linear equations. Most of the support vector machine literature 

only treats the case p = 1, corresponding to an unpenalised intercept. For the case 

p = 1, Cristianini and Shawe-Taylor (2000) solve for /S = ô using an arbitrary margin 

point, Hastie (1996) recommends averaging over all m margin points, while Hush, Kelly, 

Scovel and Steinwart (2006) recommends choosing ^o in order to minimise the primal 

(2.17). The system of linear equations can be both over-specified and under-specified. 

Hastie et al (2004) gave extensive treatment to the imder-specified case with p = 1. For 

general p our current recommendation for obtaining is to minimise the primal, and 

then to minimise UPO/IIT^^- That is, 

n n 
minB^ZZ^^, subject to V C{yi, (X/S + Zu)i) = argmin^^ C{yi, (Xj8' + Zu)i). 

^ i=i i^i 

We note that many quadratic programming algorithms will implicitly or explicitly find 

a fitted value These include, for example, Piatt (1999); Fine and Scheinberg (2001); 

Scheinberg (2006) and Ormerod, Wand and Koch (2008). 

The bulk of the computation is concerned with the solution of (2.20). For penalised 

splines kernels (2.19) shows that the Gram matrix K = lki{xi,xj)]i<i,j<n admits the 

factorisation 

K = Z A ' Z ^ = { Z A - i / 2 } { Z A - I / 2 } T 

and thus has rank bound above by the number of columns in Z. Fine and Scheinberg 

(2001) describe interior point algorithms that take advantage of such low-rank kernels. 

The algorithms involve 0{nK^) operations per iteration, where K is the rank of the Gram 

matrix and corresponds to the number of columns in Z for penalised splines. For fixed 
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K, the number of iterations required for termination is typically sub-linear in n. Since 

full-rank kernels are 0{n^) this can result in large computational savings when apply-

ing interior point methods in the n > K situation. Figure 3 of Fine and Scheinberg 

(2001) illustrates a more than 20-fold improvement in computation time for a particu-

lar example. There are also big reductions in storage when compared with full-rank 

interior point algorithms. Under looser convergence criteria than those typically used 

for interior point methods, there are algorithms that have faster rates of convergence. 

Joachims (2006) gives a cutting-plane algorithm that involves only O(nK) operations in 

total for convergence. Although the convergence criteria is not as strict as that used 

by Fine and Scheinberg (2001), it is the first solver to achieve O(nK) convergence. For 

full-rank kernels, O(n^) convergence to an approximate primal solution was achieved 

by Hush, Kelly, Scovel and Steinwart (2006). Large computational savings may be made 

using Joachims (2006) cutting-plane algorithm in the n K situation. Low-rank ker-

nels for support vector machines have also been studied by Smola and Scholkopf (2000); 

Williams and Seeger (2001) and Ormerod, Wand and Koch (2008). 

The significance of low-rank kernels in machine learning and related fields such as 

data mining and bioinformatics cannot be overstated. Sample sizes tend to be constantly 

on the increase in applications, and algorithms with O(nK) operations will become a 

necessity. Penalised splines are inherently of this order without significant losses in 

accuracy. 

2.7.1 "Skin of the Orange" Example 

We tested additive penalised spline support vector classifiers on the "skin of the orange" 

simulation settings described in Section 12.3.4 of Hastie et al (2001). Table 2.3 is mostly 

a reproduction of their Table 12.2 but with addition of classifier 7 — and lists the mean 

misclassification rates from the simulation study (along with standard errors). Classifier 

1 is a support vector machine with linear kernel. Classifiers 2-4 are support vector 

machines with polynomial kernels of dimensions 2, 5 and 10 respectively. Classifier 5 is 

BRUTO algorithm of Hastie and Tibshirani (1990) and classifier 6 the MARS algorithm 

of Hastie et al. (2001). Based on ideas in the current chapter, classifier 7 is described in 

the next paragraph. At the time of writing, data from the Hastie et al. (2001) simulation 

study are available on the internet^ and classifier 7 was applied to those data, making 

the results directly comparable. Note that the Bayes error for each setting is 0.029 and 

^available at http://www-stat.Stanford.edu/~tibs/ElemStatLearn/datasets/oraiige/ 
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represents a lower bound on the expected misclassification rate. 

Classifier 7 involved the 4- and 10-dimensional extension of the truncated line addi-

tive model (2.13) with 20 knots in each direction. The matter of having a good choice 

of smoothing parameters in the additive penalised spline classifier is non-trivial. For 

now, we have made a relatively simplistic rule. We roughly mimicked the "4 degrees 

of freedom per smooth function" default used in the S-PLUS function gamO (Chambers 

and Hastie, 1991). For hinge loss the usual degrees of freedom definitions for penalised 

spline additive models (e.g., Ruppert, Wand and Carroll, 2003, Section 11.4) are not 

immediate due to its non-differentiability. We got around this by using the Bernoulli 

log-likelihood loss as a rough approximation. 

Table 2.3 shows that this "rough-and-ready'' additive penalised spline support vec-

tor classifier performs quite well compared with the classifiers from the original study. 

Classifier 5 (BRUTO) performs better than classifier 7 in both settings, but uses much 

more sophisticated smoothing parameter and variable selection strategies. Classifier 2 

performs better than classifier 7 when there are no additional noise features, but the 

2-degree polynomial kernel is ideal for the spherical Bayes classification boundary of 

this setting. It should also be mentioned that classifiers 1-4 had their smoothing pa-

rameters chosen for optimal performance using the test data; while classifiers 5-7 used 

data-driven rules for smoothing parameter selection, and possibly variable selection, 

using only the training data. 

2.8 Discussion 

The connection between penalised splines and reproducing kernel methods has the po-

tential to be very fruitful. As is made clear in Section 2.7, support vector machines, 

which are not seriously hindered by large sample sizes, are a major payoff from this 

connection. It is also anticipated that many features of semiparametric regression in-

cluding variable selection, smoothing parameter selection, interpretability, robustness, 

low-dimensional structure will prove to be beneficial in data mining and machine learn-

ing applications. The simple structure of penalised splines will aid research in this 

direction. 

Some of the properties of RKHSs were presented in Sections 2.3.1 and 2.3.3. We 

have shown penalised splines to be related to the use of a special class of RKHSs. These 

RKHSs are of finite dimension, and isomorphic to Euclidean space. Since Pearce and 

Wand (2006), penalised spline support vector classifiers have been applied to a variety of 
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classifier 

no noise features 

(4 dimensions) 

six noise features 

(10 dimensions) 

1 SVC/orig. 0.450 (0.003) 0.472 (0.003) 

2 SVC/poly 2 0.078 (0.003) 0.152 (0.004) 

3 SVC/poly 5 0.180 (0.004) 0.370 (0.004) 

4 SVC/poly 10 0.230 (0.003) 0.434 (0.002) 

5 BRUTO 0.084 (0.003) 0.090 (0.003) 

6 MARS 0.156 (0.004) 0.173 (0.005) 

7 SVC/add. pen. spline 0.095 (0.004) 0.123 (0.003) 

Bayes error 0.029 0.029 

Table 2.3. Mean (standard error of the mean) misclassification rates over 50 simulations for the 

''skin of the orange" example. Classifiers 1-6 are described in Section 12.3.4 of Hastie (1996). 

Classifier 7 is a support vector classifier with additive penalised spline kernel as described in 

Section 1.7. 

machine learning problems. Ormerod, Wand and Koch (2008) showed positive results 

when compared with the use of Gaussian kernels. 

2.A Appendix 

There are proofs for two theorems in this chapter. Theorems 2.7 and 2.12. These two 

theorems are related, and give necessary and sufficient conditions for the existence of a 

minimiser. 

2.A.1 Existence of an Empirical Risk Minimiser 

Let us assume that TYjt has a finite dimensional eigen-decomposition, with eigenvectors 

{(po, ...,(f)q}. For convex loss, C, let A: [0, oo) be defined as 

i=l j=0 

(2.22) 

Clearly, A is a finite sum of convex functions, and therefore a convex function itself. For 

each / G we have /(•) ^ ^^^ ^^^^ e R. 

Therefore, 

¿=1 ;=0 i=l 

Let us make another definition (e.g., Rockafellar, 1970). 
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Definition 2.14. A vector, v G is called a direction of (strict) recession of A 

if for all u G A{u-\--v): R ^ [0,oo) is (strictly) monotonically decreasing, i.e., 

h{-): K ^ [0,oo) is (strictly) monotonically decreasing, where h (a) = A{u + av). 

We now characterise the directions of strict recession of A. 

Lemma 2.15. A vector, v G is a direction of strict recession of A if and only if 

/(•) — properties 

0 f{xi) > 0 for all C(yi, •) not monotonically decreasing, 

ii) f{xi) < 0 for all C(yi, •) not monotonically increasing, and 

Hi) f{xi) 0 for some C(yi, •) strictly monotonie. 

Proof First, we assume that / satisfies the properties i)-iii). Let zí; G R" be an arbitrary 

vector. Then, from properties i) and ii), C[yi, ií;/ + • / (x,)) : R ^ [0, oo) is a monotonically 

decreasing function for all 1 < / < n. From property Hi), we then find C{yi,Wi + /(^f)) 

is a strictly monotonically decreasing function, for some 1 < i < n. On combining these, 

we find Ylf=i ^iVif'^i + ' f(^i)) to be strictly monotonically decreasing. Hence, r is a 

direction of strict recession of A. 

We now show the converse. Since loss functions have range within [0,oo), we 

have Yl^^i C{yi,0) < oo. If / does not satisfy property i) or ii), then for some 

1 < i < n, C{yi,- f{xi)) is not a monotonically decreasing function. As C is convex, 

C{yi, tf{xi)) oo as Í —> oo, and v is not a direction of recession. Instead, if / satisfies 

properties i) and ii) but not Hi), we find ^{yi, • to not be strictly monotonically 

decreasing, and hence v is not a direction of strict recession. • 

Clearly, if such an / exists, there cannot be a minimiser; if g G span{(/)o, • • •, (^p}, then 

> EfLi + /(^f))- The converse is less clear; that if no such 

/ exists, that a minimiser does exist. The function A : R^ —> R U oo is called proper as 

A(2) < 0 0 for at least one z G R'̂ . We have the following theorem of Rockafellar (1970, 

Theorem 27.1 b, page 264). 

Theorem 2.16. Let A he any proper convex function. Then a minimum of A exists if and only 

if A has no directions of strict recession. 

By Theorem 2.16 and Lemma 2.15, it is clear that an empirical risk minimiser exists, 

for finite dimensional Hk, if and only if there does not exist / that simultaneously 

satisfies properties i)-iii). We have however, relied on the assumption that Hk has a finite 
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dimensional eigen-decomposition, as is usually the case for ERM. Consider the subspace 

of Hk given by Tí y = span{/:( •,xi),... ,k{-,Xn)}. Then has a finite dimensional eigen-

decomposition. Moreover, if Py: Hk ^ Hk is the projection operator onto Tiy, then 

f{xi) = P\\f(xi) for all ! < / < « . 

The ERM optimisation problem over Hk is then equivalent to 

n 

It is also clear that properties i)-iii) in Theorem 2.7 are equivalent to properties i)-iii) in 

Lenmia 2.15 with q = n-1 and ) = k(-,Xj+i) for all 0 < j < q. As such, for finite 

or infinite dimensional RKHS, the conditions for the existence of an ERM are given by 

properties i)-iii). 

2.A.2 Equivalence of Existence 

Let us now prove Theorem 2.12. As given in Theorem 2.10, we know that if a fit exists, 

that it has a representation of the form 

= + (2-23) 
; =0 i=\ 

SO that f[xi) = E)Lo ^j^jM + (^ic)i, where Ki is the Gram matrix of h. For v G 

and c € R", consider the function Aa : ^ [0, oo), 

^A f - E C{yu ¿ Vj^^tPj(xi) + {K,c)i) + Ac^Kic. 
V^/ 1=1 j=o 

We then have 

AA((í6O CnV) = 

where / is given in (2.23). Hence, any direction of recession of Aa requires c^Kic = 0, 

equivalently {Kic)i = 0 for all 1 < i < n. The existence of a direction of strict recession 

for Aa is the same as existence of a direction of strict recession for A in (2.22). By 

application of Theorem 2.16, the theorem is proved. 





Chapter Three 

Explicit Links Between Longitudinal Data 

Analysis and Kernel Machines 

3.1 Introduction 

Longitudinal data is characterised by there being repeated measurements of individuals 

over time.^ Such data sets abound in medical literature, where longitudinal studies 

are a dominant fixture. Since the seminal work of Harville (1977) and of Laird and 

Ware (1982), linear mixed models have been the mainstay of longitudinal data analyses. 

The predominant distinguishing feature of linear mixed models, when compared with 

linear models, is the dichotomisation of effects into fixed and random types. The fitting 

of fixed and random effects differ in that the latter is subject to a degree of shrinkage, 

or penalisation, dependent on the values of covariance parameters in the model. The 

concept of best linear unbiased prediction appealingly accommodates the handling of 

both types of effects (e.g., Robinson, 1991). Expositions on longitudinal data analysis, 

including the role of linear mixed models, can be found in Diggle, Heagerty, Liang 

and Zeger (2002); Fitzmaurice, Laird and Ware (2004); McCulloch, Searle and Neuhaus 

(2008) and Verbeke and Molenberghs (2000). 

The main goal of this chapter is to expose the commonalities shared by longitudinal 

data analysis and kernel machines. We show, explicitly, that many popular longitudinal 

fitting procedures are in fact special types of kernel machine. Their representation as 

kernel machines offers some key benefits to the practitioner of longitudinal data analysis 

as well to the practitioner of kernel machines. There are at least two potential payoffs 

from such links: 

i) The enrichment of longitudinal models to cope with non-linear predictor effects. 

ii) The adaptation of kernel machine classifiers to account for within-subject correla-

tion when applied to longitudinal data. 

^This chapter is based the publication: Pearce, N. D. and Wand, M. P. (2009). Explicit Links Between 

Longitudinal Data Analysis and Kernel Machines. Electronic Journal of Statistics, 3, 797-823. 
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Sections 3.3.2-3,3.5 gives some details on i). Sections 3.3.10-3.3.12 contains some illus-

trations of ii). 

Some recent related work is Gianola, Fernando and Stella (2006) and Liu, Lin and 

Ghosh (2007), each of whom combine linear mixed models with kernel machines to anal-

yse very high-dimensional genetic data-sets. However, neither of these papers deal with 

regular longitudinal data analysis models. James and Hastie (2001) and Müller (2005) 

are examples of articles concerned with classification when the data are longitudinal. 

The connections between longitudinal data analysis and kernel machines are not as 

strong in the case of classification tasks. The next section gives a concise overview of 

continuous response longitudinal data analysis. Section 3.3 forms the main body of 

the chapter and gives an explicit case-by-case description of kernel machine represen-

tations of popular longitudinal data analytic models, as well as explaining some non-

linear (kernel-based) extensions. Generalised response models and kernel machines are 

treated in Section 3.4. Concluding discussion is given in Section 3.5. 

3.2 Gaussian Linear Mixed Model 

In this section, and the following section, we suppose that the response variables are 

Gaussian. In this case, the main vehicle for longitudinal data analysis is the linear 

mixed model 
\ 

y = Xß + Zu + £, 
u 

/ 0 
/ 

G 0 

£ I 0 0 R 
(3.1) 

/ 

The use of (3.1) for longitudinal data analysis dates back to Laird and Ware (1982). 

Good summaries of estimation and prediction within this linear mixed model structure 

may be found in, for example, McCulloch, Searle and Neuhaus (2008); Robinson (1991); 

Ruppert, Wand and Carroll (2003, Chapter 4) and Verbeke and Molenberghs (2000). We 

will just present the main results here. 

For given covariance matrices G and R the the theory of best linear unbiased predic-

tion (BLUP) can be used to guide choice of j8 and u, and results in the criterion: 

(y - Xj8 - ZuyR-^{y - X/S - Zu) + u^G'^. 

This is minimised by 

M3LUP=GZTy-l(t/-X)SBLUp) 
(3.2) 
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where V = Cov{y) = ZGZ^ + R. Expressions in (3.2) are known as the BLUPs of and 

u. 

In practice, longitudinal data are fitted via the steps: 

i) Estimation of G and R. Usually, these matrices are restricted to a parametrised 

class of covariances matrices. Most commonly this is achieved though maximum 

likelihood, or restricted maximum likelihood (REML), under the normality as-

sumption (3.1). 

ii) Substitution of the estimated covariance matrices into (3.2). The resulting estima-

tors, and u, are commonly known as estimated BLUPs, or EBLUPs for short. 

The EBLUP phrase can be transferred to any linear function of and u. Thus, 

A^+Bu is the EBLUP of Ap + Bu for any pair of matrices A and B for which + Bu 

is defined. These two steps show a division into two types of estimation targets that 

arise in longitudinal data analysis: the covariance parameters in the G and R matrices, 

and the effects /S and u. The strong connections between longitudinal data analysis and 

kernel machines occur at the EBLUP step for estimation of the fixed and random effects. 

For this reason, we will not dwell on the estimation of the covariance parameters, and 

instead refer the reader to Pinheiro and Bates (2000). In further sections with Gaussian 

response variables, the covariance parameters will be taken as given. 

3.3 Explicit Links for Gaussian Longitudinal Analysis 

In this section we show, explicitly, how longitudinal data analysis is connected to kernel 

machine methodology. General kernel machines can be formulated in a number of ways. 

Among the most common are: optimisation and projection within reproducing Hilbert 

spaces (e.g., Kimeldorf and Wahba, 1971), maximum a posteriori estimation in Gaussian 

processes (e.g., Rasmussen and Williams, 2005) and Tikhonov régularisation of ill-posed 

problems (Tarantola, 2005). Due to its prominence in the Statistics literature (e.g., Wahba, 

1990; Berlinet and Thomas-Agnan, 2004) we will use the first of these formulations. 

We show that all longitudinal data analyses that use EBLUPs are actually just fitting 

a special type of kernel machine. To make these connections clear, we first treat some 

special cases of (3.1). We build up to complete generality in the later subsections. 
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3.3.1 Random Intercept Model 

The simple linear random intercept model is 

Vij = h + Xij + Ui + eij, 1 < ; < Hi, 1 < f < m, (3.3) 

where {xij,yij) G (K x R) is the ;th predictor/response pair for subject i, and the e/y are 

independent N(0,i7f) within-subject errors. The regression coefficients jSo and j6i are 

fixed effects, while the subject-specific intercepts 

are random effects. 

Given estimates a^ and a^ of the variance components, the fitted line for subject i is 

+ jSi X + Ui, \ < i < m , 

where jSo, ft and the Û/ are EBLUPs, as given by (3.2) with 

1 0 0 ••• 0 

(3.4) 

X = 

' 1 xn 

1 xim 

1 X21 

1 Xml and Z = 

1 Xml 

1 Xmrim 

1 0 0 

0 1 0 

0 1 0 

0 0 0 ••• 1 

0 0 0 ••• 1 

(3.5) 

Figure 3.1 shows the EBLUPs for data on longitudinally recorded weights of 48 

pigs (source: Diggle, Heagerty, Liang and Zeger, 2002), with al and a} estimated via 

REML. We now explain how (3.4) and the fitted lines in Figure 3.1 can be obtained as 

a solution to an RKHS optimisation problem - thereby making them a special case of 

kernel machines. In the following discussion, we assume that the estimates of al and a} 

have been obtained (either via REML, or some other means) and are equal to al and a}, 

respectively. 
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Figure 3.1. The EBLUP-fitted lines to the pig-weights data for the simple linear random intercept 

model. The panels are ordered according to the size of the 48 pigs. 

Let n = E/li^f arid re-subscript the (xij^ytj) and e/y sequentially; i.e., according to 

the map: 

(1,1), . . . , (2,1), . . . , (2,^2), (m,l), ...,{m,nm) 

i i i • • • i • • • i • • • i (3.6) 

1, . . . , ni, Ẑi + 1, . . . , ^1+^2, + 

This leads to the representation 
m 

Vi = + h + E ^i^ij + 1 < i < 
;=i 

where Z/y is (/,;) entry of Z as given in (3.5) and is an indicator of {xi,yi) being mea-

surements for subject j {1 < i < n, 1 < j < m). Next, form the RKHS of real-valued 

functions on 

= + (3.7) 

with kernel 

k{s,t) = k({Si,...,Sm+l),{ti,...,tm+l)) = 1 +Sif i + J^Si+jti^j. (3.8) 
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Note that, while Hk is defined on the whole of its members of interest in longitu-

dinal data analysis are actually on: 

R x (1 ,0 ,0 , . . . ,0) X (0,1,0, . . . ,0) X (0 ,0 ,0 , . . . ,1) 

Let 

be a subspace of Tî -

Theorem 3.1. Let (xi,yi,Zn,... ,Zim), I < i < n, he a sequentially subscripted longitudinal 

data set. Consider the RKHS Hk given by (3.7) and (3.8), and subspace H^ given by (3.9). 

Let Pu be the projection operator onto Hu = n f . Then the solution to the RKHS optimisation 
problem 

mm 
feTik i^l 

(3.10) 

with A == ^¡/ai corresponds to the EBLUPs of (3.4). Explicitly, the solution to (3.10) is 

/ ( x , l , 0 , . . . , 0 ) - ^ o + ftx + Ûi, 

and / ( j c ,0 ,0 , . . . , l ) = + + 

where x G R, j6o, and the Ui are given by (3.2) with G = a^I, R = a^I, and both X and Z 

given by (3.5). 

Proof. As Hk is finite dimensional, any f eHk may be expressed as 

so that 

Also, 

so that 

/=1 

Puf{x,zi,...,zm) = Y^UjZj, and \\Pufix,zi,...,Zm)\\n, = 
;=1 

yi - f{xi,zn,.. .,Zim) = {y-Xp- Zu)i, 

u 

The RKHS problem in (3.10) is then equivalent to 

min {l/aDWy - X/S - Zuf + {l/di)\\u\ ̂  

which corresponds to EBLUP for the random intercept model. • 
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3.3.2 Kernel based Extension to General Mean Curves 

Note that the kernel for the simple linear random intercept model can be written as 

(Si,. . ., Sm+l), (Í1,. . ., tm+1 )) (S, t ) + ku (s, t ) 

where ku{s,t) = ^^^si+yfi+y corresponds to the random intercept structure in the 

model, and k^{s,t) = 1 + siii corresponds to the population mean structure. More 

general population mean structures can be obtained by 

k^{s,t) = ko(s,t)-\-kc{s,t) = ko,i(si,ti)+kc^i(siJi) 

for kernels : K x R ^ R, and kc,i : R x R R. The kernel kô i corresponds to 

unpenalised functions, and typically /co,i(si,ii) = 1. We take kc,i to be a kernel on 

R X R. Examples include: 
Í 

exp{-7(s i - i i ) ^ } 

(l + 7|si - i i| )exp( -7|s i - ill) 

where 7 > 0 is a kernel parameter. The later kernel is known as the Matérn ker-

nel (Matérn, 1960; Seeger, Kakade and Foster, 2008). Each of these kernels have 

infinite-length eigen-decompositions and result in an infinite dimensional, separable 

RKHS. The kernel trick ensures that fitting and representation do not require an eigen-

decomposition. 

Let 7̂ 0/ '^c/ and Hu, be the RKHS generated by ko, kc and ku respectively. Then 

Hk^Ho® {Ho © Hu)^ © Hu (3.11) 

is an RKHS. Moreover, if Ho and He are orthogonal, then He = {Ho®Hu)^, and Hk has 

kernel k = ko ke ku- Let Pe'. Hk Hk be the projection operator corresponding to 

projection onto {Ho and let Pu be the projection operator onto Hu- Then a mean 

curve, with random intercept shifts, can be fitted via the RKHS minimisation problem 

min I ¿ {yi - f{xi, . . . , -f Â  ||Pc/||l + I , (3.12) 
f^n^ J 

where Â  > 0 and A« = o'l/o'l. are smoothing parameters. With multiple penalisations, 

we consider the solution to a generalised RKHS minimisation problem. By the Repré-

senter Theorem, a solution to (3.12) admits representation of the form 
n 

f { x , Zi,...,Zm) = (X/, Z/i , . . . ,Zim)) I Xe 
¿=1 (3.13) 

Zl/. • • / 2m 
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where fli,...,fl„ G R. Substituting the representation of (3.13) into (3.12) then gives the 

matrix criterion: 

min \\y - I^Q - K;,a\\ + (3.14) 

where Ka is the n x n matrix with (/,/) entries 

{XjfZji,. . .,Zjjn))/\c + ku{{Xi,Zii,. . .,Zim), {Xj,Zj\,. . . ,Zjm))/\u-

The matrix criterion is minimised by 

where V = Kx +I. 

We may express the representation in (3.13) in a more intuitive form, as 

n m 
fix) = -^Y^Cikc{x,Xi) + £ UiZij, 

i=l 1=1 

where c = a/Ac, arid U = Za/Au- Such an expression delineates the within-subject 

effects. The fitted values are for c and u are given by c = a/Ac and u = Za/Au. 

Explicitly, for X G IR we have, 

n 
f(x, 1 ,0 , . . . , 0) = + E Cik{x, Xi) + Qi, 

¿=1 
n 

f ix , 0,1,. . ., 0) = + E ^i) + 

and / (x ,0 ,0 , . . . , 1) = i6o + E Xi) + Um. 
1=1 

It still remains to choose the kernel, which we now briefly address. 

3.3.3 On the Selection of Kernel 

For the longitudinal data analysis of the Section 3.3.2, the user is required to select a 

kernel. There are a wide variety of choices that can be made for kc,i. A popular choice is 

the Gaussian kernel, typically with some data-dependent parameter 7. We briefly look 

at the issue of selecting the kernel. To the analyse the properties of the kernels, and 

classes of kernels, we have the following definition. 

Definition 3.2. A subset of a vector space is called a cone if it is closed under multiplication by 

positive scalars. The cone of a set, A, is the smallest cone containing A. 
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We have the following lemma as an immediate consequence of the positive definite-

ness of a kernel (i.e.. Definition 2.2). 

Lemma 3.3. Let ki and k2 be kernels, and Ai, A2 > 0. Then \iki + Xzh is a kernel 

Lemma 3.3 shows the set of kernels to be a cone. We now restrict these cones to 

particular varieties of kernels. For example, the cone of the Gaussian kernels, Ccauss, 

comprises all kernels, k, that can be expressed as 

rCO 

k ( x , x ' ) = kt.Gauss{x,x')d^{t) 
Jo 

fOO 

= / e x p { - t \ x - x ' \ ^ ) d ^ { t ) , 
J 0 '0 

for some measure ji, where î-causs denotes the Gaussian kernel with parameter t. The 

following example shows that the cone of the Laplacian kernels lies within cone of the 

Gaussian kernels. 

Theorem 3.4. Denote by Ciapiace Ccauss the cone of Laplacian and Gaussian kernels respec-

tively. Then Ci^aplace C Ccauss-

Proof. For each 7 G [0,00), we search for some function, g^: [0,00) ^ [0,00], such that 

poo 

/ kt,-Gaussix,x')gx{t)dt = VLaplace(^/^0/ ^Or all x , x ' G R, J 0 

where A:̂ -Lapiace denotes the Laplacian kernel, = exp(—7 — Let 

s = \x — x'\ . Then we have 

= for all S > 0. (3.15) 

J 0 

We recognise (3.15) as a Laplace transform. Inverting the transform (e.g., Korn and 

Korn, 2000, Appendix D), 

As gx is non-negative, we conclude that Ciapiace C Ccauss- • 

Theorem 3.4 provides a helpful interpretation of the Laplacian kernel. We may sus-

pect that a Gaussian kernel is appropriate, though need to choose a value for 7. The 

Laplacian kernel may be expressed as an integral over Gaussian kernels. 

3.3.4 Extension to Additional Linear Predictors 

Our final extension of the random intercept model involves the possible inclusion of ad-

ditional predictors, assumed to have a linear effect on the mean of the response variable. 
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Corresponding to each y„ 1 < i < n, \ei xf a p x 1 vector of such predictors. Then we 
should replace (3.11) by 

nk = Hoe He® Hu 

where each of these RKHSs are now on R^'+P+i and 

corresponds to the fixed effects. The RKHS minimisation problem is now of the form 

mm I ¿ J (y, Z,-,)) ' + Â  \\Pcf\\n, + ^u \ \Puf \ \n ,y 

By the Representer Theorem, the minimisation reduces to 

min lly - Xj8 - K ^ a f + a^K^a, 

where X = [1 (a: -)^]i<j<„ and K\ has terms 

(3.16) 

= kc,i{xi,Xj)/Ac + Z j Z j / A w 

The minimisation of (3.16) leads to the solutions: 

f = and a = V - \ y - X ^ ) , 

where V = K x - \ - I . L e t c = a / \ c , and u = Z ^ a / \ u - The fit can then be expressed as 

i=l 

and = [1 + + Um. 
i=l 

We now provide illustration of fits for this most general random intercept model. 
The longitudinal data set on spinal bone mineral density was originally analysed by 
Bachrach et al. (1999). The study comprised some 230 girls and young women. Many 
of the individuals in the study had repeated measurements, with a total of some 405 
measurements across the study. The subjects are categorised as belonging to one of four 
ethnicity groups: Asian, Black, Hispanic and White. With double subscript notation, the 
model is 
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where the yij are spinal bone mineral measurements (g/cm^), the x̂ - contain indicators 

for ethnicity and the Xjj are age measurements. The function c: R ^ R indicates a curve 

corresponding to the kernel kc. 

We used the Gaussian kernel with 7 = 0.05, Ac = 1 and A« = 1. The fitted curves 

in the upper part of Figure 3.2 show an increase in spinal bone mineral density up to 

the age of 22, and a higher spinal bone mineral density for Blacks. The mean age effect 

is clearly non-linear and is estimated well by the Gaussian kernel. The discussion of 

Section 3.3.3, suggests a Laplacian kernel-based fit. The lower part of Figure 3.2 also 

shows a Laplacian kernel-based fit, with parameters 7 = 0.0005, Ac — 1 and A« = 1. For 

this example, the Laplacian curve appears to be less smooth that the Gaussian curve. 

Both curves model the observed data well. 

3.3.5 Extension to Multivariate Kernels 

We briefly mention one last extension: the replacement of c(xf) by c{xi) where the 

Xj e R^. This can be achieved by making kc a rf-variate kernel as opposed to the uni-

variate kernels treated so far in this section. The relevant RKHS is now on and 

the kernel kc is on R^ x R^. Models of a similar type were recently considered by Liu 

et al (2007). Kernels methods allow the input domain to be very broad, many examples 

of the possibilities are given in Shawe-Taylor and Cristianini (2004). 

3.3.6 The Linear Mixed Model as a Kernel Machine 

We now review the relationship between the linear mixed model and kernel machines. 

This helps us facilitate the longitudinal analysis of later sections. For inputs x G R and 

z G R'^, we seek a function, / , so that f{x,z) predicts y. For a set of mutually orthogonal 

functions tjiji K ^ R, 0 < j < p, the functional form for / is 

p 1 

j=0 i=l 

For a strictly positive definite q x q matrix, G, consider 

. (x ' ,zi , . . . ,z ; ) ) = £ + z^Gz', (3.17) 
j=o 

= i + (3.18) 
/=o i=\ 

It is then clear from the expression in (3.18) that 

i) A: is a kernel, and 
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Figure 3.2. Upper part is the Gaussian kernel-based fit to spinal bone mineral, 7 = 0.05, Ac = 1 
and Am = 1. Lower part is the Laplacian kernel-based fit to spinal bone mineral, 7 = 0.0005, 
Ac = 1 and A« = 1. 
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ii) Hjc has an orthonormal basis in 

{U^) 

With the RKHS corresponding to the null space denoted by H^, let 

(3.19) 

In the following theorem, we consider R = ajl. The more general case will be consid-

ered in Section 3.3.9. 

Theorem 3.5. Let Hk he an RKHS with kernel given by (3.17), and subspace H^ given by (3.19). 

Furthermore, let Pu: Hk ^ H^ be the projection operator onto the orthogonal complement ofH^. 

Then the solution to the kernel machine 

(3.20) 

with A = aj corresponds to that of the observed BLUR Explicitly, the solution to (3.20) is 

p ^ i? _ 

j=0 j=l 

where x G R, Ô/ • • • / î p and the Ui,...,Uq are given by (3.2) with 

X = (3.21) 

Z a matrix with terms z/y, R = and G the matrix in (3.17). 

Proof. By the representer theorem, the solution to (3.20) admits a dual form represention 

p n 

j=0 1=1 

where it is clear that 

is the kernel with RKHS Hu- We then have 

i=0 i=l 
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In particular, for 1 < i < n, 

P 1 

j=0 i=l 

(3.22) 

where Ku has terms ku . . )). On substituting (3.22) into 

(3.20), we find 

min(i/ - XjS - Kuc^iy - Xj8 - K„c) + ayKuC. (3.23) 
p,c 

Some algebra then gives the minimiser of (3.23) as 

^ ^ (3.24) 

where V = Ku + crji. 

Let u = GZ^c. Then since Ku = ZGZ^, 

and (3.24) becomes 

u = GZ'^V-\y-X^) 

which is the same as for the BLUR • 

We have shown a connection between kernel machines and the BLUP of the simple 

linear mixed model. In particular, the covariance of u in (3.1) is seen as a feature of the 

expression for the kernel in (3.17). This is used in the following sections, as we return 

specifically to longitudinal data analysis. 

3.3.7 Random Intercept and Slope Model 

Close inspection of Figure 3.1 shows that the parallel lines restriction imposed by the 

random intercept model is questionable. A more realistic model is one that allows each 

pig to have his/her own slope. This is achieved through the random intercept and slope 

model 

yij = ^o + Vi-\-{^i-\-Wi)xij + eij, \ < i < n i , 1 < i < m, (3.25) 

where, as with (3.3), £/ ~ N(0,c7-2), while 

v;- i n d . -K T ~ N 
/ 0 

/ 

pCTvO-w 
\ 

_ w, _ \ 0 pCvO-w / 
(3.26) 
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Figure 3.3. The EBLUP-fitted lines to the pig-weights data for the simple linear random intercept 

and slope model The panels are ordered according to the final weights of each of the 48 pigs in 

the sample. 

allow for subject specific deviations in both intercept and slope from the mean line 

+ ^ix. Figure 3.3 shows an EBLUPs fit of this model to the pig weights data, 

with the covariance matrix parameters estimated via REML. The resulting fits com-

pare favourably with the random intercept model of the same data shown in Figure 3.1. 

It appears that the pigs do have different growth rates. A first step is to switch from the 

double subscripting of longitudinal data analysis to single subscripting notation via the 

map (3.6). The single subscript version of the random intercept and slope model (3.25) 

is 
m 

yi = ^0 + ^iXi + Y^iVj + XiWj)Zij + l < i < n 
M 

(3.27) 

where, as before, Z/y is (/,;) entry of Z as given in (3.5). 

The extension of (3.27) may be made to obtain a canonical form. To achieve canonical 

form, let 

U=lViWi '--Vm WmV, (3.28) 
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and the replacement of Z and G by 

1 xn 0 0 • •• 0 0 

1 xim 0 0 •••0 0 

0 0 1 X21 • • • 0 0 

Z = 0 0 1 0 0 

0 0 0 0 1 Xnl 

0 0 0 0 1 Xr 

and G = blockdiag 
KKm 

ai po'vO'w 

pCTvCTw 

(3.29) 

in the BLUP equations (3.2). From these replacements we now describe RKHS represen-

tation of these EBLUPs. 

Let us form the RKHS of real-valued functions on R^m+i. 

2m 
(3.30) 

with kernel 

k { s , t ) = k[{x,Zi ...,Z2m), = 1 + x x ' Z ^ G z ' . 

Note that 

where 

k { s , t ) = k o { s , t ) - \ - k u ( s , t ) , 

(3.31) 

(3.32) 
k^{{x,Zi . . . ,Z2m), . . • ,4m)) = 1 + 

and = z^Gz'. 

Let H^ and Hu be the RKHSs generated by k^ and /c„ respectively. Since H^ and Hu are 

mutually orthogonal, we have RKHS 

The following example is a straightforward application of Theorem 3.5. 

Example 3.6. Let (xf,i//,Z/i,.. . ,2/^), 1 < / < n, be a sequentially subscripted longitudi-

nal data set. Consider the RKHS Hk defined by (3.30) and (3.31) and subspaces Hb and 
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Hu be generated by (3.32). Let be the projection operator onto Uu- Then the solution 

to the RKHS optimisation problem 

mm ¿ { y / - /(^zv . . . , + A« \\Puf nk 

with Au = corresponds to the EBLUPs. Explicitly, the solution to (3.33) is 

f(x, 1, X,0,0,. . . 0,0) = + + (^1 + Wi)x, 

/(x,0,0,1, X,. . . 0,0) - + + (^1 + W2)x, 

(3.33) 

/ (x , 0, 0,0, 0,. . . 1, x) = + Vm + (^1 + W m ) x , 

where x eR, ^o, jSi, t^ = Li2z-i and W, = Q2Z for I < i < m, are given by (3.2) with X 

given by (3.5), Z given by (3.29), R = and G given by (3.29). <3 

The above example shows the random intercept and slope model (3.25)-(3.26) to be 

a special case of the kernel machine. We can make the connection more explicit by 

considering the orthonormal basis of H^. The singular value decomposition (or spectral 

decomposition) of the random effects matrix is 

O-i p(Tv(Tw 

pdvO-w O-w 

V ï ^ 

\/l — — a . 

du 0 

0 d^ Vl — Ci" — OL 

where the eigenvalues d̂  and d^ are given by 

dv = = {al + a l ) / l + ^ { a l - (72)2/4 + [ a ^ a ^ p Y , 

and dyj = = {al + (tI)/1 - crlY!^ + {(TvCrwpY-

The first normalised eigenvector component a takes the form 

oi = Oi((j-o,crw,p) = ^ 
OTviTwpl V i ^ v O - ^ p Y + i^i - dvYr ii p 0 or Œ y ^ cr^, 

0, otherwise. 

The matrix 

U = 
OL 

Vl - Oi^ -oc 

is orthonormal: UlA^ = t i^U = I. From (3.18), an orthonormal basis for Hk is then 

y/TvOtZi + y / ^ V 1 - OĈZi - y/d 0̂LZ2, 

. . . , /̂d (̂}íZ2m-l + V ^ V 1 - \fdv^\ - 0î Z2m-\ -
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3.3.8 Kernel Extension to Random Intercept and Slope 

As in Section 3.3.2 we can extend the random intercept and slope model to allow for 

non-linear mean structure. The representation of an RKHS optimisation problem given 

by (3.33) allows a kernel-based extension for nonlinearities. As well as maintaining the 

random intercept and slope, a nonlinear component is included. 

The extension to (3.25) considered here is of the form 

yij = ^o + Vi + [ h + + c{xij) + Eij, 1 < / < rii, l < i < m , 

where c: R ^ R. In this model /So + jSi • +c( ) is the smooth overall function. Changing 

to single subscript notation, we have the canonical form 

m 
Vi = h + + + E ZijUi + £/, l < i < n , 

;=i 

where u and Z are given by (3.28) and (3.29). 

Subject specific deviations in both intercept and slope are allowed. The relevant 

RKHS over R^'^+i is 

nk = noenc® Uu 

where Ho = {f- f(x) = ^ix}, He is any RKHS over R and orthogonal to Ho, and 

Hu is the RKHS corresponding to ku in (3.32). The kernels are of the form 

ko{(x, z ) , {x', z')) = l + xx', kc{{x, 2 ) , (x', z')) = kc^i {x, x'), 

a n d ku{(x,z),{x',z')) = z'^Gz'. 

With projections Pc and Pu, the RKHS optimisation problem is then 

mm 
feHk 

£{yi - f{xi, Zn,..., Zi2mV + Ac \\Pcf\\n, + A , ||P„/ 
i=l 

2 
nk 

where Ac G R and A« = Applying Theorem 3.5, the fit takes the form 
n 

f { x , 1, 0 ,0 , . . . 0,0) = + + (^1 + Wi)a: -h Cikc,i {x, x,), 
1=1 

n 
f i x , 0,0,1, X,. . . 0,0) = + t/2 + (^1 + W2)a: -h X] Cikc,i {x, Xi), 

i=l 

f i x , 0 ,0,0,0, . . . 1, x) = + Vm + (^1 + + E Cikc,i ix, Xi), 
1=1 

where c = a/Ac and 

Vim '--Vm y^mV = GZ^^ 
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The coefficients ^ and a are the solution to 

min{||y - X B - K x a f + 

where Kx has terms kcx I K + ZiGZj. 

We illustrate this method with the rats data set. The rats data set is from Gelfand, 

Hills, Racine-Poon and Smith (1990). The data consists of the weight measurements 

of 30 rats. The rats were weighted weekly, for a total of 5 measurements each. Each 

rat portrays an almost linear increase in weight over the time of the study. A quadratic 

kernel was found to fit well. The parameterisations, G and Ac, were estimated via REML. 

The random intercept-and-slope model does not give a good fit to the data. There is a 

noticeable curvature that is adequately modelled under the kernel extension, as shown 

in Figure 3.4. 
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Figure 3.4. Kernel-based fit to rats data. Each of the 30 rats shows an increase in weight. The is 

a noticeable curvature, and this is adequately modelled by the kernel extension. 
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3.3.9 Extension to General Random Effects Structure 

The general form of the XjS + Zu, u ~ (0, G), structure for parametric longitudinal data 

analysis has 

X = 

1 x[ 

1 X 

, Z = blockdiag(Xf ), and u 
\<i<m 

Ml 

M, 

with 

G = C O V ( M ) = blockdiag(E). 
\<i<m 

Here X? is an m x p matrix corresponding to the iih subject's fixed effects contribution 

(Xf j8) , X f is an m X i/ matrix and ui is a q x 1 random effects vector corresponding 

the hh subject's contribution (XfWf) and L is an unstructured q x q covariance matrix 

satisfying Cov(Mf) = E, 1 < z < m. The BLUPs for and u minimise 

(1/(7-2) _ XjS - Zuf + u^Gu. (3.34) 

Theorem 3.1 and Example 3.6 can be generalised to the situation where BLUP cor-

responds to the solution of an RKHS optimisation problem. The relevant RKHS, Hk, 

consists of real-valued functions on with kernel 

p mq 

k{s,t) = k{{si,. . . ,Sp+rnq)r{h,' " rtp+mci)) = 1 + Yj^j^ ^ D 

Subspaces of interest are those generated by 
p m 

kF{s,t) = 1 + j^Sjtj and kR{s,t) = Sp+i[Z]ijtp+j. 

We denote these by HF and HR respectively. We have 

'HK = HP © 'HR. 

Let Zi be the zth row of Z. Then the BLUPs given by (3.34) correspond to the RKHS 

optimisation problem 

n 

Y^iVi - fiXuZii,. . .,Zinr))^ + A , 
i=l 

where A = ct̂ , and PR is the projection operator corresponding to projection onto HR. 
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3.3.10 Correlated Errors 

Each of the longitudinal models considered so far have 

R = Cov(e) = a^L 

However, in longitudinal data analysis it is common to allow more general structure in 

the R matrix. Longitudinal data models such as these do not fit as comfortably into the 

RKHS framework. The RKHS corresponding to general positive definite R is given by 

the following theorem. 

Theorem 3.7. Let Hk he an RKHS with kernel given by (3.17), and subspace H^ given by 

(3.19). Furthermore, let Pu'. Hk ^ H^ be the projection operator onto H^, and Rbe a strictly 

positive definite n x n matrix. Then the solution to the kernel machine 

n 

E {yi-f{xi,zn,....Zim))lR-%jiyj-f{xj,Zji,...,Zjm)) + WPufWn, (3-35) fe-Hk 

is the same as that for the BLUP, with X given by (3.21), Z a matrix with terms Zjj, G is given 

by (3.1). 

Proof By the representer theorem, the solution to (3.35) admits a represention of the 

form 

P n 

. . . ,Zm), {Xi, 
;=0 i=l 

In particular, for 1 < i < n, 

P 
f{Xi,Zn,...,Zim) = + 

j=0 

On substituting into (3.35), we find 

min(y - X/S - ZGZ'^c)'^R-\y - X/S - ZGZ'^c) + cZGZ^c. (3.36) 

Some algebra then gives the minimiser of (3.36) as 

(3.37) 

where V = ZGZ^ + R. Let u = GZ^a. Then (3.37) becomes 

( x ' ^ y - i x ) - i x ' ^ y - V , 

u = GZV-\y-X^), 

which is the same as for the EBLUP. • 
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Example 3.8. The random intercept model with first-order autoregressive (AR(1)) errors 
has 

yij = + Ui + ^iXij + Eij, Eij = + ^ij, 

for 1 < / < m, 1 < / < Hi, where |p| < 1, Ui ~ N(0,£7-2), and the /̂y N(0,î7-2) ^^^ 
independent. The R matrix in this case is 

1 n . . . 
P R = blockdiag 

l<i<m 

P ••• P' 

1 ••• 

. . . 1 

The kernel machine is then 
II 

pi? E (ŷ  - /(^i/Z/i,. . . - f{Xj,Zji,. . .,Zjm)) + \\Puf\\n,, 

and is equivalent to 

min(y - XjS - ZMj^^K-^iy - Xj8 - Zm) + ^ M 

The fit is given by 

f{x, 1,0,0, . . . 0) - + Qi + h^, 

/ ( x , 0 , l , 0 , . . . 0 ) = + + 

0,0,0, . . . 1) = + Ûm + jSix, 

where (^o, = jSemp, ( ^ i , . . . , = "blup, and G = îtJî. < 

3.3.11 Alternative Regression Loss Functions 
So far in this section we have only considered squared error loss Cis{a,h) = {a — b)'^. 

A range of alternatives for regression are available to the practitioner. We call a loss 
function a regression loss if it admits the representation C{a,h) = h{a — h), for some 
function /z: R —> [0,oo). The Statistics literature identifies various reasons why we 
would choose a regression loss other than least squares. These include: 
i) The distribution of the errors may be non-Gaussian. 
ii) To improve the robustness of the model. 
Hi) We may be interested in a quantity other that the conditional mean, such as the 

conditional median. 
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iv) It may be computationally cheaper to use an alternative loss function. 

Recall that the Gaussian linear mixed model (3.1) assumes that the errors are from 

the normal distribution. More generally, for some distribution fc, we have 

1/ = XJS + Zm + £, M ~ N(0, G), and ~ (3.38) 

The log-likelihood of (3.38) is then 

log(F) - ¿ l o g / , ( ( i / - X)S - Zu)i) - lu'G-'u - 1 log |G| - f log(27r). 
i=l 

We then choose (/S,m) by the maximising the log-likelihood, 

max | è l o g / , ( ( i / -Xp- Zu)i) - ^u'^G-'u^ . (3.39) 

The connection between the maximum likelihood and the kernel machine is well 

established in the literature (e.g., Poggio and Girosi, 1990; Green and Silverman, 1994). 

It is made clear by the following theorem. 

Theorem 3.9. Let C{a, b) = — log fe(a — h). Then the solution to the kernel machine 

corresponds to the maximum likelihood estimator in (3.39). 

Proof. By the representer theorem, any fit admits the representation 

q n 

j=0 i=l 

for some 1 < j < q and c„ 1 < i < n. The result then follows by substituting for 

l<i<n. • 

It is well known (e.g., Huber and Wiley, 1981) that the least squares loss is non-robust 

against outliers. The motivation with robust statistics is to produce estimators that are 

not unduly affected by small departures from model assumptions. In particular, we are 

concerned with departures in normality in the error component. 

The use of the f-distribution for modelling the errors has attracted some interest 

in robust modelling, for example Lange, Little and Taylor (1989); Peel and McLachlan 

(2000) and Staudenmayer, Lake and Wand (2009). An attractive aspect is that is that we 

may maintain an elegant mixed model framework. For a f-distribution with degrees of 

freedom, v, and scale parameter, cr, the probability density function is given by: 

^ - ^ I I Y - 1 + 
\ vcr^ 
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where r(-) is the Gamma function, T{z) = dt. As an alternative to the Gaus-

sian linear mixed model (3.1), we now have 

1/ = XJ6 + Zm + £, M ~ N ( 0 , G) , and E,- ~ tŷ .̂ (3.40) 

The maximum likelihood estimator of u and e in (3.40) is then given as the solution 

to 

where. 

I Ë ^v,a-tdist{yu (XjS + Zu)i) + au^G-^u I , 

a >̂ v,(r-tdist («/ b) = {v-\-l)\o^ 1 + V v 
The relationship between Cy^^-idisi arid fv,a(x) is given by 

where c is a constant, independent of a and b. 

The relationship of the loss to twice the negative log-likelihood of the error distribu-

tion has been well established in the literature (Green and Silverman, 1994). Consider 

the double exponential distribution, again with scale parameter a, 

- ^ • 

Minimising the double exponential loss is then equivalent to minimising over the abso-

lute value loss, 

a - b 
Cav{a,b) = 

cr 
(3.41) 

= - 2 1 o g ( ^ W ) + c, 

for constant c. The absolute value loss has been use to find a median regression curve 

(Barrodale, 1968). A similar approach can be made using a nonsymmetric double expo-

nential distribution. For some 0 < T < 1, we have the quantile regression loss. 

Cr.qria,b) = Pria - b) = < 
-{l-T){a-b), {a-b)>0, 

T(FL - b), {a-b)< 0. 

The quantile regression loss has attracted some recent attention in the machine learning 

literature (Takeuchi, Le, Sears and Smola, 2006; Christmann and Steinwart, 2008). For 

some S > 0, Ruber's loss, Cs-uuher> is given by 

(fl - b f , a - b <0, 

2ôa-b -0^, a - b >â. 
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Name Prior distribution on e C{a — b) 

BLUP Normal {a - b)^ 

Robust regression t-distribution log (l + t(a - b)^) 

Median regression Double exponential \a-b 

Quantile regression Weighted double exponential pr{a-b) 

Support vector regression '̂̂ P ( ~ ) 

Table 3.1. Regression formulations with corresponding regression loss functions and priors. We 

require the parameterisations F > 0, 0 < T < 1, and E > 0. 

For small values of — Î7|, Ruber's loss is equivalent to the least squares loss, while for 

large values the penalty is linear. An alternative to the Ruber's loss is the e-insensitive 

loss >Ce-insens(fl/ first given by Drucker, Burges, Kaufman, Smola and Vapnik (1997), 

jC^€-msens{a,b) = (\a - b\ - e)^ . 

Note that the e-insensitive loss ignores deviances smaller than e, and has a linear penalty 

for larger values oi\a — b\. Both Ruber's loss and the ^-insensitive loss may be expressed 

as a constant (not dependent on x), plus twice the negative log-likelihood of a distribu-

tion. Girosi (1998) showed that the density 

leads to the use of the support vector regression loss. The median regression loss. 

Ruber's loss and the support vector regression loss are all known to be robust. It is of 

no suprise that the densities that generate them are also fat tailed. The linear mixed 

model has 

y = X^ + Zu + e, M - N(0, G), and e,- ~ / „ (3.42) 

with solution given by 

min I £ (XjS + Zu)i) + u^G-'u^ , 

where C{a,b) = -21og/e(a -b)-\-c. 

3.3.12 Example: Median Longitudinal Regression 

The traditional approach to regression estimation is concerned with finding the condi-

tional mean. For many problems, we may instead be more interested with finding the 

conditional median, or by extension, the conditional quantiles. 
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Along with the book Koenker (2005) there has been a increase in interest in median 

regression as a helpful data analysis tool. Median and quantile regression has had a 

substantial interest in the ecology, economics and statistics literature with Albrecht, Bjrk-

lund and Vroman (2003); Buchinsky (1994); Cade and Noon (2003); Chaudhuri, Doksum 

and Samarov (1997); Engle and Manganelli (2004); Knight and Ackerly (2002) and Yu 

and Jones (1998) to name but a few. Recent literature, such as Takeuchi, Le, Sears and 

Smola (2006),Li, Liu and Zhu (2007) and Christmann and Steinwart (2008) have shown 

the appropriateness of reproducing kernel methods for the task, though do not consider 

longitudinal data. 

The spinal bone mineral data set was previously analysed in Section 3.3.4, whereby 

the conditional mean spinal bone densities were modelled. For measurements of spinal 

bone mineral density, it may be of more interest to model the conditional medians. 

Authors, such as Koenker (2005), have argued that for many practical problems, it is the 

conditional median that is of interest. 

We now detail the use of the absolute value loss (3.41) for median longitudinal re-

gression. The RKHS problem is of the form: 

P l ^ i è +AC||PC/|Ih, + AU||P./||?,,L (3.43) f^nk J 

where the parameter a in (3.41) has been absorbed into Ac and A«. (As REML is for least 

squares loss, we do not have ready estimates for a.) By Theorem 2.13, any minimiser of 

3.43 may be expressed as 

i=\ 

Evaluating (3.3.12) at each observation. 

Substituting (3.3.12) into (3.3.12) gives the optimisation problem 

Via the use of Lagrangian multipliers, a dual form of (3.43) arises as the QP 

min — y^a^ 

subject to — 1 < fli < 1, for all 1 <i <n, and X^a = 0. 

The illustration given in Figure 3.5 shows a fitted median curve to the males cohort 

of the spinal bone mineral data set. Like the support vector machine, median regression 
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Figure 3.5. Median regression applied to the males in the spinal bone mineral data set. 

results in a quadratic program. The kernel kc,i was chosen to be Gaussian with 7 = 0.05. 

The parameterisations Â  = 0.1 and A« = 0.1 were chosen by hand. The curves show an 

increase in median spinal bone mineral density up to about the age of 22. The curves 

also show a higher median spinal bone mineral density for Black males, and lower 

medians for the Hispanic cohort. 

3.4 Generalised Response Extension 

We have relied on the assumption of homoscedasticity of the errors, more specifically, 

that the variation of the errors is independent of the conditional mean. Many longitu-

dinal studies have a non-continuous response, such as count or binary variable. With 

a binary variable, the conditional variance is dependent on the conditional mean. In 

such circumstances the linear mixed model in (3.42) is not appropriate and alternative 

approaches are required. The most common involve generalised linear mixed models 

(GLMM) and generalised estimating equations (GEE). In this section we describe ex-

plicit connections between kernel machines and the popular penalised quasi-likelihood 

(PQL) methodology for fitting GLMMs to generalised response longitudinal data. 

To keep the notation simple, we will work with GLMMs confined to the canonical 
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one-parameter exponential family framework: 
f(y\u) = exp{i/T(x/5 + Zu) - + Zu) + l'^c(y)}, m ~ (0, G) (3.44) 

where f{y\x,u) denotes the conditional distribution of y given x and u, and b and 
c depend upon the family member. The most common examples are Bernoulli, with 
b(s) = log(l + c(s) = 0, and Poisson with b(s) = e^, c(s) = -log(s!). The one-
parameter exponential family makes the assumption that there is a functional relation-
ship from the conditional mean to the conditional variance (e.g., Rabe-Hesketh and 
Skrondal, 2008). The matrices in the linear predictor Xf> + Zu, as well as G, have defi-
nition and structure identical to those in the continuous response situation described in 
Sections 3.2 and 3.3. The simplest example is the generalised response random intercept 
model 

f(yij\Ui,...,Um) = exp 
m rii 

L Liyai^o + h ^ij + ^i) - H^o+h ^ + ^i)} ii=ij=i 
(3.45) 

with Ui ~ N(0, al)rl<i< m, which corresponds to (3.44) with X and Z as in (3.5) and 
G = a l l . 

A common approach to fitting GLMMs is maximum likelihood for (j8, G) and best 
prediction for u under the normality assumption u ~ N(0, G). However this requires 
numerical integration techniques and, especially if the integrals are multi-dimensional, 
approximations are used instead. The most common of these is PQL (e.g., Breslow and 
Clayton, 1993). However, we will not treat quasi-likelihoods here, so the label penalised 
likelihood (PL) is appropriate. For (3.44) with u ~ N(0, G) and G known this involves 
maximisation of the penalised likelihood, 

exp{/(X)S + Zu) - + Zu) - lu^G'^u) (3.46) 

to obtain the estimates /5PL and MPL. 
We now show that the penalised likelihood (3.46) can be treated as an RKHS optimi-

sation problem. Hence, obtaining jSpL and Mpl for a given G involves a particular kernel 
machine. Again, with simplicity in mind, we give the full explanation for the random 
intercept model (3.45). The general case follows via the linear algebraic arguments and 
structures given in Sections 3.3.7 and 3.3.9. 

Re-subscript the (xij,yij) sequentially (as in Section 3.3) and, as before, let Zjj be the 
(/,;) entry of the matrix Z defined at (3.5). Then (3.45) is 

JL{ / IL \ / ^ \ ) 
f { y i + h^i + E ^ii^i " M ^o + + ^ i' i=l t V j=i / V / J 
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Model Distribution Link 

Linear regression Normal H 
Logistic regression Binomial 

Probit regression Binomial 

Poisson regression Poisson 

Gamma regression Gamma 

Inverse Gaussian Inverse 
regression Gaussian 

Table 3.2. Some examples of commonly used GLMMs. 

Let Hk, k and H^ be defined by (3.7), (3.8) and (3.9) respectively. Then penalised likeli-

hood estimation of /S and u is equivalent to the RKHS optimisation problem 

rmn | £ Z^ Z,>„)) + A | (3.47) 

where is the projection operator onto Hu = H^, A = l/cr^ and the loss function is 

given by C{s,t) = —2{st — b{t)}. For example. 

£(s, i) = I 
—2 {si - log(l + , in the Bernoulli case, 

—2(st — e^), in the Poisson case. 

If / is the solution to (3.47) then 

and f(x,0,0,...,l) + + 

v/here P̂L and {Ui , . . .MmV = «PL-

The relationship between the fits, /, and the conditional mean, ¡i, is given by a 

bijective link function, g{}i{-)) = /(•). For example. 

log i-^i}.)' ^̂ ^ Bernoulli case, 

log }i{-), in the Poisson case. 

On inverting the link function we find 
/ 

i+exp/(V ^ ^̂ ^ Bernoulli case. 

exp / ( • ), in the Poisson case. 
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3.4.1 Kernel Extension 

With GLMMs, the link function gives an explicit relationship between the mean, and 

some linear function, /. At times, there may no exist a suitable linear relationship, and 

a kernelised approach may be desired. A regularised setting for classification tasks is 

min ¡^•£C{y¡,f{xi,Zn Zi„)) + , 

where C is some loss function. 

In order to fit a linear model, we have = {/ : f = + E j l i ^j^ij} • Let Ho 

and He denote the reproducing kernel Hilbert spaces generated by the kernels ko{s,t) 

and kc{s, t), where ko(s, i) = 1 + Sih and kc{s, t) = Ey^i si+jh+j. As before, let Pc be the 

projection of / onto T̂ c- Like the EBLUP, we would like to allow for correlation among 

repeated measures. 

For a non-linear model, especially for those with high dimensional Hilbert space, 

a regularisation of the nonlinear component is required. For example, consider: 

ko = 1, kc{s,t) = kc{si,ti) and ku{s,t) = E/liSi+yii+y, where kc is kernel, such as 

kcisiJi) = e x p ( - 7 |si - hl^). With Ho, He and H u corresponding to ko, kc and ku re-

spectively, Hk = Ho ® He ® Hu- Regularising both the nonlinear component and the 

Uj's we have 

min I ¿ ; £ (y¿,/ (x,-, Z,-,)) + Â  \\Peff̂ ^ + A„ I , (3.48) 
feHt J 

where Pc is the projection onto He, and Pu is the projection onto Hu- The question also 

remains as to the suitable choice of parameterisations, C, H^, Ac and A«. 

3.4.2 Bernoulli Loss for Classification 

An example of a Bernoulli response data involves longitudinal measurements on 275 

Indonesian children from Diggle et al (1995). The response variable is an indicator of 

respiratory infection. The study was conducted to determine the effects of vitamin A 

nourishment on the respiratory health of children. The aim was to see if vitamin A 

supplementation would be of benefit. For our purposes, we look to see the effect of 

age on the presence of respiratory infection. The analysis also needs to account for 

correlation among repeated measures on the same child as well a possibly non-linear 

age effect. We have included, as a fixed effect, both the sex of the child and whether 

they are vitamin A deficient. 
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A non-linear fit to the age of the individuals is used, making use of the Gaussian 

kernel. For each individual in the study, we have between 1 and 6 measurements over 

time. Due to the small size of the data set possible interactions between the predic-

tors are excluded from the model. However, analysis needs to account for correlation 

among repeated measures on the same child as well a possibly non-linear age effect. 

The Bernoulli log-likelihood is used in logistic regression and kernel logistic regression, 

for example Green and Yandell (1985) and Zhu and Hastie (2005). The RKHS problem 

is 

where £(s, t) = - 2 {st -F log(l + e^)}. Using the Bernoulli loss, and applying the Rep-

résenter Theorem to (3.48), we have the matrix optimisation problem 

" f ^ I È ^ iyî  + ^A«),) + «""KAaj , (3.50) 

where K\ is given by (3.14). The minimisation in (3.50) is convex, and can be solved 

through standard optimisation techniques such as quasi-Newton optimisation (Nocedal 

and Wright, 1999; Zhu and Hastie, 2005). 

For an individual in the study, the fit is then given by 

x,Zi,...,Zm) = + ^2X2 + Cik{x, Xi) -h ZUi, 
i=l 

where c = a/Kc> arid ^ = Za/\u> with a a solution to (3.50). The discriminant is given 

simply by 
^ ^ ^ ^ n 

AC, Zi,. . ., Ẑ ) = + + + E CiK '̂ )/ 
i^l 

and provides a fit to the data, excluding the subject-specific random effects. 

Figure 3.6 contains plots of the discriminants for Bernoulli log-likelihood loss. They 

were fitted with the Gaussian kernel with 7 = 5. In all the plots, the smoothing param-

eter for withon subject correlation was chosen as Au = 10. For the upper part of Figure 

3.6, we chose Ac = 10, and for the lower part we chose Ac = 1. With Ac = 1 we have 

a less smooth fit, the curve better follows the data. We find that the model shows that 

having a vitamin A deficiency indicates a higher probability of respiratory infection. A 

similar level of increase was noticed for males; the fits show that males showed a higher 

probability of respiratory infection. 
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Figure 3.6. Results of fitting Bernoulli log-likelihood loss, with 2 different values of the rég-

ularisation parameter Ac. If viewed as a classification problem then the curves correspond to 

discriminants. The longitudinal data are jittered to enhance visualisation. 
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3.4.3 Alternative Loss Functions for Classification 

In the classification setting, with now y G {—1, 1}, examples of loss functions include 

C{a,h) = < 
log(l + e-^^) (Bernoulli log-likelihood) 

(1 - ab)-I- (hinge loss). 

We have seen the Bernoulli log-likelihood loss being used in the previous subsection. 

The Bernoulli log-likelihood falls within the scope of GLMMs, and the use of Bernoulli 

log-likelihood can be justified from a maximum likelihood standpoint. There are, how-

ever, popular loss functions that do not conform to the GLMM framework. The hinge 

loss, in particular, does not conform to the GLMM framework. 

The use of the hinge loss comes at the cost of not having asymptotically consistent 

estimates of the conditional probabilities (Steinwart, 2001). What the hinge loss produces 

a classifier in the sense that it classifies new observations as being either in one class or 

the other. The support vector classifier avoids the somewhat intermediatory step of 

predicting the probabilities. In the Indonesian children's example, we are interested in 

whether the children have respiratory infection. In our sample, around 9.5% of the cases 

have a respiratory infection at a given time. Using hinge loss, we can produce a support 

vector machine that predicts whether they are at a high risk of respiratory infection. 

A weighted hinge loss function is 

C{a,b) = < 
C_i(l + fc)+, iffl = - l . 

for some positive constants, Q and C_i. In one example, shown in in the upper part 

of Figure 3.7, we have chosen Ci = 1 and C_i == 0.05. These costs relate to the cost of 

misclassification, estimating the cost of falsely diagnosing the presence or respiratory 

disease to be twenty times less that not detecting the disease when it is present. In the 

second example in Figure 3.7, we have Ci = 1 and C_i = 0.1. This is an indication of the 

relative costs of misdiagnosis. We would consider the relative cost of falsely diagnosing 

a patient with respiratory infection as being around one tenth the cost of missing a 

diagnosis on a patient with the infection. The RKHS problem is given by (3.49), and the 

class predictions are made with s i g n ( / (A :^ , x , z i , . . . , Z m ) ) -

The upper part of Figure 3.7 shows the discriminant to be greater than zero in most 

cases. It is only with vitamin sufficient females over the age of five and a half years does 

the discriminant drops below zero. In the lower part of Figure 3.7, the ratio of Ci to 
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Figure 3.7. Results of fitting hinge loss, with 2 different values of the cost parameter for the 

smaller class. If viewed as a classification problem then the curves correspond to discriminants. 

The longitudinal data are jittered to enhance visualisation. 
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C_i better reflects the observed number of observations per class. Like with Bernoulli 

log-likelihood, we find the discrinunant to be higher with vitamin A deficiency. 

3.5 Discussion 

In this chapter we have shown that two ostensibly different areas of research - longitu-

dinal data analysis and kernel machines - are, in fact, very similar in their underlying 

mathematics. It is anticipated that the explicit connections that have been established 

here will facilitate a more fluid exchange of ideas between the two fields. For longitu-

dinal data analysis, there is the possibility of using kernel machines to better deal with 

non-linearity and to develop improved classification procedures. From the kernel ma-

chine perspective, we envisage kernel methodology that is tailored to longitudinal data 

models and accounts for complications such as within-unit correlation. 





Chapter Four 

Semiparametric Regression via Variational 

Bayes 

4.1 Introduction 

Bayesian inference is an effective and popular method for learning tasks. If 0 is a vector 

of Bayesian model parameters, and y the observed data, Bayesian inference is based on 

the posterior density 

p{y) 

For many models of practical interest, the posterior distribution does not have a closed 

form. Moreover, it is often computationally demanding to calculate expectations with 

respect to the posterior (Bishop, 2006). For continuous distributions, taking expectations 

over the joint distribution, p(9,y) may result in an analytically intractable integral. 

Variational approximation techniques offer an approximate solution to Bayes learn-

ing. Widely applicable, variational approximation has its roots in the "calculus of vari-

ations'' (Gelfand and Fomin, 2000), that is, in finding the optimum of a functional. The 

learning framework is popular in statistical physics (e.g., Feynman, 1972; Callen, 1985), 

under such names as mean-field variational approximation and free-energy minimisation. For 

Bayesian learning, this learning framework is known as variational Bayes. With Jordan, 

Ghahramani, Jaakkola and Saul (1999) and Jaakkola and Jordan (2000), variational Bayes 

has become a popular way to learn otherwise intractable models. Recent books on the 

topic include MacKay (2003) and Bishop (2006). 

The essential idea is to introduce a set of approximating densities to p('\y). These 

approximations are then optimised so as to minimise the discrepancy between them and 

the true posteriors, using some measure of the difference. The optimisation is carried 

out by varying the parameters of these approximations, thus giving the approximation 

its name. 

An alternative to variational Bayes is the numerical evaluation of the posterior dis-

tribution, such as Markov chain Monte Carlo algorithms. A variety of numerical inte-
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gration methods have been developed with Metropolis, Rosenbluth, Rosenbluth, Teller 

and Teller (1953); Hastings (1970); Gelfand and Smith (1990) and Gilks and Spiegelhalter 

(1996). An overview of developments is given by Robert and Casella (2004). Monte Carlo 

algorithms have been developed and applied to Bayesian inference (Pearl, 1988; Gilks, 

Thomas and Spiegelhalter, 1994). Numerical methods such as Monte Carlo can offer 

convergence to the true posterior distribution. However, a complex, high-dimensional 

integral may make make numerical integration methods prohibitively expensive. The 

Monte Carlo methods can be slow to converge, with convergence hard to diagnose 

(Cowles and Carlin, 1996). 

This chapter examines the use of mean-field variational Bayes for semiparametric re-

gression. We show that a close relationship exists between mean-field variational Bayes 

and classical techniques such as maximum likelihood (ML) and resticted maximum like-

lihood (REML). In particular, we derive REML as a special case of mean-field variational 

Bayes when applied to semiparametric regression. The Bayesian framework allows el-

egant generalisations. Following the approach of Albert and Chib (1995) and Girolami 

and Rogers (2006), we apply the mean-field variational approximation to the binary 

response situation. The resulting estimators are closely related to those of penalised 

quasi-likelihood, as given by Breslow and Clayton (1993) and Wolfinger and O'Cormell 

(1993). 

In the next section, we review some properties of mean-field variational approxi-

mation. In Section 4.3, we apply variational Bayes to the Bayesian linear mixed model 

and show the relationship with REML. Section 4.4 delves into the Baysian generalised 

linear mixed model, in particular, the probit mixed model. A discussion of this chapter 

is given in Section 4.5. Pseudo-code for algorithms of this chapter are given in Sections 

4.A.6 and 4.A.7. 

4.2 Mean Field Variational Approximation 

The most common type of variational approximation involves the notion of Kullback-

Leibler convergence applied to a Bayesian network. Bayesian networks correspond to mod-

els with hierarchical dependence structure, such as mixed models and empirical Bayes 

models. With nodes corresponding to parameters and to observed data, a directed acyclic 

graph (DAG) describes the dependence structure of a Bayesian network. Variational in-

ference approximation has a wide literature. Our focus here is on Bayesian inference for 

semiparametric regression. 
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4.2.1 Kullback-Leibler Divergence 

For arbitrary density functions q and p over 0 , the Kullback-Leibler (KL) divergence 

from q to p is 

KL[q\\p] = ( 4 . 1 ) 

It was shown by Kullback and Leibler (1951) that for all densities q, the divergence 

satisfies the inequality 

KL[^||p]>0. (4.2) 

Furthermore, if q is absolutely continuous, then there is equality in (4.2) if and only if 

q = p. 

By a standard manipulation. 

\o^p{y) =\ogp{y) J q{e)de = J j { e ) \o^p{y)de 

-L^i'A'Mm)" 
= L(q) + KL[q\\p{-\y)] 

where we have defined 

(4.3) 

The quantity L{q) serves as a lower bound for log p{y). Their difference, - |i/)], is 

the Kullback-Leibler divergence from the density q to the true posterior p{-\y). Having 

a small Kullback-Leibler divergence indicates that the probability distribution q is, in 

the sense of (4.1), close to the true p{-\y)- In maximising L{q), we serve to minimise 

4.2.2 Factorised Density Transforms 

With variational Bayes, we restrict the space of functions approximating densities ^ to a 

smaller class. The aim in doing so is to ensure that the integrals in (4.3) are tractable. 

The restriction that we use is that of a factorised density. Let us partition the elements 

of 0 G into groups denoted by 6i for 1 < / < M. We make the restriction on q that 

these groups are statistically independent. That is, q admits the factorisation 

M 
(4.4) 

i=l 
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The factorisation restriction (4.4) is known in physics as the mean-field approximation 
(e.g., Parisi, 1988). This factorisation is the only restriction being placed on q; it is non-
parametric in its assumptions. Note that if M = 1, then no restrictions are being made. 
The literature contains several alternatives to mean-field approximation. These include 
the Laplace approximation (e.g., Tierney and Kadane, 1986), as well as parametric as-
sumptions (e.g., Attias, 2000). The mean-field assumption will often implicitly subsume 
the alternatives. 

Amongst all distributions q{6) having the form (4.4), we now seek the distribution 
for which the lower bound L{q) is the largest. By a standard manipulation, 

^ ( p(y,e) 

. M ( M ) 

= / U ^ i m l o g p i y . e ) - d e 

i=l [ i=l J 

^ M M p 

= / Y [ ^ i { d i ) \ o g p { y . 0 ) d e - £ q i { d i ) \ o g q i { e i ) d e i 

= [ q j { 6 j ) \ i \ o g p { y . d ) Y l q i { d i ) d e i A d d j - f ] [ q i ( e i ) l o g q i { e i ) d d i 
JQj [-^©i^j i^j J 

r ^ r = qj(dj){E_eMp{e.y)}ddj-£ qi{di)logqi{di)dei (4.5) 
J S j J@i 

= - /e, '"gj-xpl^lo'^U.y))} - g/e, 
where (4.5) has E_0. denoting the expectation with respect to the density for 
1 < j < M. Let Zj be the normalisation factor for exp(E_0. l o g p { 6 , y ) ) , i.e.. 

Zj= [ exp(E_0.1og;?(0,i/))rf0i^y. 

On optimising L(q) over q j { d j ) , we have 

where C is a generic constant, not dependent on We then recognise 

' J i W 
dOi ^ \exp(E_e . logp(e ,y ) ) /2 / j ' 

as being the Kullback-Leibler divergence between qj{6j) and exp(E_0. logp(0,i/))/zy. 
On maximising L(q) with respect to q j { O j ) , we then find 

<7;(0,)<xexp{E_e,logp(0,y)}. (4.6) 
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The optimal factor qj{dj) is dependent on the choice of the remaining q*{6i), i /. As 

j is any 1 < ; < M, equation (4.6) represents a set of M consistency conditions. It is 

required that each condition be satisfied simultaneously. 

It is typical for variational Bayes for a coordinate ascent procedure to be used (e.g., 

Blei and Jordan, 2005; Ormerod and Wand, 2009). The coordinate ascent procedure is as 

follows. After initialising the factors, we cycle through ql(di), . . . maximising 

L(q) with respect to each of the M factors individually. This is a recursive procedure, 

repeated until the change in L{q) becomes negligible. Upon convergence, we have our 

optimal parameters. It is well known that the Kullback-Leibler divergence is convex in 

its first parameter, KL(-,q): P R. As such, L(-) is concave, moreover, it is concave 

under the factorisation restriction (4.4). Under some mild assumptions (e.g., Luenberger 

and Yinyu, 2003, page 253), the convergence of coordinate ascent is guaranteed. We 

consider an alternative to coordinate ascent in Section 4.3.4. 

4.2.3 Markov Blankets 

A directed acyclic graph is an important compo-

nent in the representing of a Bayesian network. 

For a DAG, a probability distribution p is called 

a Bayesian network with respect to the DAG if p 

admits the representation 

m 

= /^(y I parents of y) parents of 0/), 
i^l 

where the parents of each of the Oj are given by the 

DAG. 

The DAG representation of Bayesian models 

gives rise to a useful result arising from the no-

tion of a Markov blanket. The term was coined 

by Pearl (1988). The Markov blanket of a node is 

the parents, children and other parents of the chil-

dren. An example of a Markov blanket on a DAG 
, ^ ^ - . , , prising the Markov blanket of 0, are 

is given in Figure 4.1. In the figure, the element la- ^ ^ 
, J , , shaded. 

belled 6j has two parents, one child, and one other 

parent of the child. The set of these four nodes comprise the Markov blanket of 6j. The 

Figure 4.1. An example of a directed 

acyclic graph. The four nodes com-
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key element of the Markov blanket is in the result 

p(0y|rest) = p(0y|Markov blanket of Oj). (4.7) 

This means that determination of the required full conditionals involves only the 

Markov blanket. The Markov blanket is localised on the DAG, comprising only nearby 

nodes. It is hence only the nearby nodes that determine the conditional distribution. It 

follows from this fact and expression (4.6) that the factorised density approach involves 

only local calculations on the DAG. Mathematically, this is 

i7;(0y)ocexp{E_0Jogp(0,i/)} 

ocexp{E_0.1ogp(0y|rest)} 

— exp{E_0. log I Markov blanket of dj)}, 

where the last line follows from the Markov blanket result (4.7). 

4.3 Gaussian Response Semiparametric Regression 

The Bayesian version of the Gaussian linear mixed model takes the general form 

y\^,u,G,R ~ + Zm,R) , m|G ~ N ( 0 , G ) (4.8) 

where i/ is an n x 1 vector of response variables, is a x 1 vector of fixed effects, u is 

vector of random effects, X and Z are corresponding design matrices and G and R are 

covariance matrices. Several possibilities exist for G and R (e.g., McCulloch, Searle and 

Neuhaus, 2008). For now, we restrict attention to variance component models with 

and R = (t^L (4.9) 

We also impose the conjugate priors: 

p ~ N(0, ap), o-li ~ I G ( B u i ) , 1 < / < r, cr̂  ̂  I G ( B e ) (4.10) 

for some Aui, Bui, ^c, > 0. The DAG representation of the Bayesian Gaussian linear 

mixed model (4.8)-(4.10) is displayed in Figures 4.2 and 4.3. 

We find that a tractable solution arises with the two-component factorisation 

u, al^, = {p, {al^,..., al,, CR )̂. ( 4 . 1 1 ) 

It is shown in Appendix 4.A.1 that application of (4.6) leads to the optimal densities 

taking the form 
r 

and • •-i^r.i^) = ^(r^ii^?)H^^i^^i)' (4.12) 
z=l 
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^ur ^ur 

n̂ îKi 

Figure 4.2. Directed acyclic graph representing the Bayesian linear mixed model (4.8)-(4.10). 

Large nodes correspond to scalar random variables in the model, with the observed random vari-

ables shaded. The smaller nodes correspond to constants. 

with 

). (4.13) 

The parameters Aq̂ ^ and A^ are deterministic, 

A ,̂, = Ae + f and = Aui + f , 1 < / < r. 

The parameters fiq and JLq in (4.12), and B̂ ĉ and Bcĵ ui in (4.13), however, are dependent 

on q. Let (piq)̂  and (fiq)ui denotes the components of corresponding to j6 and Uj 

respectively; 

(Hq)^ = , and = for 1 < i < r. 

Similarly, let {^q)^ denote the p x p matrix corresponding to the ^ components of ILq, 

and {^q)ui to the K/ x K, matrix corresponding to the i/, components of ILq. Furthermore, 
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Au B^ 

(a) With fixed effects shown (b) Without fixed effects shown 

Figure 4.3. Directed acyclic graph representing the Bayesian linear mixed model. 

letting C = [X Z], coordinate ascent gives the following four update equations: 

A J --I'Ur J 
B q,ur J 

- 1 

(A, 

B Be + H\\y - C^nf + triC^CL.)}, and 

+ + for 1 < / < r. 

These update equations arise from maximising L{q) with respect to either or q^i, 

and are derived in Appendix 4.A.I. Furthermore, pseudo-code is given in Appendix 

4.A.6, and allows for the B̂ ĉ update to be performed in an efficient manner. After a 

complete cycle though the updates, the lower bound L{q) takes the form: 

m = - ^ i o g ( 2 . ) - f + 1 l o g -

+ A, log(B,) - Aq,, log(B^,,) + l o g - log r(A,) 
Y 

i=l 

(4.14) 

We refer the reader to Appendix 4.A.2 for the derivation of this expression. 

Upon convergence to fi*, E*, B* j^j , . . . , B* and B*^, the approximate posteriors are: 

p{^,u\y) ~ the density in (/S,m) 
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and 

^product of J , ^<i<r, 

and IG(Aj £,B* J densities, 

where A*̂ -̂ = Aui + f for 1 < / < r, and A*^ = A, + f. 

4.3.1 Characterising the Optimality 

We find that for large Kj, that the convergence of the coordinate ascent is slow. We have a 

more serious problem in infinite dimensions; if Ki = oo (as with Gaussian processes) the 

algorithm breaks down. To use a rich kernel, such as the Gaussian kernel, an alternative 

algorithm is to be found. Similar problems have been noted by Gibbs and MacKay (2000) 

and Opper and Winther (2000). 

We now consider the optimality conditions, in order to ascertain the properties of 

the maximiser of L{q). These optimality conditions include 

B;,ui = Bui+ \ { \ \ { f ; U f + t r i m ) , , ) } , for 1 < i < r, 

therefore. 

B ^ui + 5 
q,ui 

/A 
B + tr((i:')„,) 

+ St 
(4.15) 

q,m I 2 

Some algebra shows that tr((Lp„J admits the expression 

Substituting (4.16) into (4.15) and rearranging then gives 

(4.16) 

1'"' — R _1_ 1 — Dui + 7 
ÎA 

B* ^ 
(4.17) 

We now make a similar argument for A*^ and B*^. The optimality conditions give 

A 

+ tr(CTCLp| 
(4.18) 

Let V* = blockdiag (iT-̂ Îp, • • • / ^ ^ K r ) - Then tr(CTCL*) admits the expression 

(4.19) trlC^CLj) = ^ L + ( ^ ¿ K , ^ - t r ( V * L ; ) l . 
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Substituting (4.19) into (4.18) and rearranging then gives 

= + i A y B (4.20) 

{B* B* B* 

• • •' ^ I equations (4.17) and (4.20) may be considered 
as comprising part of the solution to the variational Bayes optimisation. That is, we B* 

may solve in terms of the ratios without the requirement that B* < oo. A similar 
approach to Bayesian problems have been used in Wahba (1985). 
4.3.2 A Dual Space Formulation 
Unlike the coordinate ascent, the optimality conditions of (4.17) and (4.20) allow for 
a dual space formulation. This ensures that the algorithm may be kernelised. Other 
authors, such as Harville (1974); Hastie and Tibshirani (2004) and Friston et al (2006) 
have given versions of algorithms in both primal and dual forms. Let us begin by 
setting 

- 1 

(4.21) 

We now express the equations (4.17) and (4.20) in a manner amenable to kernelisation. 
It is shown in Appendix 4.A.3 that the solution to the Bayesian Gaussian linear mixed 
model requires 

Aui + 
B q,ui M Z i Z j n ; ) 

B 
2A q,ui A 

for all 1 <i < r, and. 
B: 

q,ui _ p 1 
— t>ui + 2 

q,ui 

Bl 

B* A 
q,ui 

'^lui/ 

y ^ n ; z i z ; n - y Ttt*. (4.22) 

/ B q'^ 
A* 

n,*!/ (4.23) 

The formulation of (4.22) and (4.23) allows the Bayesian Gaussian linear mixed model 
to be expressed in terms of inner products. Let Ki = Z j Z j for 1 < z < r in (4.21). Then 
(4.22) simphfies to 

Aui + 
B q,ui 

2A: MKilla) 
B 
A 

_ D , 1 — Dui + 2 /B* A q,m (4.24) 

In the expression (4.24), the to reference to Z occurs only through the inner products, 
Ki = ZiZj, for 1 < / < r. As such, the Gaussian linear mixed model (4.8)-(4.10) may be 
kernelised; with positive definite functions ki, for each 1 < i < r. 
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4.3.3 Relation to Restricted Maximum Likelihood 

We now show that ML and REML are a special cases of the variational Bayes framework. 

This helps improve the interpretation of the mean-field approximation variational Bayes. 

Introduced by Patterson and Thompson (1971), REML is a mature and well-regarded 

method method for estimation of covariance matrices or variance parameters in semi-

parametric regression problems. There are stable algorithms for performing either ML 

or REML. These can be adapted for the variational Bayes framework. 

{ B* B* B* 1 

.. •, j be a stationary point to the likelihood function of the 

Gaussian linear mixed model (4.8)-(4.10). Let 
tpo = and xpi = for 1 <i <r. 

Then i/;*,,.., j/;; } = | . . . , j is a stationary point of 

r , . 
max l loglUc^l-y^ncjy-Aelogxpo-Be^^-l^lAuilo^tpi + BuiXpi^), (4.25) 

i=l 

where ^ 

n^ = I a j x x ^ + xPi ZiZj + i/'oIn I . 

Proof of Theorem 4.1 is given in Appendix 4.A.4. The Gaussian linear mixed model 

(4.8)-(4.10) has the prior parameters Aut, Bui, ^e arid a^. The prior distributions are 

improper in the limit as Aui, Bui, Ac, Be —> 0+ and oo. It is noted that equation 

(4.25) bears some resemblance to the classical log-likelihood. The expression in (4.25) is 

recognised as a constant plus the log-likelihood of an n + r + 1-dimensional Gaussian 

distribution. We now clarify a simple connection, as a direct consequence of Theorem 

4.1. 

Theorem 4.2. Let Aui, ̂ uir ^c/ Be —» 0+. Then a maximal point to the optimisation in (4.25) 

gives a stationary point to 

max llog|n^|-i|/'^n^i/, (4.26) 
{Ml iprjen^ ^ ^^ 

where the domain is 

We recognise (4.26) as a constant plus the log-likelihood of an n-dimensional Gaus-

sian distribution with mean 0 and covariance matrix It is well known that such 

likelihoods may have local maxima. For a recent discussion on such bimodality, see 
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Welham and Thompson (2009). As oo, the equivalent optimisation problem (e.g., 

Patterson and Thompson, 1971; Harville, 1977) is 

min 1 log IURI-I log |X*TnKX*| -\{y - X^^IlRiy - XjS), (4.27) 

where 

and X* is a matrix made up of linearly independent columns of X, with 

rank(X*) = rank(X), 

and 

(xTx)-xTy, 

where (X^X) ~ denotes the Moore-Penrose generalised inverse of X^X. The quantity in 

(4.27) is know as the restricted log-likelihood. The stationary points of (4.27) over O are 

REML estimates. 

The relationship between REML and empirical Bayes is well known (Harville, 1974). 

It perhaps should not then be surprising that improper Bayesian conjugate priors lead to 

REML estimates. A close relationship between parametric empirical Bayes and REML is 

shown in Friston et al. (2002). The link between Laplacian approximations and REML is 

shown in Friston et al. (2006). Moreover, it is shown in Wipf et al (2007) that, regardless 

of the choice of prior, there is always a relationship between Bayesian models and REML. 

The given technique, however, does not specify the functional form (4.25). With proper 

priors, variational Bayes gives a lower bound for logp(i/) in (4.14). The existence of 

posterior probability estimates then distinguishes variational Bayes from either REML 

or from empirical Bayes. With a lower bound on logp(i/), it is then straightforward 

to approximate the deviance information criterion for comparing models (Spiegelhalter 

et al, 2002). 

4.3.4 Optimising the Parameters of Variational Bayes 

We now detail an alternative to the coordinate ascent algorithm. We have shown the 

maximiser of L{q) under the factorisation restriction (4.11) is the same as the maximiser 

of REML-style optimisation in (4.25). It is now (4.25) to which we apply a standard 

optimisation technique. Let ipo = ^ ^ and xpi = for 1 < i < r. The dual space 
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formulation is 

- 1 

n^ = \ ojxx^ + ^ K i + xpoln 
1 = 1 

_ Be + lipl\\n,y 
= and 

Aui + ¡ipMKiU^) ' 
for 1 < / < r. 

A reliable method for finding ML estimates is in the method of successive approxima-

tions (e.g., Harville, 1977). We have the updates 

n^ ^ (iT-^XXT + ¿ tpi Ki + ipoln I , 
Be + 
Ae + ' 

Bui + 

and 

f o r l < i < r . 

Coordinate ascent can also be applied to the equivalent primal form. The optimality 

conditions, as update equations, are 

V blockdiag ^Ip, . . . ^Kr 

Ae + l ( n - p - E L i ^ i ) + 

and 

Bui + Ô 
for 1 < / < r. 

The sequence of updates {i/'O/ • • • / ^r} are equivalent whether made in the dual or 

primal form. Computationally, however, there are important differences. Naively, it 

takes 0{n^) operations to calculate TÎ , and 0({p + K/)^) operations to calculate Lq-

Each (pi update in the dual form requires 0{n^) operations. As such, a complete iteration 

in the dual form takes 0{{r + n)n^). In the primal form, a fiq update requires some 

Oin{p + E L i ^i))' for an overall cost per iteration of 0{(n + + E/=i Ki ) (P + E L i 

operations. The dual form is suitable for small n, and the primal form is suitable for 

small p + E L i ^^^ P^^ iteration of the coordinate ascent is very similar to that 

of the primal form. 
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o o H ĈJ 
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Figure 4.4. Comparison of the convergence of coordinate ascent and successive approximation 

methods. The details of the penalised spline model used are given in Section 4.3.5. The comparison 

is made under two different optimisation criteria that share the same optimum. Under both 

criteria, successive approximation method exhibits faster convergence. Left: Convergence in 

as given by equation (4.34). For the coordinate ascent, (4.34) simplifies to (4.14). Right: 

Convergence in the simpler optimisation given by (4.25). 

A comparison with coordinate ascent is made. A simple spline model was fitted 

with twenty knots; the details are given in the next section. Figure 4.4 shows the conver-

gence of the coordinate ascent and successive approximation methods. The left side plot 

shows the convergence in L(q). The successive approximation method displays a better 

convergence than does that of coordinate ascent. On the right side of Figure 4.4, we 

make comparisons under the log-likelihood style optimisation criteria given by (4.25). 

There is a clear preference for the successive approximation method. 

4.3.5 Spinal Bone Mineral Example 

We now give an example of the spinal bone mineral density data set, as per Chapter 3 

and Bachrach et al. (1999). The longitudinal data set includes a cohort of 193 young 

males, with subjects categorised as belonging to one of four ethnicity groups: Asian, 

Black, Hispanic and White. With single subscript notation, the model is 

where the y/ are spinal bone mineral measurements (g/cm^), the xf contain indicators 

for ethnicity and the Xi are age measurements. The function c : R —> R indicates a curve. 

Two different kernels were chosen to model the curvature. The first was a penalised 

spline kernel of Chapter 2, with 20 knots equally spaced over the observed domain of 
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Figure 4.5. Spinal bone mineral density measurements from the male cohort. Fits were made 

using Variational Bayes. Both curves fit the data well. Upper: Penalised spline fit, with twenty 

evenly spaced knots. Lower: Gaussian kernel based fit. 
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ages. As a low-rank kernel, the primal updates were used. The second kernel was a 

Gaussian kernel with 7 — 0.05. As the corresponding design matrix Z\ is infinite di-

mensional, the optimisation must be carried out in the dual. We used the iminformative 

prior parameters A^ — Aui = Aui = Be = Bui = Bui = 0.1, and a^ = 10®. The spline 

fit gave f i = 1.52 x 10"^, xp2 = 1.49 x lO'^ and ipo = 1.98 x 10"^. The Gaussian kernel 

gave = 4.31 x 10"^, = 1-50 x 10"^ and tpo = 1.94 x 10"^. The fits are shown 

in Figure 4.5. Both fits appear appropriate, and would appear to neither oversmooth 

or overfit. It is of interest in comparison is the estimates of tpo- For spline fit we have 

tpo = 1.98 X 10"^, and for Gaussian we have the slightly lower tpo = 1.94 x 10"^. These 

serve as estimates for the errors, cr̂ , and would indicate that the Gaussian kernel is only 

slightly preferable. 

4.4 Binary Response Semiparametric Regression 

It is of interest to extend the Bayesian Gaussian regression model. In this section, it is 

the Bayesian probit regression model that is considered. We note that a similar approach 

may be made, for example, with Bayesian Poisson regression. The Bayesian version of 

the Gaussian probit mixed model takes the form 

G ~ Bernoulli(<I>(Xj8 + Zm)), U\G ~ N(0,G) (4.28) 

where 1/ is an n x 1 vector of Bernoulli response variables, encoded as {0,1}, and 

^(x) = components u, X, Z and G are as in the previous 

section, 

G = blockdiag(£7-2iJ^^,.. .^aih,). (4.29) 

We also impose the conjugate priors: 

jS - N(0,i7-2j), _ l<i<r. (4.30) 

for some cr^ > 0 and Aui, Bui > 0/ for all 1 < ^ < 

Following Albert and Chib (1995) and Girolami and Rogers (2006), we introduce the 

vector of auxiliary variables a = (ui,... where 

This allows us to write 

p{yi\ai) = liui > oy^I(ai < 1 < i < n. 



4.4 Binary Response Semiparametric Regression 83 

p 

(a) With constants shown (b) Without constants shown 

Figure 4.6. Directed acyclic graph representing the probit mixed model The inclusion of the 

node a allows the problem to be tractable under the factorised density assumption (4.31). 

These associations are represented in Figure 4.6 as a DAG. In particular, the introduction 

of the auxiliary variables allows us to make the three-component factorisation. 

(4.31) 

It is shown in Appendix 4.A.1 that application of (4.6) leads to the optimal densities 

taking the form 

and 

with 

We also have 

/ 

i=l 
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with 

Pa = Cpd, 

and TN(-, •) is the truncated normal distribution. 

Like the Gaussian case, the parameters Â^ are deterministic, 

- Aui + f , 1 < / < r. 

The parameters jiĉ  and in (4.12), and Bc¡,c and B̂ ,«/ in (4.13), however, are dependent 

on q. Denote by tj the mean of a under q, 

V= Eij(a)«-

The mean of a truncated normal is given by (e.g., Johnson and Kotz, 1970): 

F I y<t>ÍHa) C^-yM^a) 

We now minimise the Kullback-Leibler divergence, by application of (4.6). It is shown 

in Appendix 4.A.5 that coordinate ascent gives 

L, ^ { C-C + blockdiag { a - % 

fic, ^ ^C^v^ 

fía ^ Cjlci, 

+ and 

+ + for l < z < r , 

until convergence. 

Upon convergence to uy^r the approximate posteriors are: 

Vi^My) - the density in (jS,«), 

p{crli,...,olr\y) ^productof densities, 

and 

pl{a\y) - product of TN((;/:)¿, 1, -oo,0) 

and TN({fi*a)if 1/0/ densities. 

As with the Bayesian Gaussian mixed model, the optimality criteria given by co-

ordinate ascent may be expressed in different forms. In primal form, the method of 
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successive approximations gives 
y blockdiag (cr-^/p, J^^,..., z/;-!/^^ 

a) 
Ha 

n 
Bui + I 

and 

A dual space formulation is 
for K i <r. 

- 1 

n , 

Ha 

n 

XX'^ + J^iPiKi + In^ , 

Bui + ItpfHlUcKiTlcjfia 
and 

for l<i<r. Aui + \ipitr(KiU^) 
The resulting estimators may be seen as a generalisation of the ML and REML esti-

mators to the probit model. In particular, with improper priors, the resultant estimators 
appear to match those of the penalised quasi-likelihood approach of Breslow and Clay-
ton (1993) and Wolfinger and O'Connell (1993). The mean, tj, is known as the pseudo-
data (e.g. Molenberghs and Verbeke, 2005). The literature contains several methods that 
can be seen as generalisations of ML or REML to non-Gaussian response. For binary 
response, it is common for such generalisations to display a bias in the mean estimates 
of the parameters (e.g., Lee and Nelder, 2003). That is, such generalisations are known 
to oversmooth. 

There are alternative restrictions that lead to tractable solutions. Most notably, 
it would appear as if a Laplace or Taylor series approximation (e.g., Wolfinger and 
O'Connell, 1993) may both lead to a tractable solution, and to a generalisation of pe-
nalised quasi-likelihood. 

4.4.1 Spam Data Example 
We illustrate the Bayesian Probit mixed model with an example. The "spam" data is 
described in Hastie, Tibshirani and Freidman (2001), with spam e-mail messages coded 
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as 1 and ordinary messages coded as 0. For ease of presentation, some sixteen predic-
tor variables out of a total of fifty-seven were selected. An additive model penalised 
spline kernel (Section 2.5.3) was used to build the design matrices X and Z. The prior 
parameters were set with 

Aui = --- = Auie = Bui = --- = Bui6 = 0.0h and a j = 

An illustration of the fit is given in Figure 4.7. Each panel shows the slice of the fitted 
surface for each labelled predictor, with all other predictors set to their medians. The 
resulting fitted surfaces are similar to those of the support vector classifier displayed of 
Section 2.1. 

our 
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Figure 4.7. Visualisation of a penalised spline Bayesian probit model fir for the "spam" data. 
Each panel shows the slice of the discriminant with all other predictors set to their medians. 
The tick-marks show the predictor values: spam e-mail messages along the top, ordinary e-mail 
messages along the bottom. 
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4.5 Conclusion 

Factorised density assumptions have lead to tractable solutions to the Bayesian Gaussian 

linear and probit mixed models. The optimality may be expressed in both dual and 

primal forms. The resultant optimisation criteria shows that the Bayesian Gaussian 

linear mixed model to be a generalisation of many existing techniques. We have shown 

that with improper priors, variational approximation of Bayesian GLMMs lead to the 

REML estimator. This is a benefit, not only to the interpretation of variational Bayes, but 

for the computation of the fits. The similarity of the resulting optimisation of variational 

Bayes to those of REML estimates ensures the extensive literature on REML may guide 

understanding of variational Bayes. 

The extension to probit Bayesian mixed models shows a tractable problem, with 

penalised quasi-likelihood as a special case. A natural hypothesis is that such a relation-

ship holds over the wide variety of generalised linear mixed models. Such links allow 

the elegant Bayesian framework to extend in a tractable manner to generalised linear 

mixed models, and by extension, to many types of kernel machine. 

4.A Appendix 

We begin with a helpful lemma for the Inverse Gamma distribution. 

Lemma 4.3. Let x and y he random variables with x ~ IG(A, B) and y ~ IG(A', B'). Then 

i) logp,{x) = log ( j ; ^ ) - (A + 1) log(x) - B/x. 

ii) Ex log X = logB - digamma(A), ExX"^ = j . 

Hi) KL(;7X, py) - - log ( f ^ ) - (A - A') {log(B) - digamma(A)} + (B - B') 

Proof. i)-ii) See Johnson and Kotz (1970). 

Hi) Expanding the Kullback-Leibler divergence, and using i), 

KL(^x, ;?y) = - Ex {logpy(x) - l o g } 

= - Ex{ log ( - (A' + 1) log(x) - B'/x 

~ (i^A)) + + + 

= " ( f j i j ^ ) - - {log(B) - digamma(A)} + (B - B') ^ 
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where the last line follows from ii). • 

4.A.1 Gaussian Case 

We derive the update equations for the Bayesian linear mixed model. There are two 
lemmas involved. The first, below, shows the optimal The second. Lemma 4.5, 
shows the optimal 

Lemma 4.4. Let q^^^ have mean fiq and covariance that is, = and 

iS 

model (4.8)-(4.11) is 
. Then the optimal q\ in the factorised density Bayesian linear mixed 

O t à = 1=1 
where 

,ui/ ^Q.ui ) • 

The parameters Aq^e A^^ui ^^^ deterministic, 

n K-= Ae-\-- and = + y , for l<i<r. 

In contrast, the parameters Bq^e and Bq^ui dependent on }iq and liq, 

Bq,e = B,-\-\{\\y- C^qf + triC^CE^)}, and 
Bq̂ ui = Bui + \{ \ \{ j iqUf + tr{{J:q)u,)} iOT 1 < / < r, 

where C = \X Z]. 

(4.32) 

(4.33) 

Proof. Application of (4.6) leads to the optimal densities taking the form 

C^ {(^iv..., C7-2) cx exp I l o g p{y, u, c^)} , 

where a^ = (crj^,..., a^^, ijf By applying the Markov blanket to the DAG, 
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Therefore, 

C ^ { ( ^ I v • • • / ) e x p l o g { p { y , m, c ^ ) } 

oc e x p 

oc e x p 

X 

log 

/ 

- n / 2 e x p 
2cri 

\ Z = 

r 

exPl — a' 

X n ( 4 ) e x p 

- A e - l - n 

f - B u i 

\ ^ l i 

X e x p 

i=\ ui 

H o w e v e r , 

a n d 

\\y - X / S - Z « f = ||y - Cfi^f + t r ( C ' ^ C E ^ ) , 

W e t h e n f a c t o r i s e • • • / ĉ wr/ ) 

f A c ^ u l ' ^ u r , ' ^ ) « 

X e x p 

A 1 
¿=1 ^u/ 

w h i c h w e r e c o g n i s e a s t h e p r o d u c t o f i n v e r s e g a m m a d e n s i t i e s , 

r 

O (̂ uU • • •. ̂ ur̂  o-}) = q ; , ((7-2) Y l q l , { a l i ) , 

w h e r e 

I G ( A , + + \ { \ \ y - + t r i C ^ C L , ) } ) 

a n d . 

+ + + f o r a l l 1 < / < r . 

T h e n e x t l e m m a c o n s i d e r s t h e o p t i m a l q*^ ^ d e n s i t y . 

• 
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Lemma 4.5. Let i>e a product of inverse gamma densities, with parameters, 

r 

C^ {oiv • • - o-l, (7-2) = q* [al) n { c r l i ) 
i=l 

~ and ~ 

Then the optimal q*^^ is N(jiq, licj), where 

I 
I ß > liqC^y, and 

L, = ( ^ C^C + blockdiag p ^ l K , 

Proof. Application of (4.6) leads to the optimal densities taking the form 

- 1 

ocexp [E^(a^^lo^{p{y\ß,u,cr^)p{ß)p{u\o'l)} 

f c , Wßf . 1 T/ 1 

Now applying Lemma 4.3 ii), 

Aqe y-Xß-Zu\^ 
2ß2 

|jß||2 _ ^ A^̂ uiUjUi 
2aj ^ti 

oc 

oc 

exp 

exp 

IB 

1 
2 

C'C 1 Tö ^ \uiUjUi Aĉ ê 
~ ^ ^ ^ ~ 2B 

y y 
cy 

u 

\ T r n \ 
ß 

\ 

-f'q 
U 

J _ 

where = and 

= +blockdiag p ^ h . 

We recognise „ as Gaussian. 

4.A.2 An Expression for the Lower Bound 

We now derive L{q), as given by (4.3), and a lower bound for log p{y). 

L{q) {\ogp{y,ß,u,(r^) - logq{ß,u,(r^)} 

J l o g p(y\ß, u, al) + log p{ß) + log p{u\crl) + log p{(r^) 

-lo^q{ß,u)-logq{(r^)}. 

• 
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But 

= £±%i^{l+log(27r)} + llog|E 

due to the entropy of a normal distribution. Also, 

We have 

E,\ogp{y\^,u,cr^) = - ^ {log(2;r) + E^loga!} - e J ' ^ 

= - 2 + log (%) - digamma(/l,,£)} 

where we have used the properties of the Inverse Gamma distribution given by Lemma 

4.3 iih 

Eq log(7-2 = log (%) - digamma(A^,,), and Ê  cr-^ = Â ^̂ JBĉ ^̂ . 

Also, by Lemma 4.3 in), 

A, 
+ (A,^ - Ac)(log(B,^) - digamma(A,^)) + -

t>q,c 

so that. 

n 
= - - l o g ( 2 7 r ) + l o g . ^ 

+ [ V -Be-l{\\y- Cfi^f + tr(CTCL^)}" 

We find 

K 
E, log = - y {log{27r) + log(B,,„,) - digamma(A,,„,)} 

- jf^ {\\ih,)uif + • 

Again by Lemma 4.3 in), 

= log 
,ui / 
A 

+ {Aĉ ûi - Aui){lo^{Bc,̂ ui) - digamma(A^,„/)) 

+ {Bq,ui — Bui) / B 



92 4 Semiparametric Regression via Variational Bayes 

so that 

Ê  

= - ^ l o g ( 2 7 r ) + l o g 

+ (A^,, - A, - f ) {log(Bq,„/) - digamma(A^,„i)} 

+ [Bcj,ui - Bui -
. A q,ui 

B q,ui 

We then have L{q); 

+ log o-h + log - log 
r 

+ ^ log p ( W/1 J + log ( 4 ) - log ( 4 ) } 
i=\ 

= ^ ^ - \ iog(2.) - f log (c^)+1 log 11,1 -

+ log 
A A 

+ 

+ (A^,, - A, - f ) {log(B^,,) - digamma(A^,,)} 

A. 
% -Be-\{\\y- + tr(CTCE,)}" B 

(4.34) 

+ - Aui - f ) {log(B^,„/) - digamma(A^,„i)} 

. A. 
+ - Bui - \ { I K ; / , + tr(E,,„,•)}] ^ ^ 

Explicitly, for u, c r l y a } ) = q^^u al,, af), where 

and q^2 (crl^,..., ct-̂ ,, i j f ) ~ IG( for all l < i < r , 

then (4.34) gives the precise value for the likelihood. Various bounds may be achieved 

through the development of (4.34), depending on which update equations hold true. In 

particular, if Aq̂ c, Bq̂ c, Â ^̂ uif and B̂ ûi, 1 < / < r are at given by their updates (4.32) and 

(4.33). Then (4.34) simplifies to, 

m = - f Iog(2.) - f log(c^) + 1 log|L,| -

+ log + E i o g 
[nAuôB^^r) 

(4.35) 
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If all the update equations hold simultaneously, then (4.35) represents the lower 

bound over all distributions of the factorised density form given by (4.11). For numerical 

reasons, the bound in (4.35) is calculated as 

Li,) = - I , o g ( 2 . ) - f log(<^) + 1 l o g -

+ A,log(B,) - + logr(A^,,) - logr(A,) 
r 

+ E {Aui log(B„¿) - A^^ui + - logr(A„/)}, 
i=l 

where logr( ) directly calculates the log of the gamma function. The MATLAB function 

gammaln, and R function Igamma both calculate logr( ) in a direct manner. A similar 

direct calculation can be made for log | -1. 

4.A.3 Deriving the Dual Space Formulation 

We wish to express (4.20) in a manner suitable for kernelisation. Let us begin by fac-

torising + C"̂  as 

B +1] = 
Í a: 

Therefore, 

Í A - 1 

\ V 
qJ ^ /A* , ^ 

\ / 

R* 1/4* 
A* I R* 

b: 

Í A* \ 
D * ' " 

BL Í 
- ) T -- >1* 1 " 

/ 

We then have 

/A 
- 1 Bl J cv 

R* \ - 1 

/ 
y. (4.36) 

Differentiating both sides of (4.36) with respect to gf^ then gives q,ia 

I v v / 
i ^ C ' y ) \ ^ / Uj 

q,ui 
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and 

4 q,ut 

B B* I q.c 
A' V 

B 

A 
q,m 

q,ui 

We then have 
/ B * A q,ui 

\ i/Wî / 

The following lemma, known as Sylvester's identity, is proven in Bareiss (1968). 

(4.37) 

Lemma 4.6 (Sylvester's identity). For any n x m matrix M, 

MM^ + In M^M + In 

Let M = y eff Then, by Sylvester's identity. 

A 

B q,e B 
c ' c r P+LtiKi 

q,e 
(4.38) 

Taking the natural logarithm of (4.38), and differentiating with respect to -gl^ then gives 
q,m 

(4.39) 

Now substitute (4.37) and (4.39) into (4.17). We thus have the optimality requirement 

BL, B*, q,ut 

q,ui J 

On the right hand side of (4.20) we have 
2 

y - ^ c ^ c - ' y 
V ¿=1 / 

n (4.40) 

/ B* \ " Multiplying both sides of (4.38) by ( g i v e s 
\ / 

C V - i c T + 
n-p-LUKi 

(4.41) 

D Taking the logarithm of (4.41), differentiating with respect to and rearranging gives 

n — p — 
\i=l / 

(4.42) 
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On substituting (4.40) and (4.42) into (4.20), we have 

B B: fB 
A * 

\ 
n j y 

4.A.4 Proof of Theorem 4.1 

We wish to find the stationary points of (4.25). Taking the derivative with respect to tpo, 

d 
d\pQ ^ I i log I - - A, log i/̂o - - ¿ {a^i log t/;, + Bui^r^) | 

= - i t r (n^) + - + (4.43) 

Setting (4.43) equal to zero, and rearranging, 

{ a , + i</'5tr(n;)} = + 

Taking the derivative of (4.25) with respect to ipi, for 1 < z < r, we have 

^ I i log I - y^n^y - A, log xpo - - p^ (̂ Aui log 1/7, + 

= - i t r (n^) + WlUc^yf - Auiip-^ + Buiipr\ 

Setting (4.44) equal to zero, and rearranging, 

{Aui + ¡ip!tr{ZiZjn;)} ipi = Bui + 

(4.44) 

(4.45) 

We now substitute P̂o = into (4.44), and xp* = ^ into (4.45). The resultant 

conditions are (4.22) and (4.23). 

4.A.5 Optimal q Densities for the Bayesian Probit Mixed Model 

We now derive the optimal densities for the Bayesian probit mixed model. There are 

three lemmas involved. The first, below, gives the optimal i/*2- The second. Lemma 4.9, 

gives the optimal q*̂ .̂ The third. Lemma 4.8, then gives the optimal i/*. 

Lemma 4.7. Let q^^u ^^^ covariance that is, fici = 
u 

and 

, Then the optimal q*2 in the Bayesian probit mixed model (4.28)-(4.30) is 

. -T Ul 2 = 1 
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where 

Cl. ~ for l<i<r. 

The parameters Acf^ui deterministic, 

= ^ui + y/ for 1 < / < r. 

While the parameters Bcj^ui (ire dependent on fiq and Zq, 

= + for 1 < / < r, 

where C = [X Z . 

Proof. Application of (4.6) leads to the optimal densities taking the form 

« exp log;7(ir2|rest)} , 

where cr̂  = (ct-̂ J, . . . , cr^ )̂̂ . However, by applying the Markov blanket result, 

p(o'^ \rest) = I Markov blanket of cr^) 

= Pi<r'\u) 

We then have: 

C^ { (^v . . . , iT-J,) oc exp { log p{(r^\u)Y 

The stated result then follows from the proof of Lemma 4.4. 

Lemma 4.8. Let q*2 be a product of inverse gamma densities, with parameters, 

r 

i=l 

q;2 ~ and ~ IG(A^,«/, B̂ ûi)-

Furthermore, let ~ ^(^qf ^q)- Then the optimal ql is given by 

i=l 

where TN(-, •,•,•) is the truncated normal distribution. 

Proof The optimal i/* is given by 

ql{a) (xexp{E_fllog;7(fl|rest)} 

• 
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Also, 

;7(fl|rest) = ;7(fl|Markov blanket of a) 

oc p(a,y\p,u) 

= p{y\a)p{a\^,u) 

/ r 1 
1 

a-C 
2 u 

v L -1 
We have 

ql{a) a exp [E_« {\ogp(y\a) + \o^p{a\^,u)} 

« I f l H a i > < o p i exp i I 
i=l V 

a-C 

2\ ^ 

J . 

Which we recognise as the truncated normal distribution. So the optimal ql is 

' ( I ( a i > 0 ) Y < ( /(fli<0) V - f ' n 

- n 
i=l }"{r 

Recall that he mean of the truncated normal, denoted by //, is given by 

The next lemma considers the optimal q*̂  ^ density. 

Lemma 4.9. Let be « product of inverse gamma densities, with parameters, 

r 

C2 (^v • • w 0-i, al) = ql2 {(T^) n C. ( 4 ) 

q̂ i B^,,), and - lG{A ,̂uu B ,̂ui). 

Furthermore, let 

Then the optimal „ is Z^), where 

= and 
\ 

• 
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Proof. We set 

However, 

but. 

q*{orl) OC exp{E_^2 l o g r e s t ) } 

p(i7-̂ |rest) = I Markov blanket of (tI) 

= Pio-lW) 

ocp(a-lu) 

r 

i=l 

r^lG{Aui + lKi,Bui + Uuf). 

So 

cx exp £ {-A^i - \Ki - l ) log(c7-2 ) - + \\\uf) 

= f l e x p l É - ¡Ki - 1) log(ir2 ) - (Bui + ) ^ 

i=l 

u 

We then have 

and 

where 

and 

2\ 

/ 

1=1 

4 . - . A l 
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Application of (4.6) leads to the optinial densities taking the form 

oc exp 

oc exp 

= exp 

oc exp 

^ i | | f l -X/5-ZM| |2 ||j8||2 1 T, 2tN 1 V 
I ^ + ^ + -u^ialir'uI 

- E '•q(cr^) 

- E •q{cr2) 2 ^ + ^ + 2" " 

where is the covariance matrix corresponding to q(a). Now applying Lemma 

4.3 iih 

2 2(72 
• p 1 T 

OC exp 1 
9 

/s C^C 
M 

+ V c . 

a exp 

V T \ \ > s, < 
J < 

U j. 
where 

and 

= {C^C + blockdiag ^ I K , ) } 
- 1 

Hq -

We recognise q*̂  „ as Gaussian. We therefore have 

• 
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4.A.6 Pseudo-code for the Gaussian Linear Mixed Model 

Algorithm 4.1 Pseudo-code for the Gaussian coordinate ascent. 

Require: X, Z i , . . . , Zy, y, aj, ^c/ ^ul/ • • • / ^ur/ Bui, • • • / ŵr 

9 

10 

11 

12 

13 

14 

15 

16 

17 

X, Zi , . . . 

for z = 1 to r do 

A 

B. 

end for 

A q,ui 

repeat 

V ^ blockdiag ( c r 7 % 

Be 

{ ^ C ^ c + v } 

\ / 

- 1 

•'q,ur 

V - + H - C f . r + ^ (p + K,.) - tr(V2:,))} 

for / = 1 to r do 

end for 

until convergence 

return Aq̂ /̂ • • • / ^q,ur/ Bcj,e, Bq̂ ul/ • • • / Bq̂ ur/ ^q 
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X , Z\,...,Zr 

- + f 

Algorithm 4.2 Pseudo-code for the Gaussian primal optimisation. 

Require: X, Z i , . . . , y, cr̂ , . . . , . . . , B«, 

1: C 

3: tpo ^ 1 

4: for i = 1 to r do 

6: Xpi ^ 1 

7: end for 

8: repeat 

9: V ^ blockdiag (a^Hp, ip-^K, . . . , ip^r^K,) 

c T c + y } " ' 

2 

10: 

11: 

12: 

13: 

14 

15 

16 

17 

18 

19 

20 

21 

^^ + 2 Hi/-

A, + i f « - p - ELI + sV^otriVE«̂ ) 
V / 

for / = 1 to r do 

end for 

until convergence 

for / = 1 to r do 

end for 

return Aq̂ ,̂ Aq̂ ul/ - • • > Aq̂ un Bq,e/ Bq,ulf' ' •' Bq,ur/ f̂ q/ '̂ q 

'q,ui ^ Aq ujXpi 
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Algorithm 4.3 Pseudo-code for the Gaussian dual optimisation. 

Require: X, K-i,... ,Kr, y, aj, 

1: for / == 0 to r do 

2: tPi ^ 1 

3: end for 

4: repeat 

5: n ^ ^ {o-jXX^ + E L I % K i + xpoln } 
- 1 

6 

7 

8 

9 

10 

11 

for / = 1 to r do 
Bui + ¡xpfy^n^KiU^y 

Ani + llpMKillq) 

end for 

until convergence 

return i/̂ o, •.., n^ 
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4.A.7 Pseudo-code for the Bayesian Probit Mixed Model 

Algorithm 4.4 Pseudo-code for the probit coordinate ascent. 
Require: X, Z i , . . . , y, cr̂ , A^i , . . . , . . . , B, 

9 
10 

11 
12 
13 
14 
15 
16 

C [X, Z i , . . . , z^ 
for z = 1 to r do 

A 
Br. 

Aui + f 

end for 

repeat 
L, - {C^C + blockdiag ^ J^^) } 

Ha ^ 

- 1 

y(p{}ia) (1 - y)(p{na) 
for / = 1 to r do 

end for 
until convergence 
return . . ., Aq̂ ur/ . . ., Bq̂ ur/ Hq/ ^q/ 
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Algorithm 4.5 Pseudo-code for the probit primal optimisation. 

Require: X, Z i , . . . , Z„ y, aj, A^x,-.. / Any, Bui, • • ' / Bur 

9 

10 
11 

12 
13 

14 

15 

16 

17 

18 
19 

20 

C < X, ï \ , . . . , Tjy 

for / = 1 to r do 

A •̂ ui I 2 q,ui 

tf^i^l 

end for 

repeat 

y blockdiag [a-^Ip, Jx, . . . , ^^T^hr) 

{ c T c + y } - 1 

for / = 1 to r do 

end for 

until convergence 

for / = 1 to r do 

^ Aq ui'^i 

end for 

return Aq uí/ • • • / Aq^ur, Bq^c, Bq^ulf • • • / Bq,ur/ f^q/ ^q/ f^a 
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Algorithm 4.6 Pseudo-code for the probit dual optimisation. 

Require: X, K i , . . . , K,, y, crj, Aui,..., ^ur/ Bill,. . . ,Bi 

1: for / = 1 to r do 

end for 

repeat 

9 

10 

11 

12 

13 

14 

I ( 1 - y M f i g ) 

for / = 1 to r do 

Aui + lipMKiU^) 

end for 

until convergence 

return . . . , n^, 





Chapter Five 

Impact of Kernel Parameters on Degrees of 

Freedom 

5.1 Introduction 

The degrees of freedom is a well-established concept in the Statistical literature. As a 

measure of the complexity of a model, the degrees of freedom gives an intuitive insight 

into the amount of fitting being performed. This chapter is an investigation into the 

degrees of freedom, both in the impact of kernel parameters, and in the extension of the 

degrees of freedom to a broad range of models. 

Every application of a kernel machine requires choice of (a) the general form of the 

kernel, (b) the parameters inherent within that form and (c) the amount of régularisation 

- often controlled by a single "smoothing" parameter, which we denote by A > 0. In 

machine learning contexts the most common choice for (a) is the Gaussian kernel. For a 

¿¿-dimensional predictor, or feature, space they take the form 

ki{s,t) =exp{ -7||s - i||2 } , (5.1) 

where 7 > 0 is a scale parameter. Hence, if the Gaussian kernel is adopted then the 

user is left with specifying the value of the pair (A, 7) G R+ x E + . The choice of 

such parameters is an old problem in nonparametric regression and other smoothing 

contexts such as kernel density estimation where it can be viewed in bias-variance trade-

off terms. A large literature exists on automatic selection of such smoothing parameters 

(e.g., Breiman and Peters, 1992; Jones, Marron and Sheather, 1996). 

Most nonparametric regression estimators are parameterised in such as way that 

there is direct relationship between the smoothing parameter and degree of régularisa-

tion. For example, smoothing splines almost invariably have A > 0, the multiple of the 

penalty functional controlling the amount of régularisation. However, the link between 

a particular value of A, e.g., setting A = 3, and the resulting functional fit is less clear 

and at least depends on the scale of the data. This problem can be overcome through 
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the concept of effective degrees of freedom (Buja, Hastie and Tibshirani, 1989). It maps the 

smoothing parameter into a new parameter, often called degrees of freedom or df for short, 

that is much more interpretable and free of scale issues. 

In this chapter we investigate the impact of kernel machine parameters on degrees of 

freedom. For example, how does the choice of (A, 7) in Gaussian kernel machines effect 

df? Conversely, if the user wants a kernel machine with df = 10, say, then which values 

of (A, 7) should be used? With questions such as these in mind we obtain expressions 

and results on the properties of df as a function of kernel parameters. Monotonicity 

relationships between df and kernel parameters are established and recommendations 

for their choice, given the df value, are given. 

The degrees of freedom may be extended to the multiple kernel setting, whereby 

the degrees of freedom may be attributed to the various predictors. This allows us to 

express the contribution that an individual predictor plays toward the fit. The degrees of 

freedom may also be extended to such areas as quantile regression and support vector 

machines, which normally do not have an associated degree of freedom. 

In the next section we consider least squares kernel machines, and show that these 

are part of the class of linear smoothers. Section 5.3 considers generalisations of the 

degrees of freedom to wider class of models. In Section 5.4 we specialise to classification 

tasks, and conclude with a discussion in Section 5.5. The proofs for all theorems in this 

chapter are given in Appendix 5.A. 

5.2 Least Squares Kernel Machines 

Let (xi,yi) G R^ X R, 1 < i < n, he a set of predictor/response pairs. Consider the 

general nonparametric regression model 

y i = f { x i ) + ei, (5.2) 

where the £/ are zero mean random variables. For now, fitting involves modelling / to 

be of the form 

f e U k , where Hk = HQ®Hi. 

The RKHS HQ corresponds to some kernel, ko, and Hi corresponds to Hq. For A > 0, 

the least squares model is 
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The fit, f e Hk may not be unique. However, by Corollary 2.11, for each I < i < n, 

the fitted values f {x i ) are uniquely determined. The coefficients of the fit are obtained 

according to 

min - Xj8 - Kef + Xc^Kc^ , (5.3) 

so that 

f(xi) = (X/S + Kc)i, for all 1 < i < n. 

Here y and c are the vectors containing the y, and K = [ki {xi, Xj)] is the Gram matrix, 

and X is an n X matrix of rank p, corresponding to the null space. The solution to 

(5.3) may be expressed as 

jS-(X"^(liC + A I ) - i X ) - i x ' ^ ( K + AJ)-i i / and c = (K\I)-\y - Xp). 

Alternatively, setting H = , and optimising (5.3) with respect to /S and 

then c yields 

c={(I-H)K + \I)-\l-H)y and ^ = {XX'^y'^X^{y - Kc). 

The fitted values, y, are then 

y = Xp + Kc = Sy, (5.4) 

where 

Methods that admit the form (5.4) are known as linear smoothers (Buja et al, 1989). For 

linear smoothers, the degrees of freedom, df, is defined as the trace of S. The following 

lemma gives provides a helpful expression for S. 

Lemma 5.1. For the kernel machine given by (5.3), the smoother matrix, S, admits the expression 

S = H + (J - H)K{I -H){{I- H)K{I - H) + A i } - ^ (5.5) 

A proof of lemma 5.1 is given in Appendix 5.A. Similarly, 

S = H + (J - H){\-'K)(I - H){{I - H){\-'K){I - H) + I}-\ 

so that the degree of freedom may be canonically referenced as 

df = df{HA-'K), 

where 

L) - tr(H) + tr[(J - H)L(I -H){(I- H)L(I - H) + !}''[ 

We now establish that A impacts df{H;\~^K) in a monotone fashion. 
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ki{s,t) J-T^ 

pth degree polynomial (1 + s'^ty 2cvpKa,,p-i © (XX"^) 

Triangular 1 — ||s — i|| —A 

Laplace exp(-||s - i||) -{KcoQA) 

Gaussian exp(- ||s - -2a;(Ka, 0 A © A) 

Table 5.1. Expressions for for some commonly used kernels. The triangular kernel has 

domain A! = {x: < 1}. 

Theorem 5.2. The degrees of freedom, rf/(H; is monotonically decreasing in A. 

Theorem 5.2 shows that a kernel machine may be parameterised not just in terms of 

A, but in terms of the degrees of freedom. The degrees of freedom offers an intuitive 

parameterisation. In some contexts it is common to work with parametrisations such 

as C = 1/A where C is called the "cost'' parameter. Theorem 5.2 immediately implies 

that df{H) CK) is monotonically increasing in C. As well as monotonicity, higher order 

results are also obtained. 

Theorem 5.3. The degrees of freedom, df{H-,\~'^K), is a convex function of 

How is df impacted by other kernel parameters? The most common one is a scale 

parameter such as the 7 appearing in the Gaussian kernel (5.1). More generally, for a 

given kernel K, we may consider the class of kernels 

Ka)(s,t) = K{cVS,OJt), CO > 0, 

corresponding to scaling of the inputs by co. Taking the derivative of df via the smoother 

expression (5.5) leads to 

{d/dcv)df(H;\-^Ka,) = Atr[{(I - H)KUI - H) + \ I } - \ l - - H)]. 

Simplification of ¿J^o; depends on the functional form of k\. Table 5.1 gives explicit 

expressions for this matrix for some common kernels. The following definitions apply 

in Table 5.1: 

Xi Xn A = Xi - Xj 

and A © JB is the elementwise product of equal sized matrices A and B. 

At the time of writing, we have not found an example of {d/doj)df{H)\~^Kc^) 

being negative for any of the kernels in Table 5.1. This leads to the conjecture that 
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(d/dcv)df{H;\-'^Kaj) > 0 for all a; > 0 and positive definite ki. We do have a proof for 

some special cases of kernels. Dot product kernels are defined to be those of the form 

where g:R -^R. Dot product kernels include the polynomial kernels, as well as, for 

d = h 

g(s) = |s|P, and g{s) = sig;n(s)|s|P, 

for any p E (0, oo). The next theorem shows monotonicity of the degrees of freedom for 

all dot product kernels. 

Theorem 5.4. For a dot product kernel, the degrees of freedom, df{H)A~'^Ka;), is a monotoni-

cally increasing function of w. 

It is not only the dot product kernels that have such a monotonicity property. The 

translation invariant kernels are defined to be those of the form 

k(s,t)=h{s-t), 

where h : ^ K. Translation invariant kernels include the Gaussian, Laplacian and 

triangular kernels, as shown in Table 5.1. 

Theorem 5.5. For a triangular kernel, and TYo = IR ^he RKHS of the null space, the degrees of 

freedom, df{H)\~^Ka^), is a monotonically increasing function of oo. 

Extensive simulation have indicated that the monotonicity property also holds for 

Gaussian kernels. (For general d, monotonicity for Gaussian kernels implies monotonic-

ity for Laplacian kernels (Schoenberg, 1935) and (Micchelli, 1986, Theorem A), as well 

as other translation invariant kernels.) An appreciation for the joint impact of kernel pa-

rameters on degrees of freedom can be obtained from Figure 5.1. It is based on Gaussian 

kernel smoothing of the fossil data described, for example, in Chaudhuri and Marron 

(1999) and Ruppert, Wand and Carroll (Section 3.6 of 2003). Note that Figure 5.1 uses 

C = 1/A so that the df surface is monotonically increasing in both directions. It also uses 

^ — ap- corresponding to (5.1). The joint monotonic impact of both kernel parameters 

on effective degrees of freedom is apparent. 

For a general kernel k with scale factor co, an interesting question concerns that of 

choosing (A, a;) for a fixed value, £, of the effective degrees of freedom. This problem 

is more relevant for kernel machines with low-dimensional structure such as additivity. 

For least squares kernel machines a reasonable strategy is to base the choice on the 
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Degrees of Freedom 
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Figure 5.1. Graph of df as a function of (C, 7) for the Gaussian kernel and motorcycle data. 

A logarithmic scale is used for the C and 7 axes to aid visualisation. We have C = and 

7 = tu .̂ 

residual sum of squares RSS(A,a;) = Wy — yŴ - We then choose the ''best'' (A,a;) given 

by: 

minimises RSS(A,a;) subject to d/(H; = i . 

The set of points given by {\*,cjo*)i can be said to dominate all other points, and gives 

the minimum RSS for each value of the degrees of freedom. 

Figure 5.2 shows the (A*,a;*)£ path for the motorcycle data, as analysed by Fan and 

Gijbels (1996). A grid search was used to find the path. It is apparent that the path 

varies little in the co direction as opposed to the A direction. The optimal path remains 

within a small band of values for cv. 

5.2.1 Extension to Multiple Kernel Penalisations 

The degrees of freedom can be considered under a more general least squares setting. 

Here we extend the previous setting (5.2)-(5.3) to multiple kernel penalisations. The 



5.2 Least Squares Kernel Machines 113 

CN -

O -

" T -
O ) 
O 

CM 
I 

CO 
I 

I 

Degrees of Freedom 

log(C) 

Figure 5.2. The RSS-based (C*,7*)^ path for the motorcycle data. The path varies little in the 

y or CO direction as opposed to the C or A or direction. 

general additive model structure has: 

for / G Hk, where 

The least squares model is 

yi=fixi) + ei 

pii^ Livi - f M ) ' + + • • •+^^ 

Following Theorem 2.13, the fits are then 

y = X^+K;,c = Sy 

where 

and 

= Y^Ki/ A/, 
i=l 

S = H+{I- H)Ka{(/ - H)KA + I}-\I - H). 

(5.6) 
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By Lemma 5.1 we may denote the degrees of freedom, tr(S), as 

A-^Ki,.. = p + tr[(I - H)K;,{I - H ) { ( i - H)KA(/ - H) + 1} 

The following theorem shows shows that monotonicity results such as Theorem 5.2 

extend naturally to the more general setting (5.6). 

Theorem 5.6. The degrees of freedom, df{H; ..., is a monotonically decreasing 

fiinction of for all 1 < i < r. 

A proof of Theorem 5.6 is given in the Appendix. How can the degrees of freedom be 

attributed to each of the r + 1 kernels? A common method is to remove a kernel from the 

model, and see how much the degrees of freedom changes (e.g., Hastie and Tibshirani, 

1990, page 128). It is usual within the additive model framework that each of the RKHSs 

H i , . . . ,Hrhe associated with a particular effect, or component of the predictor variable. 

The change in degrees of freedom on removing effect j is then expressed: 

^jdf ^ dfiH; £\7%) - df{H; £ 
i=l i=l, 

It is natural to attribute some p degrees of freedom to the null space. The following 

definition is a dual space version of that given by e.g.. Wood (2006, page 171) and 

Ganguli and Wand (2007). 

Definition 5.7. The degrees of freedom attributed to effect j, dfj, is 

dfj = tr [(i - H){Kj/Xj){I - H) { ( i - H)K;,(I - H) + 1}'' 

for all l < j < r . 

An attractive aspect of dfj is that 

df = V + t ^ f r 
M 

That is, the degrees of freedom of the model may be attributed to the null space, and to 

each of the r effects. We now show that monotonicity results also apply to the degrees 

of freedom per effect. 

Theorem 5.8. The degrees of freedom attributed to effect j is a monotonically decreasing function 

ofAj. 

The following theorem is somewhat more surprising, and shows an increasing 

monotonicity in A/, for i ^ j. 
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Theorem 5.9. The degrees of freedom attributed to effect j is a monotonically increasing function 

of Ai, for all i 

We now make a brief comparison between dfj and /^jdf. It turns out that the degrees 

of freedom attributed to effect j is an upper bound for Ajdf. This is explicitly stated in 

the following theorem. 

Theorem 5.10. For degrees of freedom attributed to effect j, dfj, and change in degrees of freedom 

from removing effect j, Ajdf, 

dfj > ^jdf. 

An attractive aspect of both dfj and Ajdf is that the multiple kernel setting of (5.6) 

may be parameterised in terms of the degrees of freedom. Similar parameterisations are 

used by Hastie and Tibshirani (1990) and Wood (2006). The degrees of freedom per effect 

may well be the natural way for parameterising models. The following theorem shows 

that REML estimates may be recognised as being parameterised in such a manner. 

Theorem 5.11. Let f be the fit to (5.6) where the parameters Ai,..., Ar are chosen via REML 

with known variance or REML estimated variance a^. Then 

P^f' 
dfj = -Hk 

for all l < j < r . 

Theorem 5.11 shows an intimate relationship the degrees of freedom per effect, the 
2 

projected RKHS penalty, Pjf ^^ and the variance of REML fits. 

5.3 Generalised Degrees of Freedom 

There are many alternatives to least square loss. In the continuous response setting, 

these alternatives include the f-distribution loss. Ruber's loss and e-insensitive loss. For 

Bernoulli observations, alternatives include the Heaviside loss, hinge loss and Bernoulli 

log-likelihood loss. Such kernel machines do not conform to the linear smoother repre-

sentation (5.4). It is of interest to examine how the concept of the degrees of freedom 

may be carried over to the general convex loss case. For simplicity, we restrict ourselves 

to the single penalty kernel machine, 

^irj ^t^iViJM) + A \\Pif\\n,y (5-7) 

where £ is a convex loss. 
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As (5.7) does not conform to being a linear smoother, we do not have a smoother 

matrix from which we may define the degree of freedom. We consider possibilities for 

the extension of the degrees of freedom to kernel machines. There are two approaches 

in particular that are studied. Section 5.3.1 considers extensions to the effective degrees of 

freedom, as given by Ye (1998). Section 5.3.2 considers the degrees of freedom through 

the context of iteratively reweighted least squares applied to generalised linear models. 

5.3.1 Effective Degrees of Freedom 

In the familiar RKHS setting, for loss function, •), RKHS H^, and null space projec-

tion Pi, we have fit 

m n | ¿ + A . (5.8) 

The fitted values are of the form 
p n 

f(x) = + i;^cik(x,xi), 
i=0 i=l 

for some G K, 0 < / < ^ and q € K, 1 < i < n. Let y¿ = f(xi). For regression 

problems, consider the restriction 

yir^Nim^a^). (5.9) 

The effective degree of freedom, edf is then given by (e.g.. Stein, 1981; Ye, 1998; Efron, 2004), 

edf=f^Cov{yi,yi)/a-\ 

We wish to estimate the effective degrees of freedom. An unbiased estimate of the 

degrees of freedom may be made, using Stein's unbiased risk estimation (Stein, 1981). 

We say that a mapping is almost differentiable if each of its coordinates can be represented 

as a directional integral. Stein (1981) showed that 

edf=tcov{yi,yi)/a' = E t ^ , 
i=l z-l 

under the normality condition (5.9), continuity and piecewise differentiability of the 

mapping y = m{y), and almost everywhere derivatives As such, an unbiased 

estimate of the degrees of freedom is given by the divergence, v, 

h ^vi 

The divergence has been used for quantile regression (Koenker, 2005; Li, Liu and Zhu, 

2007) and the lasso (Zou, Hastie and Tibshirani, 2007). For both of these examples, y i 

is not a differentiable function of y/, though it is continuous and differentiable almost 

everywhere. 
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5.3.2 Iteratively Reweighted Least Squares 

The method of iteratively reweighted least squares (IRLS) is a popular method for solv-

ing a variety of optimisation problems. In particular, IRLS is a commonly used method 

to find the fit to generalised linear models. As shown in Section Section 3.3.11, the fit 

given by generalised linear mixed models may be expressed as a special case of the 

kernel machine. The generalised linear mixed model involves the familiar optimisation 

problem 

max 
ß,u (5.10) exp{i/T(Xjß + Zu) - i^b(Xß + Zu) - ¡u'^G-'^u} 

with G = AI and b: R ^ R. Following for example Holland and Welsch (1977) and 

Ganguli and Wand (2007), we now detail the IRLS method for the generalised linear 

model. For stability of IRLS, it is required that the function b have finite first and second 

derivatives. 

i) Set A. 

ii) Obtain starting values for 

in) Repeat 

ß 

Ü 

where 

with 

' i 
/ 

Ü Ü \ 

Vadj = 
y - V(n) 

b"{rj) 

0 

0 Ai 

- 1 

CWfjyadj, 

and Wff^dia^{b' ' i ff)} , 

fj = Xß-\-Zü. 

Until convergence. 

We note that is IRLS is simply Newton-Raphson optimisation applied to the natural 

logarithm of (5.10). At the convergence of IRLS, Hastie and Tibshirani (1990, Chapter 6) 

define the degrees of freedom as 

- 1 

df = tri (C'^W^C) 
/ 

v 
0 

0 Ai 
. (5.11) 

With the linear link function the usual smoother matrix result for the degree of freedom 

is obtained. Although (5.11) gives us a measure of the degrees of freedom suitable for 

generalised linear models, there are a number of extensions that we would like to make. 

These include: 



118 5 Impact of Kernel Parameters on Degrees of Freedom 

i) To define the degrees of freedom without requiring IRLS. 

ii) A kernelisation, to allow for a range of kernels beyond those that have a low-rank 

property. 

in) To allow for the use of kernel machine loss functions outside those that are equiv-

alent to a generalised linear model. 

For some fl/ G R, for 1 <i <n, denote by fa the fit to the recentred kernel machine, 

min { t ^ i y i J a { x i ) - a i ) + \\\P,fafn\. (5.12) 
faeUk J 

On setting a = 0, we recover the usual kernel machine. The next theorem show that we 

may obtain the degrees of freedom without the need for the IRLS algorithm. 

Theorem 5.12. Let df be the degrees of freedom of the generalised linear mixed model (5.11), 

with G = AI, and [0, oo). Let Che a loss function with C{s, t) = -2{st - b{t)) + C 

for some constant, C. Furthermore, let Ho and Hi be orthogonal RKHSs with corresponding 

Gram matrices Kq = XX'^ and Ki = ZZ^ respectively, and fa be the fit to the recentred kernel 

machine (5.12). Then 

a=0 

An outline of the proof is given in Appendix 5.A. Theorem 5.12 gives the degree of 

freedom for kernel machines that are equivalent to a class of generalised linear models 

with R [0,oo). We would also like to have the degree of freedom for kernel 

machines outside of such class. Denote by the second derivative of C, with respect 

to the second term, i.e.. 

We now make the following definition for the degree of freedom for kernel machines, 

with the restriction that x IR [0,oo). Such loss functions include both 

probit and logistic regression loss (e.g., Zhu and Hastie, 2005). 

Definition 5.13. Let f be the fit to the kernel machine (5.8), where the loss C has the property 

b): y xR^ [0,oo). Then the degree of freedom of f is 

d f ^ t i . U ^ i ) dUi fl=0 

where fa is the fit to the recentred kernel machine (5.12). 

The following definition is used by Stein wart (2007). 
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Definition 5.14. A distance-based loss is a loss function with the translation invariance 

property: 

C(a,b) = C(a + c,b-\-c), 

for all a, b, c e R. 

Examples of regression loss are given in Table 3.1, and include least squares, Ruber's 

loss and quantile regression loss. We now show that for some problems, df and v are 

equivalent. 

Theorem 5.15. Let f be the fit to a kernel machine with convex distance-based loss C such that 

: IR X IR ^ [0,oo). Then 

df = v, 

where df is the degree of freedom, and v the divergence. 

Although we have defined the degree of freedom for a wide range of loss functions, 

these have included the requirement that : y x R ^ [0,oo). There are several 

important loss functions that do not have such a property. These loss functions include 

the quantile regression loss, e-insensitive loss and hinge loss. Such loss functions may 

be approximated with second differentiable loss functions. Nychka et al. (1995), Yuan 

(2006) and Li et al. (2007) provide suitable approximations to the quantile regression 

loss. Lee and Mangasarian (2001) and Diehl (2004) provide smooth approximations to 

the hinge loss. 

Index by A the observations that have finite C^^{yi,f(xi)), and E the complement of 

A over { 1 , . . . , n } . For each S, we wish to approximate C{yi,-) locally about f(xi) by a 

convex function with finite first and second derivatives. The aim is to then gradually 

allow the second derivatives to approach oo. It turns out that a unique degree of freedom 

arises. We have the following definition for the degrees of freedom for a kernel machine. 

Definition 5.16. Let f be a fit to the kernel machine with convex, continuous loss, C. Index by 

A the observations that have f{xi)) < oo, and S the complement of A. Then the degrees 

of freedom is defined as 

df ^ rank ((XX^)^^ + Kss) + E ^ ^ ^ • (5.13) 
V J dai «=0 

As a consequence of 5.16, for full-rank Gram matrices, the degree of freedom for 

support vector machines, and of quantile regression, is df = \S . 

Figure 5.3 shows the degrees of freedom for a support vector classifier. The data was 

drawn from a 1-dimensional multimodal Gaussian, with some 200 observations in each 
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Figure 5.3. Graph of df as a function of C for the Gaussian kernel and support vector machine. 

A logarithmic scale is used for the C to aid visualisation. The degrees of freedom is not monotonic. 

There is, however, a general increase in the degrees of freedom for larger values of C. 

class. Similar data was analysed by Hastie et al. (2004). Monotonicity in the degrees of 

freedom was not observed. There was however, a tendency toward higher degrees of 

freedom for larger C. 

5.4 An Alternative for Classification 

It is of interest if we can have an effective degrees of freedom for non-Gaussian distri-

butions. Consider 

Cov{yi,yi)/(Tf, where af = Var{yi\xi) > 0. (5.14) 

It is easily seen that this matches the effective degrees of freedom under the normal-

ity assumption with fixed variance. In (5.14), we have a simple adjustment to allow 

for heterogeneous error distributions. Although it would appear that we now require 

knowledge of Var{yi\xi), there is a special case whereby we do not: Binary classification. 
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For binary classification tasks, such as support vector machines, y e { - 1 , 1 } , and we 

have fits 

i=0 i=l 

for some ^ i e U , 0 < i < p and q G R, 1 < / < ri. The corresponding fitted class values 
are 

yt = sign {f(xi)}, for all l < i < n . 

For classification problems, we define the effective degrees of freedom: 

' ^ f c ^ ^ L ^ ' (5.15) 

where 

M i = (y/1 Vi = (vi I Vi = - 1 ) 
Ay/ 2 

We note that the degrees of freedom for classification matches that of (5.14). Definition 

5.15 additionally allows for Var(y/|ar,) = 0. We give as classification deviance, Vc, 

= L A • 
t i ^Vi 

The deviance may be calculated by, in turn, changing the sign of y,, and seeing if there 

is a change in y/. Such calculations will be at least as computationally intensive as 

performing leave-one-out cross-validation. 

5.4.1 Classification Example 

For support vector machines, we would like to calculate the classification deviance. This 

involves, for each \ < i < n, changing the sign of y/. Figure 5.4 shows the estimated 

degrees of freedom for a classification task. The data were drawn from a 1-dimensional 

multimodal Gaussian, with some 35 with yi = and 39 with y/ = 1. (Quite different 

results arise from having equal numbers in each class.) Unlike the least squares kernel 

machine, monotonicity in the degrees of freedom was not observed. There was however, 

a tendency toward higher degrees of freedom for larger A, and a lowering of the degrees 

of freedom for larger 7. 

To calculate the deviance we need to change the sign of each yi for 1 < / < n. This 

is equivalent to the removal, and subsequent addition of each observation. Our task 

is therefore similar in nature to performing leave-one-out cross-validation. We have, 

however, the additional requirement of re-learning the removed observation. There are 

a computationally efficient algorithms for both unlearning and learning observations. 
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Figure 5.4. Graph of Vc as a function of {C,j) for the Gaussian kernel and support vector 

machine. A logarithmic scale is used for the C and 7 axes to aid visualisation. The two white 

points indicated combinations (C, 7) that dominate many of the others. Only dominating points 

away from the plotted bounds on C and 7 are shown. The classification deviance does not display 

monotonicity in either C or 7, 

For support vector machines, Cauwenberghs and Poggio (2001) detail a computationally 

efficient method. Similarly, there are accurate approximations available for leave-one-

out cross-validation. In particular, the span bound of Vapnik and Chapelle (2000) may be 

adapted for an approximation to the deviance. Even for such efficient approximations, 

the degrees of freedom given in (5.13) will be simpler to calculate. 

5.5 Discussion 

This chapter has considered part of statistical folklore - that the degrees of freedom is a 

monotonic function of the smoothing parameter. Similar monotonicity results have been 

shown for kernel parameters. For least squares kernel machines, the degrees of freedom 

is a well established concept. The monotonicity in the smoothing parameter gives us 
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the ability to parameterise the model in terms of the degrees of freedom, as opposed to 
the less descriptive smoothing parameter. This also applies in attributing the degrees of 
freedom to various effects. 

The IRLS algorithm can be used to calculate the degrees of freedom for general loss 
functions. Having instead derived the degrees of freedom without the need for IRLS 
broadens the scope of the degrees of freedom to instances such as quantile regression, 
whereby precise definitions are given. 

The support vector machine is one of many algorithms for classification. Others, 
such as neural networks and logistic regression, have varying degrees of development in 
parameter selection. The classification deviance gives an approximation to the effective 
degrees of freedom across differing classification parameterisations and methods. 

5.A Appendix 
The proofs of this chapter require several properties of positive semidefinite matrices. 
Let us begin with a useful, though elementary Lemma. A proof of Lemma 5.17 is 
included for completeness. 
Lemma 5.17. Let A and B he symmetric, positive semidefinite matrices of equal size. Then: 

i) BAB is positive semidefinite. 
ii) tr(BA) > 0. 

Hi) + — (A + B is positive semidefinite. 
Proof, i) Since B is symmetric, BAB = B^AB is positive semidefinite. 

ii) Where A and B are n x n matrices with ij terms fl/y and bij respectively, 
n 

tr(BA) = ^ aijbji 
n 

= E ^ii^ij 

= i^{AQB)l 
> 0 , 

since the element-wise product, ©, preserves positive semidefiniteness (e.g., Horn and 
Johnson, 1994, Theorem 5.2.1). 

Hi) The fundamental theorem of calculus gives 
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On setting F{t) = + fB + for any v G R", with fl = 0 and = 1, we have 

+ B + - + = + + 

Therefore, 

i;"̂  [(A + - (A + B + v = - + + I)''^ | vdt 

Jo 

By part i), we know (A + fB + i)~^B(A + iB + i s positive semidefinite for all t > 0. 

Hence, 

{ (A + - (A + B + J ) - i } r - { (A + fB + i ) - iB(A + fB + i ) - ^ } vdt 

> 0 . 

We therefore conclude that 

(A + / ) - i - ( A + B + I ) - i 

is positive semidefinite. • 

Proof of Lemma 5.1. We wish to show that 

H + (I - H)K{{I - H)K + A i } - i ( i - H) 

= H+{I- H)K{I - H){{I - H)K{I - H) + Ai}"! 

Let us begin by rearranging 

{ ( i - H)K(I - H) + A/} + A(J + H), 

in order to give 

{I - H){{I - H)K{I - H) + \I} = {{I-H)K + \I}{I-H). (5.16) 

From equation (5.16), we then apply left multiplication by (i — H)K{{I — H)K + 

and right multiplication by { ( i - H)K{I - H) + Ai}-^. We have 

(I - H)K{{I - H)K + XI}-\l -H) = {I- H)K{I -H){{I- H)K{I - H) + \I}-\ 

The addition of H to both sides then gives the required result. • 
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Proof of Theorem 5.2. The derivative of df{H)\-'^K) is 

- 1 = Atr[(J - H)K{I - H){(I - H)K(I - H) + AI} 

= - t r [ { ( i - H)K(I - H) + AJ}- i { ( J - H)K{I - H)} 

X { ( I - H ) l C ( i - H ) + A J } - i 

< 0 , 

since (J - H)lC(i - H) is positive semidefinite. 

Proof of Theorem 5.3. The second derivative of df{H;\~'^K) is 

• 

df(H-\-^K) = ^ t r (J - H)K(J - H){{I - H)K{I - H) + AI} d^ 
dX^ 

d 

- 1 

= - ^ t r [{(J - H)1C(J - H)} { ( I - H)lC(i - H) + AJ}-^ 

= 2 - t r [{(/ - H)K{I - H)] { ( i - H)K{1 - H) + A/} - 3 

> 0 , 

where the inequality follows Lemma 5.17 ii), as both the matrices (I - H)K{I — H) 

and { ( I — H)K{I — H) + AJ}~^ are positive semidefinite. As the second derivative of 

df(H-, is non-negative, we conclude that d f { H ; i s convex. • 

Proof of Theorem 5.4. The proof makes use of the following lemma, shown by FitzGerald, 

MiccheUi and Pinkus (1995). 

Lemma 5.18. For dot product kernel, the matrix given by K^+e — Kj is positive semidefinite for 

all 7, e > 0. 

Letting 7, e > 0, 

= - t r { ( I - - H) + i y \ t r I (J - - H) + /} 

= tr { ( I - - H) + { ( J - - H) + j } ' ^ 

- 1 

(5.17) 

where 

and 

A = {I-H)A-'^Kj(I-H), 

B = (I - - Kj){I - H). 
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By Lemma 5.18, the matrix B is positive semidefinite. Applying Lemma 5.17 Hi) to (5.17), 

we have 

- > 0. 

Hence the degrees of freedom, df{H-,\~'^Kco), monotonically increasing in a;. • 

Proof of Theorem 5.5. We now show that for triangular kernel, and Ho = IR, that the 

degrees of freedom is a monotonically increasing function oi cv. li Ho = IR, then, up to 

a multiplicative constant, X = 1, and therefore H = I -11^/n.YJe have the derivative. 

(dldoo)df{n)K-^K^) = -{d/dcv)\trl{(I - H)Ka,(I - H) + \ I } 

= -Atr 

- 1 

{ ( I - H ) K U I - H ) + A J } - ^ { ( I - H ) A { I - H ) } 

X { ( I - H ) J C a ; ( I - H ) + A I } " ^ 

> 0 , 

where the inequality follows since the matrix given by 

( Í - H ) A ( I - H ) = - ( I - H)K(I - H ) 

is negative semidefinite. For triangular kernel, the degrees of freedom is therefore a 

monotonically increasing function of cv. We note that this result may be generalised to 

any X with the property that 1 is in the column span of X. • 

Proof of Theorem 5.6. Taking the derivative oí df{\i,..., Xr)Ki,... ,Kr), w i th respect to 

Aj, for some I < i <r, 

uAj 

= ¿ (h + P - tr[{(I - H)K,(I - H) + AÍ}-!]) 

= t r [ { ( J - H ) K a ( I - H ) + - H ) K a ( í - H ) + A I } ' ' 

= -A-^tr[{(I - H)Kx{I - H ) + - H)K;,{I - H ) + A i j - ^ 

< 0 . 

Hence the degrees of freedom is monotonically decreasing in A,, for all I < i < r. • 

Proof of Theorem 5.8. We wish to show that degrees of freedom attributed to effect j is 

monotonically decreasing in Aj. For the following, we denote by M the positive definite 

matrix: 

M = | ( í - f í ) ( £ A , r i K , ) ( í - H ) + í „ | . 



5 . A A p p e n d i x 1 2 7 

D e r i v i n g d f j w i t h r e s p e c t t o Ay, f o r s o m e 1 < / < r , 

d .. d 
= ^ i * " [ { ( ^ " - « ) } { ( i - - H ) + 7 } - ! ] ) 

= - - H ) - M } { ( J - - H ) + / } - ! 

= ¿ T ( t r [ / - M { ( i - H ) i C , ( i - H ) + i } " 

= A - 2 d 

' d A r i 
t r M { ( / - H ) K A ( i - H ) + i } - i ] ) 

< 0 . 

M { { ( J - H ) l C A ( i -H) + I}-'Kj{{I - H)K,(I - H ) + I}''] 

W h e r e t h e i n e q u a l i t y f o l l o w s f r o m L e m m a 5 . 1 7 ii), s i n c e 

{ ( J - H ) 1 C a ( I - H ) + - H ) K A ( I - H ) + i } - 1 

i s p o s i t i v e s e m i d e f i n i t e . 

Proof of Theorem 5.10. W e w i s h t o s h o w t h a t : 

• 

dfj > Ajdf. 

L e t u s b e g i n b y 

dfj - Ajdf 

= t r [ ( J - H ) X J % { I - H ) { ( J - H ) K a ( I - H ) + 

- df{H; X: AriiC,) + df{H; £ Arix,) 

= t r [ ( J - H)\fKj{l - H){{1 - H ) J C a ( I - H ) + 

- t r [ ( I - H ) K a ( I - H){(I - H ) K A ( i - H ) + I } - ^ 

+ tr[(J - H) (Ka - Ar^Ky) (/ - H){ (J - H) (Ka - (i - H) + 

= _ t r [ ( J - H) ( K a - Ar'Kj) ( / - H ) { ( J - H ) K a ( / - H ) + 

+ t r [ ( I - H) ( K a - A r i l C y ) ( J - H ) { ( I - H ) ( K a - A r ^ K y ) ( I - H ) + 

= t r 

w h e r e 
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and 

B = {I-H){A-%){I-H). 

By Lemma 5.17 in), 

is positive definite, as A and B are positive semidefinite. Hence, by Lemma 5.17 ii), 

dfj - ^jdf = tr [a { (A + i)"^ - (A + B + J ) " ^ } 

> 0 . 

We may then conclude that 

as required. 

dfj > Ajdf, 

• 

Proof of Theorem 5.11. The proof follows from a rearrangement of the REML equations. 

Using the notation of Chapter 4, REML equations give 

lim y^UKiUy = lim triK/n), 

for all 1 <i <r. However, 

P j f f = lim y^UKilly 
cri^oo 

and 

We therefore have 

as required. 

a^dfj = lim tr(K/n) 
CTa—^OO 

dfj = 
Pjf nk 

a' 

• 

Proof of Theorem 5.12. It is shown in Chapter 3 that the generalised linear model has 

equivalent fits to the kernel machine. The proof follows by considering the second 

order Taylor series expansion of the recentred kernel machine objective function. The 

expansion is in terms of 

u about u 

a 0 

and follows that of Diehl (2004). • 
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Proof of Theorem 5.15. It is clear that since £ is a distance-based loss. 

and hence, for e / 0, 

e e 

Letting e ^ 0, 

so that 
dyi dui^^ a=0 

A df{Xi) ^ d ^ , , 

a=0 
• 





Chapter Six 

Active Set Optimisation of Support Vector 

Machines 

6.1 Introduction 

The support vector machine^ has emerged as an effective and elegant method for super-

vised learning, or classification, problems. There is a considerable amount of machine 

learning literature on training an SVM. Several implementations, such as Piatt (1999), 

Joachims (1999) and Chang and Lin (2009), allow an SVM to be trained on large scale 

problems. When the SVM has special structure, such as a low-rank decomposition, 

interior point methods (Ormerod, Wand and Koch, 2008), or cutting plane methods 

(Joachims, 2006), allow for fast and accurate solutions. The optimisation task becomes 

more difficult on large-scale, full-rank problems. 

There is a strong interest a strong interest in the Machine Learning community in 

such difficult optimisations. The most popular choice of kernel, the Gaussian, does not 

conform to a low-rank decomposition. It is the infinite dimensional, rich, reproducing 

kernel Hilbert spaces of Gaussian and Laplacian kernels that have attracted much inter-

est (e.g., Steinwart, 2001). With such kernels the memory requirements of the algorithm 

is an important consideration. This chapter focuses on the fast and accurate training of 

support vector classification machines. 

At the heart of an SVM lies a quadratic programming problem. This QP has sim-

ple box constraints, and a single linear constraint. Many existing QP algorithms have 

memory requirements that are not suitable for large scale problems. In this chapter, we 

implement a method that uses a combination of three different phases, an initialisation 

phase, a decomposition phase, and a conjugate gradient phase. We cycle through the 

phases until convergence is met. As demonstrated by numerical studies, the algorithm 

is fast and able to handle large training data sets. 

^This chapter is based on material under submission for publication, to IEEE transactions on Neural 

Networks, as: N. D. Pearce and M. P. Wand, Active Set Optimization of Support Vector Machines. 
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In Section 6.2 we describe the SVM, and derive an appropriate QP. Optimality condi-

tions will also be presented. Our algorithm is described in Section 6.3, including details 

of each phase. Computational results are reported in Section 6.4, and we conclude with 

a discussion in Section 6.5. 

6.2 Support Vector Classifiers 

Suppose we observe features, Xi G R"̂ , 1 < / < n, together with corresponding classes 

yi G { - 1 , 1 } . Let /c be a kernel, and K be the corresponding Gram matrix, with entries 

Kij = k{xi,xj). The dual QP problem is 

mm i (a © y)^ K { c i G y ) - l^cc 

subject to 0 < oii < Ci, for all I < i < n, and y^cc = 0. 

With Ci = C, for all 1 < / < n, we obtain the C-SVM formulation of Cortes and Vapnik 

(1995). The general form of the primal QP allows a different weight for each sample. 

Following Osuna, Freund and Girosi (1997a), a common approach is to set 

c, = 
Ci, yi = 1, 

C_i, yi = - 1 , 

allowing different weights to be given to each class. 

Making the change of variable a = ocQy,we denote the canonical dual QP problem 

as 
min jo^Ka — y^ a 

subject to li < ai < Ui, for all I <i <n, and l^a = 0, 

where I and u are vectors with terms U = mm{0,Ciyi} and = max {0,C/i/j}. We 

note that similar QPs arise from kernel quantile regression (Takeuchi, Le, Sears and 

Smola, 2006) and from support vector regression (Drucker, Burges, Kaufman, Smola 

and Vapnik, 1997). We denote the canonical dual criterion by 

R{a) = \a^Ka-y^a. 

Similarly, the gradient, gi(a), is given by 

gi{a) - ^ ^ = (Ka)i - yi, for all l<i<n. 
oai 

Via the Karush-Kuhn-Tucker (KKT) conditions it is easily shown (e.g., Scholkopf and 

Smola, 2002; Karush, 1939; Kuhn and Tucker, 1951) that for a solution to the canonical 
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1 l^a = 0, 

2 li < tti < Ui, for all I <i<n, 

3 gi{a) + i = 0, for all 1 < z < n such that < < w,, 

4 gi(fl) + i > 0, for all 1 < / < n such that Ui = U, 

5 gi{a) + ? < 0, for all 1 < z < n such that Ui = Ui. 

Table 6.1. Optimality conditions for the support vector machine. 

dual QP, fl, there exists b e R such that the optimality conditions of Table 6.1 hold. 

The decision function is then f{x) = J X i ^M^, Xi) + b, and the classifier takes the form 

sign{/ {x)}. 

6.3 Active Set SVM 

Our algorithm uses three distinct phases: an initialisation phase, a decomposition phase 

and a conjugate gradient phase. The phases may be used multiple times before conver-

gence is met. The initialisation phase is a novel approach that allows us to move around 

the corners of the box constraints, in a manner similar to the Simplex method for linear 

programming (Dantzig, 1963). The initialisation phase varies only one variable at a time, 

flf, for some 1 < i < n. In doing so, we temporarily relax the constraint a = 0. As 

the initialisation phase moves around the corners of the box constraints, only in extreme 

cases be able to completely solve the QP. The initialisation phase requires only 0{n) 

memory and may be used multiple times during the optimisation. 

The decomposition phase is based on decomposition methods for SVMs. Decompo-

sition methods involve fixing some variables, and optimising with respect to the remain-

ing variables, the so called "working set''. A number of decomposition methods have 

been developed for the QP problem. An early reference is Piatt (1999), whose Sequential 

Minimization Optimisation showed that some large scale SVMs can be solved quickly, and 

simply. Other solvers have included: Chang and Lin (2009), Fan, Chen and Lin (2005), 

Hush, Kelly, Scovel and Steinwart (2006), Joachims (1999), Keerthi, Shavade and Bhat-

tacharyya (2001), List and Simon (2005), Simon (2004) and Vapnik (1998). These, and 

others, have become enormously popular and effective in solving SVMs. It is known, 

however, that some decomposition algorithms can have poor performance on various 

SVM tasks. If the problem is particularly large, or particularly difficult, as with a very 

large C, slow convergence can be experienced. The decomposition phase, like the ini-
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Sample size Single precision Double precision 

storage space storage space 

n 2n{n + l) ^n{n + l) 

100 20 KB 40 KB 

1000 2MB 4MB 

10000 200 MB 400 MB 

100000 20 GB 40 GB 

1000000 2 TB 4 TB 

Table 6.2. The relationship between sample size and required storage space for K. 

tialisation phase, has small memory requirements. This is important for large scale 

problems. 

In the third phase, the conjugate gradient phase, we attempt to optimise over all vari-

ables that are "free", that is, all variables not currently at their lower or upper bounds. 

The conjugate gradient phase is based on the active set method for QPs, for example, 

Wolfe (1959), Polyak (1969), Nocedal and Wright (1999) and Scheinberg (2006). The ac-

tive set methods allow for highly accurate solutions to the QP, and is the traditional 

method for solving quadratic programs. Active set methods have been applied to SVMs 

with varying success. Both Wen, Edelman and Gorsich (2003) and Scheinberg (2006) de-

tail active set algorithms that show a similar performance to that of SVM '̂̂ ''̂  (Joachims, 

1999). However, it appears that active set comparisons against LIBSVM (Chang and 

Lin, 2009; Fan et al, 2005), have not been as favourable. Vogt and Kecman (2005) and 

Vishwanathan, Smola and Murty (2005) produced active set algorithms; they found LIB-

SVM to be many times faster. We argue that in combining characteristics from both 

decomposition and active set methods, a fast, and accurate algorithm can be created. 

Following Burges (1998), and Wen, Edelman and Gorsich (2003), optimisation is carried 

out through the use of projected conjugate gradients. The algorithm cycles though the 

initialisation, decomposition, and conjugate gradient phases. It is nowadays standard, 

amongst efficient algorithms, to make use of techniques such as kernel caching, selec-

tive pricing and sparsity handling. These too are employed to improve the speed of 

the algorithm. We call our algorithm AS-SVM, standing for active set support vector 

machine. 
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6.3.1 Initialisation Phase 

Within Table 6.1, the optimality conditions (3)-(5) differentiate three groups of vari-

ables. Denote by C the indices of the variables at their lower bound, that is, for all 

i G C,ai = li. Similarly let U denote the the indices of variables at their upper bound: 

for all i G U,ai = Uf. The term active set, indexed by A, refers to variables whose in-

equality bound is active, that is, the variables with corresponding indices in U l/i. The 

complement of the active set is the set of free variables, with indices denoted by S, We 

have li < Ui < ui for all / € 5. 

On typical classification problems, the majority of variables, at the solution to the QP, 

are in the active set. In turn, most of these variables are at 0. This can make the optimisa-

tion easier. Typically we would want to start the algorithm with Ui = 0 for all 1 < z < n. 

There are other settings where we would want to use approximate solutions as our start-

ing point, such as with incremental learning (Cauwenberghs and Poggio, 2001). Another 

important setting is when performing either fc-fold cross-validation where we may not 

initially have iJa = 0. 

During the initialisation phase, similar to Dantzig's Simplex algorithm (Dantzig, 

1963), we directly push variables to their upper or lower bounds. Only a single variable 

is changed, to do this, we temporarily relax the condition a = 0. li a < 0, we set 

some Uj to its upper bound, and if l^a > 0, we set some Uj to its lower bound. In this 

manner, we maintain a ^ 0. It remains to decide which variable should be chosen. 

It is worth noting that there is an invariance in the canonical dual QP. If we were to 

replace the matrix K with matrix Q, where Qij = Kij - \ {Ku + Kjj), Scholkopf (2001) 

shows this does not change the solution to the SVM. Taking this invariance into account, 

if l^fl < 0, we set Uj := Uj where 

j = argmin \gi(a) - \Kiil^a] . 

Similarly, if l"""« > 0, we set Uj := Ij, where 

j = argmax \gi{a) - iKul^a] . 
i^c ^ ^ 

By taking advantage of the invariance, we ensure that the canonical dual criterion is 

being maximally decreased, modulo a = 0. The gradient is updated with 0{n) time 

and memory requirements. Once a column of K is generated, it is stored in a kernel 

cache, as it may need to be reused. 

Convergence is obtained when the same variable is selected twice in a row. To 

prevent cycling, in the case of ties, the variable with the lower index is chosen. On con-
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Algorithm 6.1 Pseudo-code for the initialisation phase. 

Require: K(-r),g, y 

1: K ^ l ^ a 

2: j,0ld < 1, j < 2 

3: while j-old ^ j do 

4: j-Old j 

5: if K < 0 then 

6: j ^ argmin.^^^ {gi + ^kKu} 

7 : A Uj - ttj, K ^ K-\- A, and fly ^ Uj 

8: else 

9: 7 ^ argmax.^^ {gi + {KKu} 

1 0 : A <r- Ij — Uj, K K + A, and fly Ij 

11: end if 

12: gf ^ gi + SKij, for all 1 < z < H 

13: end while 

14: gi ^ gi + KKij, for all 1 < f < n 

1 5 : fly fly + K 

vergence, a small adjustment may be needed to ensure a = 0. Once this adjustment 

has been made, the canonical dual criterion is no larger than at the start of the initialisa-

tion phase. The initialisation phase will, in general, not solve the QP. In all but extreme 

cases, the solution to the QP requires variables to be free, the set S not being empty. 

Used multiple times during optimisation, the initialisation phase may converge early, 

with little or no reduction in the canonical dual criterion. The early convergence of the 

initialisation phase can be expected on problems with large values of C. Pseudo-code 

for the initialisation phase is given in Algorithm 6.1. 

6.3.2 Decomposition Phase 

The decomposition phase is based on the popular decomposition methods for SVMs. 

The Hessian of the QP, K, may be too large to store in memory. With decomposition 

methods, a sequence of smaller QPs are solved. Algorithms such as Vapnik (1982), Os-

una et al. (1997b), Joachims (1999) and Piatt (1999) make use of this idea. Each iteration 

of the decomposition phase involves fixing some variables, and optimising with respect 

to the remaining variables, the so called ''working set''. Partitioning the set { 1 , . . . , n } 
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into a working set, W, and a non-working set, W, we minimise the canonical dual while 
holding the variables in the non-working set fixed. That is we solve 

min (^a^Ka - y^a) 
UiUiAEW ^^ ^ ^ 
subject to li < Ui < Ui, for all 1 < / < w, and a = 0, 

or equivalently, 

(6.1) 
subject to li < Ui < Ui, for all i G W, and l^ay^ = 

With AS-SVM, the size of the decomposition is fixed at two, the minimum number 
required in order to strictly maintain the condition l"""« = 0. The corresponding minimi-
sation (6.1) can be achieved analytically, as was shown in Piatt (1999). It is also known 
that the analytic solution is stable even when the matrix Ky^y^ is not strictly positive 
definite (Lin, 2002). A number of decomposition methods have been developed for the 
QP problem. Since Piatt (1999) these have mainly focused on working sets of size two. 
Even when the size of the decomposition is fixed at two, there are many alternatives for 
choosing the working set. A popular and particularly efficient decomposition algorithm 
is that of LIBSVM version 2.8, detailed in Chang and Lin (2009) and Fan et al. (2005). In 
the decomposition phase we use similar procedures for selecting the working set and 
convergence criteria. In particular, we follow Fan et al. (2005) in using second order in-
formation. Using second order information, (/,;) is selected where i G argminj^^^gi(fl), 
and 

/ G aremax / {sM - gi{a)f ^ T [ m a x 10-12) gM >gM 

Once (/,;) is selected, the analytic solution given by Piatt (1999) is used. A commonly 
used criteria for convergence is £ convergence, 

maxgi(a)-mmgj{a) < e, 

where e > 0 is some tolerance, typically 10"^. On its own, the decomposition phase 
may take many iterations to achieve, and typically 0 ( l / e ) . However, each iteration, at 
0{n), is computationally inexpensive. We perform up to 1000 iterations during each 
decomposition phase. Pseudo-code for the Decomposition Phase is given in Algorithm 
6.2. 

Part of the Gram matrix is stored in a kernel cache (Joachims, 1999). On large data 
sets the cache may be quickly filled, various heuristics are used to reallocate memory. 
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Algorithm 6.2 Pseudo-code for the decomposition phase. 

Require: K{ , •), g, a, I, u, e, 

j ^ aigmin^^^ gt 

m^O 

while gi — gj > € and m < 1000 do 

m ^ m + 1 

j ^ argmin^ | t f T ^ — 1 n - l 2 ^ ^ ^ > ^^ 

if gi - gj > {Kii + Kjj - 2Kij) max(fli - //, Wy - Uj) then 

A < — m a x ( f l j — I j , U j — U j ) 

9: else 

10: + 

11: end if 

1 2 : U i flf — A , fly fly• + A 

13: gi ^ gi - ^Kij + AKik for all 1 < z < n 

14: end while 

The columns of K corresponding to S are highly likely to be reused and are preferenced 

in the cache over columns corresponding to A. Some details of the caching strategy 

are discussed in Section 6.3.4. As AS-SVM was coded in Fortran 77, dynamic memory 

allocation was not used, though it was still straightforward to dynamically allocate space 

within a large vector. When the cardinality of S is large, a smaller proportion of the 

columns corresponding to S may be stored in the cache, having a negative impact on 

the performance of the algorithm. 

A difficulty identified by DeCoste and Scholkopf (2001), called the intermediate sup-

port vector bulge, is that for some problems many variables are required to pass from 

£ to ¿Y or from U to C. This creates a temporary bulge in S, to the detriment of the 

time to convergence. Although the initialisation phase may be of some benefit here, the 

intermediate support vector bulge may still be seen on problems where the initialisation 

phase converged early. An example of an intermediate support vector bulge can be seen 

in Figure 6.1. During the training of the support vector machine, the intermediate car-

dinality of S can be significantly higher than the final cardinality at convergence. This 

causes the kernel caching to become less efficient, as less of K s s be stored in the 

cache. 
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Support Vector Bulge 
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Figure 6.1. Intermediate support vector bulge. Decomposion methods by themselves are known 

to experience an intermediate support vector bulge phenomenon. On the problem above, we find 

on convergence that there are only a couple of hundred free variables, or elbow points. Yet, during 

the course of optimisation, there may be many more free variables. The effect of the bulge is a 

diminished run-time performance. 

6.3.3 Conjugate Gradient Phase 

If we had an estimate of the sets C and U, then we would trivially know ac and a^, and 

approximate values as could then be found by solving 

min {lalKss^s - «J (ys - KSA^A) } 
(6.2) 

subject to li < ai < Uj, for all i e S, and as — - l ^ f l ^ . 

Unlike decomposition methods, we do not solve (6.2) directly. As the cardinality of S 

may become large, directly solving (6.2) with say, an external QP solver, may not be 

viable due to either time or memory requirements. There are methods to gain an ap-

proximate the solution to (6.2). Traditional active set methods approximate the solution 

via the following steps: 
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i) Initialise as such that l^as = and U < ai < Uj for all i e S. 

ii) Solve 
min {\alKssas - « J (ys - KSA^^A)} 

(6.3) 

subject to as = - l ^ f l ^ . 

in) Move toward the solution until we hit a box constraint, that is for some i G S, 

ttf = Ij or Ui = Ui, or until a solution is reached. 

iv) If we hit a box constraint, remove the observation from S, update the vector a and 

set A, and return to step ii). 

v) If as satisfies the box constraints, exit. 

These steps may provide a new estimate as to the partition of the sets C, U and S. 

Commonly, active set method QP solvers, such as Wolfe (1959) and Scheinberg (2006), 

select a single violating variable to add to the free variables. This can be slow if many 

variables are to be added. Scheinberg (2006) notes that adding multiple violating vari-

ables will not, in general, improve performance. The clustering of observations that 

exists on many data sets means that the violating variables may be close to each other. 

As such, adding the most violating variables to the set of free variables may have the 

same effect as simply adding the most violating variable. We overcome this by using the 

decomposition phase to choose new free variables. Using the decomposition phase has 

the added benefit of reducing the zigzagging that has an adverse effect on both active 

set methods, as well as on some decomposition methods that use large working sets. 

The computationally expensive part of the active set phase is step (ii) and involves 

a system of linear equations. The KKT conditions may be represented as the linear 

equations: 

^ Kss 

\ 

/ . \ as 

h 

^ ys- KsAiiA ^ 
(6.4) 

There are several standard ways to solve such a system. Either Cholesky factorisa-

tion or a conjugate gradient method can accurately solve the system of equations, al-
Q 

though on their own would take some O (card (S) ) operations, where card(<S) denotes 

the cardinality of S. Often we are only adding or removing a small number of vari-

ables. Cholesky updates and downdates reduces this cost to 0(card(iS)^). Scheinberg 

(2006) uses Cholesky factorisation with updates and downdates to the Cholesky fac-

tor. A drawback with using Cholesky factorisations is that of memory requirements. A 

Cholesky factorisation requires some 0(card(iS)^) memory, for large, high dimensional 

data sets this may not be available. 
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Conjugate gradient methods, as an iterative approximation, can benefit from using 
current estimates of a. Polyak (1969) uses the conjugate gradient method for general 
QPs. Both Burges (1998) and Wen et al (2003) have apphed the conjugate gradient 
method to SVMs. We do not need to precisely solve (6.3). Several conjugate gradient 
descent steps are sufficient for an approximate solution to the system of equations rep-
resented by (6.4). Due to the condition a = 0, the conjugate gradient directions are 
projected onto a = 0. Since the projection matrix P= I-11^/ card(<S), the projection 
of a vector is cheap. The box constraint conditions that U < a, < Uf for all l<i <n, are 
maintained at all times. The descent direction is clipped to the box constraints, this is 
particularly important as an infinite descent direction may occur. Pseudo-code is given 
in Algorithm 6.3. 

A standard projected conjugate gradient algorithm offers the solution of step ii) in 
0(card(<S)^) flops (Nocedal and Wright, 1999). The conjugate gradient method offers 
some choices as to memory use. Inherently, the conjugate gradient method requires 
a minimum of only 0(card(«S)) memory, no more than the decomposition method. 
However, at a cost of 0(card(vS)^) memory, Kss may be stored for an improvement 
in speed. We thus have a trade off between speed and memory requirements, and a 
strategy to be chosen. Also to be considered is that the conjugate gradient method may 
be skipped altogether. The simple strategy we take is to skip the conjugate gradient 
phase if these memory requirements become large. This has the added advantage of 
ensuring simpler code than otherwise. 

There may also be other reasons to avoid the conjugate gradient phase. Although the 
conjugate gradient phase offers superior convergence properties to the decomposition 
phase for e convergence as e 0+, the benefits for say, e = 10"^ are more marginal. 
As shown in Figure 6.2, the conjugate gradient phase can greatly reduce card («5), the 
intermediate support vector bulge has been greatly lessened. Thus there are two areas 
where the conjugate gradient phase is particularly helpful: early on in the optimisation, 
to lessen the intermediate support vector bulge, and close to optimisation, when the 
active and free variables are close to being identified. 

At the start of the conjugate gradient phase, the matrix Kss is stored in packed 
storage within the kernel cache. This kernel cache is shared dynamically with other 
kernel evaluations. Pseudo-code for AS-SVM is given in Algorithm 6.4. 



142 6 Active Set Optimisation of Support Vector Machines 

Algorithm 6.3 Pseudo-code for the conjugate gradient phase. 
Require: Kss, g, «/ h u, S, e 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

22 

r^gs 

m ^ 1 
while max{r} - min{r} > e do 

r^Pr 

repeat 

if m = 1 then 

p^r 

else 
fTr p r + -V-p r w'lVf 

end if 

A maxf, subject to ls(i) < + vpi < Uŝ i) for all 1 < z < card(<S) 

q ^ PKssV 

if r^r < ^p^q then 

K -V-p^q 

else 

A 

end if 

w ^ r, r ^ r — Kq, and m ^ m + 1 

«5(f) ^ + ôr all 1 < / < card(«S) 

until K > A 

m ^ 1 

end while 

6.3.4 Sparsity, Caching and Selective Pricing 

Much of the computational burden is on kernel evaluations. For sparse data sets, where 

many of the features are 0, the kernel evaluations are performed to take advantage of 

the sparsity. It is often computationally much cheaper to re-use kernel evaluations than 

to recalculate them. 

A kernel caching (Joachims, 1999), allows partial storage of the matrix K. The kernel 

cache consists of two components; some columns of K, as well as, possibly, the matrix 

Kss, stored in packed storage. On large data sets the cache may be quickly filled, 

various heuristics are used to reallocate memory. The columns of K corresponding to 
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Support Vector Bulge Comparison 
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Figure 6.2. Support vector bulge comparison. The darker, lower curve shows the number of free 

variables, or elbow points, at each iteration of the decomposition phase. At around every 1000 

iterations, the conjugate gradient phase greatly reduces the number of free variables. This has 

significantly reduced the intermediate support vector bulge phenomenon. The conjugate gradient 

phase occurs some ten times; eight of those before the first unshrinking. 

S are highly likely to be reused, either in to the decomposition phase or the conjugate 

gradient phase. Accordingly, columns corresponding to S are preferenced within the 

cache over columns corresponding to A. 

Taking into consideration such a heuristic, we may still be required to choose to 

remove a column from S or choose a column to remove from A. To this end, we 

adapted the minimal violating rule of Li et al. (2002). Although, as AS-SVM was coded 

in F o r t r a n 77, dynamic memory allocation was not used, it was still straightforward to 

dynamically allocate space within a large vector. When the cardinality of S is large, a 

smaller proportion of the columns corresponding to S may be stored in the cache, hav-

ing a negative impact on the performance of the algorithm. A trade-off exists between 

the memory available, and the speed of the algorithm. 
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Algorithm 6.4 Pseudo-code for AS-SVM. 

Require: •), at, y, I, u, e 

9 

10 

11 

12 

13 

14 

15 

16 

Ui ^ 0 for all 1 < / < n 

g ^ y 

e ^ lOe 

repeat 

Initialisation phase 

Decomposition phase 

if e convergence then 

Unshrinking 

e <r- £ 

else 

if not e convergence then 

Shrinking 

Conjugate gradient phase 

end if 

end if 

until £ convergence 

In the optimisation literature, calculating gi{a) is referred to as ''pricing''. Partial 

pricing involves only calculating gi{a) for some i. The idea is to limit the computational 

burden, while perhaps only bringing about a slight increase in the number of iterations. 

A commonly used partial pricing strategy in the SVM literature is the shrinking strategy, 

whereby the number of variables are effectively 'shrunk' by ignoring those in the active 

set that are some distance from being violating variables. For choosing which variables 

to be shrunk we follow LIBSVM (Chang and Lin, 2009) Shrinking is also of benefit to 

freeing memory in the kernel cache. Not only can shrinking remove columns from the 

kernel cache, but it can also shorten the columns remaining in the cache. After each 

decomposition phase, shrinking is performed. This matches well with the conjugate 

gradient phase; memory is freed from the cache just in time. These shrunken variables 

must be rechecked again close to optimisation. We had also experimented an extra 

pricing technique, known as sprint (Forrest, 1989). Although widely used in active set 

algorithms (Bixby et al, 1992; Scheinberg, 2006) we did not find sprint to be of benefit 

when used in conjuncture with the multiphase approach. 
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6.4 Computational Results 

In this section, we give some computational results, comparing AS-SVM with LIBSVM 

version 2.81. A memory allowance of some 10^ kernel evaluations was made available 

to both methods. Since LIBSVM uses single precision (4 byte) storage to store the kernel 

evaluations, the memory allowance is 40MB. AS-SVM uses double precision (8 byte) 

storage. Neither AS-SVM or LIBSVM have special treatment of the linear kernel, such 

as linear folding (see Piatt, 1999). The following three data sets were used for our 

experiments: 

Web: The Web data set, as preprocessed by Piatt (1999). We have 300 binary features 

per observation, with an average of around 12 being non-zero. A subset of 24,692 

training observations is used. As the data is sparse, the kernel evaluations take 

advantage of this sparsity. A Gaussian kernel is used, with a range of parame-

terisations. The Web data set is a commonly used test data set for SVM training 

algorithms. 

MNIST: Handwritten upper-case letters. Contains handwritten text for zip code recog-

nition. The data set contins 21,000 training observations, with 780 features per 

observation. These features were scaled to [0,1]. We fitted three different mod-

els, MNIST(O) is recognising digit 0 versus all the other digits, and MNIST(9) is 

recognising digit 9 versus all the other digits. For MNIST(0-4), we recognise dig-

its 0-4 versus digits 5-9. Of the 780 features, an average of 150 are non-zero per 

observation. 

Adult: The Adult dataset. The data set looks at the census household income, in par-

ticular whether income is greater than $50,000. There are 123 binary features per 

observation, on average around 14 being non-zero. We fit several classifiers using 

some 16,100 training examples. Similar classifiers were tested by Piatt (1999) and 

Scheinberg (2006). Both Gaussian and linear kernels are used. 

With time in seconds, a tolerance of e = 10"^ was used for all C-SVM experiments. 

Results are shown in Table 6.3. On convergence, the colunm denoted card(«S) gives 

the number of free variables on convergence. The number of bounded support vectors 

is given by 'bSV. Both LIBSVM and AS-SVM were called through their respective R 

wrappers, times exclude the time taken to read in the data. The times are similar or 

better than those shown by LIBSVM, requiring less than half the time on some problems. 

Some of the largest proportions in time savings are on the Adult data sets, where there 
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Problem 1/7 C card(<S) bSV LIBSVM AS-SVM 

Web 100 100 980 453 72 44 

Web 40 10 1037 568 53 34 

Web 40 100 1214 313 62 51 

Web 100 10 679 835 47 24 

MNIST(O) 780 100 576 0 83 80 

MNIST(9) 780 100 1311 36 276 240 

MNIST(0-4) 780 100 2926 95 866 610 

Adult 100 1 97 5996 93 40 

Adult 100 100 871 4823 185 116 

Adult 200 1 168 5785 108 43 

Adult 200 100 483 5219 133 68 

Adult 50 10 615 5143 99 49 

Adult linear 1 211 375 70 43 

Table 6.3. Time comparison between LIBSVM and AS-SVM, shown in seconds. Performance 

ofAS-SVM is similar or better than that of LIBSVM, with time savings of up to 60%. The time 

savings are most pronounced when there is a large number of bounded support vectors, bSV. 

are a large number of bounded support vectors. On the Adult data set with 7 = 1/100 

and C = 1 for example, over 90% of the time spent by AS-SVM is during the initialisation 

procedure. On the Adult data set with 7 = 1/100 and C = 100, very little time is spent 

during the initialisation procedure, the time savings over LIBSVM can be attributed 

to the conjugate gradient phase, which ensures that the cardinality of S is kept low 

during the earlier stages of optimisation. On examples with a small number of bounded 

support vectors, such as MNIST(O), the performance of AS-SVM is similar to that of 

LIBSVM. 

6.5 Discussion 

A novel algorithm has been created by adopting a hybrid strategy. This allows for fast 

and accurate training of SVMs. The algorithm has a similar or better performance than 

LIBSVM on a range of standard SVM problems. The initialisation phase is a novel 

and particularly simple to implement. By using conjugate gradient methods, we avoid 

performing Cholesky factorisation. This also allows us a high accuracy, speed and ap-
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plicability to large data sets. 

We have avoided a rigorous convergence analysis; the convergence of the decompo-

sition phase on its own is well known. For optimising an SVM, decomposition methods 

have been the method of choice in the machine learning literature. There are SVM set-

tings where active set algorithms have held sway. Cauwenberghs and Poggio (2001) and 

Hastie et al. (2004) have provided active set algorithms to incremental learning, décré-

mentai learning and parameter tuning. In future, we hope to analyse the use of AS-SVM 

under similar settings. 





Chapter Seven 

On Model Validation and Selection 

7.1 Introduction 

This chapter is concerned with testing and fitting statistical models. Can we validate a 

given decision function? It is often assumed that we can fit a parametric model with 

mean zero errors. Can we test the appropriateness of this assumption? This chapter 

deals with these problems in novel manner - using kernel methods, and in doing so 

generalises and expands upon much of the literature on the topic. 

A goal in supervised learning tasks is to use the data to produce a decision function 

that, for a given input can predict the response y. Typical in regression tasks is the 

least squares loss function C{a, b) = {a - b)^. The use of least squares loss corresponds 

to the modelling task of finding the conditional mean 

Often the conditional mean is modelled under the assumption of homoscedasticity, that 

is, fixed variance errors, or indeed errors from some known distribution. 

Parametric models assume that the functional form of / is known apart from a 

finite number of parameters. The unknown parameters are estimated, with statistical 

inference based on the resulting estimate. Incorrect parametric assumptions may lead 

to misleading inferences (Breiman, 2001). As such, parametric assumptions should be 

rigorously tested. Nonparametric analysis does not assume that the functional form of 

/ has to have a finite number of parameters. In finding the functional form of / , we will 

first consider the related problem of model selection. 

There is a huge literature associated with model selection. This literature includes a 

large body of research on testing a parametric null against a parametric or nonparamet-

ric alternative. Linear model selection criteria include AIC (Akaike, 1974), BIC (Schwarz, 

1978), Cp (Mallows, 1973), FIC (Wei, 1992), GCV (Craven and Wahba, 1979), and PRESS 

(Allen, 1974). Such criteria have been used in the literature for choosing from two 

or more nested parametric models. The criteria are typically based on either finding 
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amongst models the lowest generalisation error, or in a similar vein, testing the statisti-

cal significance of linear predictor variables. The assumptions made and approximation 

techniques used will also vary between the various model selection criteria. 

Ordinary least squares (OLS) is one of many methods of producing linear fits to data. 

Often, some form of régularisation is desired, or indeed needed, in order to improve the 

expected performance of our fitted model. Régularisation methods have been discussed 

in earlier chapters. Ridge regression (Hoerl and Kennard, 1970a,b), the LASSO (Alliney 

and Ruzinsky, 1994; Tibshirani, 1996), and least angle regression (Efron et ah, 2004) can 

be seen as regularised versions of OLS. Authors such as Allen (1974) have noted that 

the model selection for OLS can be seen as a special case of parameter selection for 

generalised ridge regression. The question remains as to whether there can be, with 

only our parametric or linear model, a fit sufficiently accurate enough to model the 

true mean response. The mean may not conform to a linear fit, even if one uses all the 

predictor variables. 

Instead of testing a parametric null against a parametric alternative, we may be 

interested in testing a parametric null against a nonparametric alternative. We want to 

test whether a given parametric model will be adequate for the mean response. Such 

an alternative hypothesis may be of interest when we are considering if our hypothesis 

space is large enough to encompass the true mean. If the underlying regression model 

is indeed linear, then it is quite fair to expect that standard linear regression techniques, 

such as OLS, would provide rapid convergence. It is known, however, that OLS is 

often not optimal (fames and Stein, 1961). It is also well known that an incorrectly 

specified model can give inaccurate and misleading conclusions (e.g.. White, 1980). If 

the assumption of a parametric or linear mean is indeed correct, then this is a useful 

assumption to make. A key concern is whether our assumption is indeed correct, as this 

is then relied upon by further uses of the model. 

As such, we are interested in testing the adequacy of a parametric model. Such 

testing procedures have featured strongly in both statistics and economics literature. 

Tests include those given by Andrews (1997); Bierens (1982,1990); Bierens and Ploberger 

(1997); Chen and Fan (1999); Delgado (1993); Ellison and Ellison (2000); Fan and Li 

(1996, 1999, 2000); Gozalo (1993); Hardie and Mammen (1993); Hart (1997); Horowitz 

(2006); Horowitz and Hardie (1994); Horowitz and Spokoiny (2001); Kitamura (2005); Li 

and Wang (1998); Smith (2007); Stengos and Sun (2001); Tripathi and Kitamura (2003); 

Stinchcombe and White (1998) and Zheng (1996). There are some important differences 
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amongst these tests. The convergence rates can differ, many tests in the literature do 

not have the optimal rate of convergence. The computational cost can also vary between 

test statistics. 

Our approach to testing model adequacy is novel. In particular, the existing literature 

has not yet explicitly made use of reproducing kernel Hilbert spaces. Using kernel 

methods, we develop a test that is consistent against alternative models. The test does 

not make strong assumptions about the alternative model, and has convergence rate 

that matches the lower bound. The asymptotic distribution of the test statistic is derived 

under both the null and alternate hypothesis. 

Having decided to reject the null hypothesis, the question naturally arises as to what 

the fit should be under the alternative. Based on the test statistic, a new criterion is given 

for parameter selection, the "parameter information criterion'' (PIC). As a parameter se-

lection technique, the PIC requires the minimal assumption of i.i.d. random variables. 

A sharper alternative to the PIC is heuristically derived, the "curved information crite-

rion", (CIC). Both mean squared error and mean squared predictive error versions of 

PIC and CIC are given. Extensive simulations show favourable results when compared 

with existing methods such as leave-one-out cross-validation and maximum-likelihood. 

In Section 7.2 we derive test statistics for the functional form of the conditional mean. 

Criteria to fit a model under the alternative hypothesis are then given in 7.3. Section 7.4 

draws comparisons with existing methods. Extensive simulations are given in Section 

7.5 and we close with a discussion in Section 7.6. 

7.2 The Mean Zero Hypothesis 

A standard paradigm in supervised learning is that we have an unknown probability 

distribution Px,y over X xR. Let O be a feature map ^ : X ^ T, with T a separable 

feature space with dimension p e {N U oo}. The feature space may be a Banach space, 

denoted by B, or even an RKHS, Hk- With respect to probability distribution Px,y, the 

risk of a measureable / : A' -> IR is given by 

The Bayes risk, denoted 7^Jy, is the minimal risk over all measureable f : X ^R, 

Tê y = inf {Ex,y{y - I / : A' ^ R measureable} . 
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Furthermore, denote by y.jr the minimal risk over T , 

The first problem we look at is the following. 

Problem 7.1. Can we test //7^x,y(0) = 

Problem 7.1 is of interest when testing whether the conditional mean of the response 

variable can be explained in part through functions in the feature space. Problem 7.1 

may be expressed as the hypothesis test 

Ho: Ey (y2) = mf Ex,y [{y - f{x) against 
(7.1) 

Under regularity conditions, addressed in later sections, we have the equivalent 

Ho: Ex,y{y/(A:)} = 0 for all f e T against 

Hi: Ex,y{y/(x)} ^ 0 for some / G JT. 

We wish to simultaneously test the p hypotheses, Ex,yy( ;̂(x) = 0, for each 1 < j < p. 

Consider (Ex,yy</>i(x),.. .,Ex,yy(^p(x))^ as a vector in W . In measuring the distance 

a vector is from the origin, we require some norm on the vector space R^. An 

unbiased estimator of Ex,yy(/>;(x) is given by its empirical estimate ^^ 

general, however. 

n - 1 itvi^ 
\i=\ Z=1 / 

sup-norm A biased estimate of 

does not give an unbiased estimate of (Ex,yy(^i(:c),..., Ex,yy(^p(x))^ . Consider the 

is obtained by 

the Kolmogorov-Smirnov type statistic 

n n 
n 

2 = 1 

Our focus is primarily on the Euclidean norm || ||2, and its generalisation, the RKHS 

norm. We identify two key benefits in using the RKHS norm: 

i) An empirical approximation exists that is both simple and unbiased, with known 

asymptotic distributions under both the null and alternate hypotheses. 

ii) A rich alternate hypothesis can be tested. 

We show i) in Section 7.2.1 and ii) in Section 7.2.2. 
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7.2.1 Operator Norms on Banach Spaces 

The term Ex,yy/(x) may be represented as 

^ Ex,yy/(x) (7.2) 

where A: ^ ^ R is a linear functional and f e B. Following Royden (1968), a linear 

functional A is bounded if there is a constant M such that 

l^/l < ^ l l / l l s fora l l /G R 

For bounded linear functionals, the least such M is called the operator norm (e.g., Roy-

den, 1968; Rudin, 1991). That is, denoting the operator norm as ||A||, we have 

||A||= sup \Af\. 
Il/lle<i 

Bounded linear functionals and operators are fundamental concepts in functional anal-

ysis. 

Definition 7.2. Let Px,y be a probability distribution on X xR, and B a Banach space on 

Then the operator norm criterion (ONC) with respect to B and Px,y is defined by 

ONC(B,P,,y)= sup Ex,yy/(x), 
ll/IU<i 

when such a supremum exists. 

It clear that the ONC is the operator norm of A given by (7.2). Hence, when A is 

bounded, supŷ n̂ ^̂ ^ Ex,yi//(:c) = 0 if and only if Ex,yy/(x) = 0 for all f e B. Further 

regularity conditions are required to ensure 7^x,y(0) = '^xyB- ^^^ following theorem 

gives sufficient regularity conditions. 

Theorem 7.3. Let Px,y be a probability distribution on X xR and B a Banach space such that 

7ex,y(0) < oo, sup Ex,y{y/(x)} < 00, and sup Ex{f{xf} < oo. (7.3) 

ll/IU<i I I / I I B < i 

Then ONC (H,Px,y) = 0 if and only z/7ex,y(0) -

Proof of Theorem 7.3 is given in Appendix 7.A.I. Theorem 7.3 contains three con-

ditions in (7.3). The first condition is that the second moment of y is bounded. The 

second condition is equivalent to the continuity of A. The third condition is that Hk is 

continuously embedded in L2(Px). In the next theorem, we show that the ONC may be 

simplified for a special type of Banach space - a reproducing kernel Hilbert space. Let us 

denote by {x,y) and (x',y') independent random variables from probability distribution 

Px,y 
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Theorem 7.4. Let Px,y be a probability distribution on X xR, and Hk be a separable RKHS on 

X such that Ex,yyy < oo. Then 

O N C ^ ( 7 i i ^ , P x , y ) = {yk{x,x')y'} . 

A proof of Theorem 7.4 is given in Appendix 7.A.I. Theorem 7.4 ensures that 

ONC (Hk,Px,y) exists by Definition 7.2 whenever we have Ey^^yyy{yk{x,x')y'} < oo. We 

now specialise Theorem 7.3 to RKHSs. 

Theorem 7.5. Let Px,y be a probability distribution on X xR, and H^ an RKHS on X, such 

that 

1lx,y(0) < 00, E^^yyy{yk{x,x')y'} < oo, and Ex{k{x,x)} < oo. 

Then O N C ^ > 0 , with equality if and only z / 7 e x , y ( 0 ) = 

Proof of Theorem 7.5 is given in Appendix 7.A.I. Theorem 7.5 shows that under 

weak regularity conditions, ONC^ = 0 if and only if 7^x,y (0) = Of 

interest then is estimation of the ONC, and the hypothesis of whether the ONC is equal 

to zero. By the identity established in Theorem 7.4, we provide an unbiased empirical 

estimate of ONC2(7ifc,Px,y). F o r i < m < n, denote by the set of all collections 

of m indices chosen without replacement from { l , . . . , n } . Furthermore, we denote the 

cardinality of this set by the falling sequential product, (n)m = Theorem 7.6 then 

follows by application of Serfling (1980, Section 5.1.4). 

Theorem 7.6. Let Px,y be a probability distribution on X xR, and Hk a separable RKHS with 

Ex,yyy {yk{x,x')y'} < oo. Then given random i.i.d. samples from Px,y with n >2, 

an unbiased empirical estimate o/ONC^ {Hk, Px,y) is given by 

ONCl {Hk, {xuyi)U) = («)2' (7-4) 

Furthermore, for any Hk, over the space of all distributions Px,y on X x R, with 

Ex,y,x',y' {yk{x,x')y'} < oo, the empirical estimate in (7.4) is the minimum variance unbiased 

estimator o/ONC^ {Hk, Px,y). 

As the average of yik{xi,xj)yj over distinct samples (/, ;), the empirical ONCj is of 

the form of statistic known as a U-statistic (e.g., Hoeffding, 1963). Statistical properties 

of U-statistics are well-developed in the literature. The following theorem is drawn from 

those of Serfling (1980, Sections 5.5.1 and 5.5.2). 
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Theorem 7.7. Let Px,y be a probability distribution on X xR, and H^ a separable RKHS on X 

with < oo. Then ONC^ converges in distribution to a Gaussian according to 

V^ [ONCI - ONC^Hk. Px,y)} ^ N(0, cr )̂, (7.5) 

where = Ex,y - Moreover, if additionally we 

have ONC^{Hk,Px,y) = 0, then a^ = 0, and the distribution in {7.5) is degenerate. Further-

more, ONCj then converges in distribution according to 

oo 

i=l 

where f? are i.i.d. xl random variables, and A, are the solutions to the eigenvalue problem 

[ yKx,x')y'iPi{x,y)dP,,y{x,y) = \itpi(x',y'). </ X ]R 
Theorem 7.7 gives the asymptotic distribution of ONC^ under both the null and 

alternate hypothesis (7.1). Denote by ^^^ empirical distribution, 

n 

i=l 
For Banach spaces, a biased empirical estimate of the ONC is given by 

) sup (7.6) 

For RKHS, by Theorem 7.4, the biased statistic in (7.6) may be expressed as 

ONC^ = n-^ £ yik{xi,Xj)yj. 
hM 

As the average of yik{xi,xj)yj over all 1 < /, j < n, the statistic -i) 

of the form of a V-statistic. With appropriate adjustments (e.g., Serfling, 1980; Gretton 

et al, 2008a), Theorem 7.7 may be adapted for 

Denote by the distribution generated by predictor data Xi,...,Xn and with 

respect to for all I <i <n, 

= (7-7) 
1=1 

Furthermore, we denote by af for \<i<n, the conditional variance of y given xi, 

af = Vary|,,. (y | Xi). (7.8) 

When cr̂  — . . . — the errors are called homoscedastic, and we set a^ = The 

following theorem, proven in Appendix 7.A.1, gives an unbiased estimate of the operator 

norm over Py\{xi)f̂ -̂
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Theorem 7.8. Let Px,y be a probability distribution on X x R, and Hk an RKHS with 

Ex,y {y'^K^, x)} <oo. For (xi, yi)"}^^ drawn independently form Px,y, let be given by 

(7.8). Then an unbiased empirical estimator o/ONC^('^jt/-Py|(x,)"_i) is given by 

( n \ 
n-^ y^Ky-Y^crfKu . 

V i=i / 

For homoscedastic variance, a^, we denote the unbiased estimator in Theorem 7.8 as 

/ n \ 
ONCKHk,Py|(,,)« = y^Ky -a'YL • 

V /-I / 

We have considered the hypothesis test of Problem 7.1, over Hk, corresponding to 

testing a set of some p alternative hypothesis. In the next section, the alternative hy-

pothesis is specified by the set of measureable functions. 

7.2.2 A Rich Alternate Hypothesis 

Consider the following problem, which asks whether taking / = 0 achieves the Bayes 

risk. 

Problem 7.9. Can we test ifn^,y{0) = U^y? 

For 7^x,y(0) < oo, it is seen that Problem 7.9 is equivalent to testing whether we have 

Px {Ey|x (y I x) = 0} = 1. The following definition formalises the set of kernels suitable 

for testing the hypothesis of 7^x,y(0) == 11* y. 

Definition 7.10. Let Hk be an RKHS on X. Suppose that either 

i) ONC^ (Hk,Px,y) = 0 and n^,y{0) = U^y or 

ii) ONC^ (Hk, Px,y) > 0 and n^,y{0) > U^y 

for all probability distributions Px,y on X xR, with 

^x,y(0) < 00, Ex,y,x'y{y/:(x,xOy'} < and E^{k{x,x)} < oo. (7.9) 

Then the kernel, k, is called admissible on X. 

Subject to the regularity conditions in (7.9), if k is as admissible kernel, then 

ONC^ (nk,Px,y) = 0 implies 7^x,y(0) = IZ^y. The following theorem is helpful in de-

termining if k is admissible. 

Theorem 7.11. Let Hk be a RKHS on X. Then if 

for all probability distributions Px,y on X xR with 7^x,y(0) < oo, then k is admissible. 
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Proof of Theorem 7.11 is given in Appendix 7.A.I. We would like to know which 

kernels satisfy the conditions of Theorem 7.11. A version of Theorem 7.12, more general 

than we require, is proven by Steinwart and Christmann (2008, Theorem 4.26). 

Theorem 7.12. Let X he a measureable space, pi a a-finite measure on AT, and Hk a separable 

RKHS on X. Assume that ¡^k{x,x)dii(x) < oo. Let the operator S: L2(ji) Hk be defined 

= / K^>x')g{x')d}i{x') for all g e L2{^), xeX. J X 

Then Uk is dense in L2{^) if and only if S\ L2{}l) ^ Hk is injective. 

Dense RKHSs 

on R^ include those generated by Laplacian and Gaussian kernels 

(Fukumizu et al, 2008; Steinwart et al, 2006). The following theorem follows from Stein-

wart and Christmann (2008, Theorem 5.31). 

Theorem 7.13. Let Px,y he a probability distribution on X xR, with 1lx,y{0) < oo. Then, for 

every dense J^ ^ L2{Py), we have 

It is clear, by Theorem 7.11, that if Hk is dense in L2(Px), then k is admissible. Kernels 

with dense RKHS are related to kernel types such as strictly positive definite and univer-

sal. The properties of dense RKHS and related kernel types have been considered by 

Steinwart (2001), Bach and Jordan (2002), Steinwart, Hush and Scovel (2006), Fukumizu 

et al. (2008) and Sriperumbudur et al. (2008) amongst others. 

We have the following definition. 

Definition 7.14. A symmetric function k: X x X is called strictly positive definite on 

X if, for all n € N, non-zero « i , . . . , a:„ G R, and all pairwise unique xi,...,xn G X, we have 

n n 
J^^ciik{xi,xj)0ij > 0 . 
i=ij=i 

It is easily shown that if A' is a finite set and k strictly positive definite on A', then k 

is admissible on A'. A stronger condition than strictly positive definite is required if X 

contains an open subset. The universal kernels were first given by Steinwart (2001). 

Definition 7.15. A continuous kernel kon a compact metric space X is called universal if the 

RKHS, Hk,isdenseinCb(X) with respect to the infinity norm, That is, for all g e Ci,{X) 

and e>0, there exists f eHk such that 
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Name k{s, t) support (X) 

Gaussian exp compact subset of IR"̂  

Laplacian exp ( - 7 11 s - i 11) compact subset of R^ 

Exponential exp (7 (s, t)) compact subset of R^ 

Infinite Polynomial (1 — \\x\\2 < 1 

Table 7.1. Examples of commonly used universal kernels, 7 > 0. Each of the kernels is shown 

to be universal by Steinwart (2001). 

Some examples of universal kernels are given in Table 7.1. Each universal kernel in 

Table 7.1 admits a countably infinite orthogonal expansion. The following theorem is 

given by Steinwart and Christmann (2008, Corollary 5.29). 

Theorem 7.16. Let X be a compact metric space, Hk the RKHS of a universal kernel on X and 

Px,y fl probability distribution on X xK. Then we have 

By Theorem 7.11, universal kernels on compact metric spaces are admissible. 

We now give a well-known example of the increasingly stronger required condi-

tions for a positive definite kernel, strictly positive definite kernel, and universal kernel. 

Consider the polynomials 
00 

k{s,t) = ^aiis^ty, (7.10) 
i=0 

for flo, «1/ • • € R, where the sum is assumed to converge. It is shown in Berg et al (1984, 

page 159) that k is a kernel if and only if â  > 0 for all i G {0 ,1 , . . . } . The following 

theorem clarifies the necessary and sufficient conditions for a kernel of the form (7.10) 

to be either strictly positive definite or universal. 

Theorem 7.17. Let X cR^ be compact. Moreover, let k: X x X ^Wibe a kernel of the form 

k{s,t) = Zaiis-'ty, 
i=0 

with ao > 0. Then k is: 

i) Strictly positive definite if and only if 

E i = E i = 
fl2,>0 fl2/+l>0 
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ii) Universal if and only if 

E - = E — = 
Proof of i) is given by Pinkus (2004), who attributes ii) to the work of Dahmen and 

Micchelli (1987). It is well-known that all universal kernels on compact are strictly 

positive defirute. Theorem 7.17 shows that the converse is not true; not all strictly 

positive definite kernels are universal. 

7.3 Modelling 

The previous section considered the possibility that 7ex,y(0) = ^^at is, whether 

having / = 0 is the optimal choice for minimising the risk. More direct, and more 

difficult, is finding some f e Hk so that 1lx,y(f) is in some sense small. In this section, 

the ONC is used to guide the choice of / . 

Following Chapter 2, for A G (0, oo), a fit to the mean response is given by 

h = | e { V i - f M f + A 11/11̂ ^ I . (7.11) 

The domain of A is taken to be the extended non-negative real number line [0, oo] by 

/oo = lim /A == 0, and / O = lim /A. 

Hence ONC(H)t,Px,y) = 0 implies that 7^x,y(/oo) = ^ t y W ^^^ ^^^^ A == oo must be an 

optimal choice for A € [0,oo]. We wish to further investigate the behaviour of /A, in 

particular for large values of A. Make the change of variable r = which we express 

as / (t) = / j - i . That is, 

/ ( , ) = mm + i 11/11?^.} ' ^ ^ (7.12) 

with 

/(o) = / o o , and /(oo) = /o-

The dual solution to (7.12) is given by 

n 

i=l 
where the i s have 

Taking limits as r 0+ yields the useful result 
n 

lim / (^ ) (x) /T - (7.13) 

Equation (7.13) helps describe the behaviour of /(t) for small values of r. 
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7.3.1 The Mean Squared Error 

The aim of minimising the mean squared error (MSE) is standard paradigm of statistics 

and machine learning. Within the penalised framework of (7.12), we require some r so 

that the data dependent has desirable properties. We therefore require a version 

of the risk not in terms of fit / , but in terms of parameterisation t . In such a sense, 

the unobserved /̂ T) is a random variable over P(x,y)«/ arid dependent on the parameter 

T. The MSE is then the average risk over P(x,y)"- This is made explicit in in following 

definition. 

Definition 7.18. Let P(x,y) be probability distribution on X xR, Hk a separable RKHS on X 

and /(T) given by (7.12) with parameter r and random sample drawn from i'(x,y)«- Then the 

mean squared error is 

MSE„(t) - [{y' -

An estimate of the MSE is given by leave-one-out cross-validation, LOO, 
2 

i=l 

where denotes the fit to (7.12), with the zth observation removed. It is common-

place to select T (equivalently. A), by searching for the minimiser of leave-one-out cross-

validation, 

min LOO ( t ) . 
T e [ 0 , o o ] 

The following theorem shows the behaviour of LOO(t) for small values of t . 

Theorem 7.19. Let Hk be an RKHS, and e X xK a data set with n>2. Then 

^lim ¿ L O O ( t ) = -2{n - l)ONCl(nk, (xoyOU)-

Proof of Theorem 7.19 is given in Appendix 7.A.2. Theorem 7.19 shows that if the 

minimiser of leave-one-out cross-validation gives t = 0, then ONCl{Hk, < 0. 

It is well-known that leave-one-out cross-validation gives an almost unbiased estimate 

of the mean squared error, in the sense 

E x , y { L O O ( t ) } = M S E „ _ 1 ( t ) for all t G [0, oo;. 

We now show the ONC is related to the mean squared error on samples of size n. 

Theorem 7.20. Let Px,y be a probability distribution on X xR and Hk a separable RKHS such 

that Ex,y,x'y {yk{x,x')y'} < oo and E^{k{x,x)} < oo. Then, for n G N, 

^lim ^ M S E „ ( t ) = -2nONC2(H)t,Px,y). 



7.3 Modelling 161 

Proof of Theorem 7.20 is given in Appendix 7.A.2. It follows from Theorem 7.20, 

that if ONC(Hjt,Px,y) > 0, then for sufficiently small r > 0, we can improve the MSE. 

Alternatively, if ONC(Hit,Px,y) = 0, we should choose t = 0 in (7.12). That is, the fit 

would be f{x) = 0 for all x e X. An interesting aspect is that if the null hypothesis 

considered in (7.1) is false, we can always improve upon the MSE for sufficiently small 

T > 0. That is, for the MSE: 

i) If Px,y) = 0, then the optimal choice of t is r - 0. 

ii) If ONC^{Hk, Px,y) > 0, then the optimal choice of t must be greater than zero. 

We have an empirical quantity to guide whether to choose t = 0. For the MSE, Theorem 

7.20 suggests that t = 0 should be selected if 

{n)20NCl(nk. {xi.yi)U) = y^Ky - f̂ ^y^Ku < 0. 
1=1 

We will return to investigating the optimal choice of t for the MSE in Section 7.3.4. 

7.3.2 The Mean Squared Prediction Error 

The task of minimising the mean squared prediction error (MSPE) is a common alterna-

tive to the MSE. 

Definition 7.21. Let P(x,y) be probability distribution on X x'R,Hk a separable RKHS on X 

and Xi G X for all \ < i < n. Moreover, let /(-j.) be given by (7.12) with parameter r and 

random sample drawn as yi ~ Py^^. for all 1 < i < n. Then the mean squared predictive error is 

MSPE(T) = • 
1 = 1 

Similar to the MSE case, we find a special relationship between the MSPE and the 

ONC. 

Theorem 7.22. Let Px,y be a probability distribution of the form (7.7), with errors having ho-

moscedastic variance and ONC^{Hk,< T^^en 

lim -^MSPEir) = -In^ONC^iHkrP.Uxr )• 
AT 

Theorem 7.22 is proven in Appendix 7.A.2. Stein's unbiased risk estimate (SURE) is 

given by 

S U R E { t ) = ¿ { y , - + (7-14) 
i=l i=l 
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Given by Stein (1981), SURE is an unbiased estimate of the mean squared predictive 

error, under the assumpion that the errors y — Eyĵ .̂ (y | xi) are normally distributed 

with mean zero and homoscedastic variance (P-. The assumption of normality, however, 

is not a requirement for the following theorem. 

Theorem 7.23. With homoscedastic variance let S U R E ( T ) be Stein's unbiased risk estimator 

of (7.14), with /(T) given by (7.12). Then 

mn ¿ S U R E ( T ) = - I N ^ O N C L {UK, • 

Proof of Theorem 7.23 is given in Appendix 7.A.2. The following theorem is an 

extension of Theorem 7.5. 

Theorem 7.24. Let Px,y be a probability distribution on X xK, with inputs such that 

(y' I Xi) < OO for all l<i<n. Then ONC^iHk, Py\{xi)") ^ 0/ ^^^^ equality if and only 

if 
n n 

(y^ I = [ { y - f M V I ̂ ^ • 
i=i ¿=1 

Proof of Theorem 7.24 is given in Appendix 7.A.2. As such, for the mean squared 

predictive error: 

i) If ONC^(Hit, ) = 0/ then the optimal choice of T is T = 0. 

ii) If ONC^(Hjt, ) > 0/ then the optimal choice of T must be greater than zero. 

Empirically , for the MSPE, if 

n^ONCl {Hk, (Xi^ydtvcr^) = y^Ky - a^tr(K) < 0, 

then the selection of T = 0 is suggested by Theorems 7.22 and 7.23. For both the MSE 

and MSPE there still remains the question of how best to choose T when T > 0. 

7.3.3 Alternative Parameterisations 

The fitted model, (7.11), requires the choice of a smoothing parameter, A. Typically A 

is chosen in a data dependent way. There are alternative styles of parameterisation, 

including (7.12). For some A^, consider the optimisation problem 

{ l iVi - / ( * . ) } ' + An ||/|Ib| • (7.15) 

It is known that there exists a monotonic relationship between A and Â v. That is, for 

each A > 0, there exists A^ such that fx is the solution to (7.15). For the Hilbert space 
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norm || ||2, we see that (7.11) is the most widely used parameterisation. Conversely, for 

the Banach space norm || • || j , we find that (7.15) is the typical choice of parameterisation, 

for example Donoho and Johnstone (1994) and Tibshirani (1996). 

7.3.4 Residual-based Fits 

We may consider the residuals of a fitted model. The residuals are given by y/ — y/ 

where y, = f{xi), for all 1 < / < n. If the residuals appear to not have conditional mean 

zero, then that would indicate that the model is underfitted. As a manner of choosing 

the smoothing of a model, we may choose the smoothing parameter so that the errors 

appear to be mean zero. For example, in the MSPE case, if 

y^Ky - (r^tr{K) < 0 (7.16) 

we choose f = 0. Alternatively, if 

we may choose r in (7.12) such that 

(y - y ^ K i y - y) - cr^triK) = 0. (7.17) 

As (y — yYK^y — y) is both continuous and monotonie in t , we are simply finding the 

minimum t G [0,oo], such that 

(y-gYK(y-y)<aMii)-

We call the fit to (7.16)-(7.17) the parameter information criterion (PIC) with re-

spect to the MSPE. For given Hì^, data (Xi,y/)[Lj and variance we denote it by 

PICMSPEC^A:/ (^f/ 

yO^Li/ Ì7-2). An attractive aspect of the PIC is that the residuals of the fit, 

y - y, appear to have zero conditional mean, in that 

The following theorem shows that PICMSPni^it, {^uyiYi=vCr^) may be expressed as the 

solution to a convex optimisation problem, with a specific parameterisation. 

Theorem 7.25. Let f he the solution to the optimisation problem 

p y I t ( y i - f ^ ^ à f + An II/ii^^ I , (7.18) feUk I 
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where 

An = I c r ^ f ^ ) . (7.19) 

Then if 

y^Ky - (Thr{K) < 0, 

we have f = 0. Otherwise f ^ 0, and 

{ y - y y K { y - y ) = a h r { K ) . 

Proof is given in Appendix 7.A.2. With Aĵ  given by (7.19), Theorem 7.25 shows that 

P I C M S P E ( ' ^ j t / i s the solution to the convex optimisation problem (7.18). 

The penalty term is proportional to the RKHS norm, as opposed to the squared 

RKHS norm H/Ht̂ -̂ Though without specifying the parameterisation (7.19), the RKHS 

penalisation has attracted some interest of late. Yuan and Lin (2006) and Bach (2008) 

proposed models that include the convex optimisation (7.18). Recently, Steinwart (2009) 

and Steinwart et al. (2009) have rigorously shown the broad adaptability of the RKHS 

penalisation (7.18). 

There is also the mean squared error case. If 

y ' ^ K y < £ y j K u , (7.20) 
i=l 

we select / = 0. If (7.20) does not hold true, we select the minimum T such that 

(y - y^Kiy - y) = ¿ ( y - y)fKii. (7.21) 
1=1 

Equivalently, by the continuity of y, we seek the minimum T G [0, oo] such that 

(y - y^Kiy -y)< ¿ { y - y)?iC„. 
i=l 

For given Hk and data we denote the fit to (7.20)-(7.21) by the parameter 

information criterion, PICMSE('7̂ A:/ (^//!/i )fLi)- Taking limits as T ^ oo, 

to { ( ! / - y^Kiy - y ) } = 0 < to j ^ y - y )?K„| , 

suggesting that PICMSE(^)t/ is well-defined. For translation invariant kernels, 

the following theorem is helpful in characterising PICvisEi'^fc/ (^i/l/iOLi)-

Theorem 7.26. Let kbe a translation invariant kernel, with k{x,x) > 0 and y^y 0. Then 

jy - yyj^jy - 9) 
la^iiy-yfiT^ii 
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is a monotonically increasing function of \ > 0. Furthermore, if y is not an eigenvector of K, 

then the monotonicity is strict. Finally, we have 

lim ^y-jy^^y-y) J y ^ ^P^^(^) ' (7 22) 

0, y ^ span(IC), 

where span(K:) is the span of the columns ofK, and K' the Moore-Penrose inverse ofK. 

Proof of Theorem 7.26 is given in Appendix 7.A.2. Translation invariant kernels 

include the important Gaussian and Laplacian kernels. Theorem 7.26 shows that, for 

such translation invariant kernels, the search for a solution to (7.21) is equivalent to 

finding the zero of a monotonie function. Finding the zero of a monotonie function is 

closely related to convex optimisation. Also, in (7.22) we find the characterisation of 

when PICMSE(Hfc, {xhyi)f=i) has T = oo (that is, A = 0). Explicitly, if y e span(K) with 

y ^ K - y > then PICMSEÎ^fc, ( x i . y ù U ) ^as r = oo. 

The residuals of PICwsEÎ^it, (^ivyOLi) 0 have 

ONCl(n,,(xi,yi-yi)U)=0, 

and the residuals of PICMSPEC^jt, (^¿,yi)"=i) 0 have 

ONCl 

Both lie on the cusp between overfitting and underfitting by the operator norm criterion. 

Little by the way of assumptions has been made in the derivation of the PICMSE and 

PICMSPE- IN particular, we have done without the assumption of normality of the errors, 

or for the PICMSE/ even knowledge of the variance. This contrasts with such methods 

such as S U R E and ML. We can expect that PICMSE and PICMSPE to be therefore robust 

to model violations of S U R E or of ML. It turns out that PICMSPE tends toward more 

conservative fits, with higher régularisation, than the comparative S U R E or ML fits. 

Based on some special cases, the next section puts forward a heuristic that often gives 

similar fits to those of S U R E and of ML. The heuristic is an aid to the interpretation of 

the P I C . 

7.3.5 Allowing for Curvature 

It is common practice to choose the smoothing parameter by such methods as SURE or 

LOO. For example, we could choose r — by searching for a minimiser, 

T = argminSURE(T) or r = argminLC)O(T). 
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A drawback to such methods is that the resulting optimisation is not guaranteed to be 

convex. There will typically be multiple local minima, and non-convex optimisation 

techniques such as grid search are to be employed. There are, however, some cases 

whereby the minimiser of either SURE or LOO is simply calculable. Some simple situa-

tions show that the minimisers of SURE and LOO tend to give somewhat less regularised 

fits than PICMSPE ^RID PICMSE respectively. 

Figure 7.1 shows the fitted values for a toy example with n = 4. We have Gram 

matrix with terms Kij = 1 for 1 < i,j < 4, and y = [f/ — 1, — 1, ̂  + 1, ̂  + 1]^, ^ 6 R. 

Moreover, for the MSPE case, we set a^ = 1. The figure shows the fitted yi as a function 

of ji. There is a visible curvature to the fits for SURE, ML and for LOO. 

<>. o -

(a) Mean squared predictive error fits (b) Mean squared error fits 

Figure 7.1. Comparison of fits given by various procedures. A simple case was chosen whereby 

the fits are tractable. A noticeable curvature exists in the fits for some of the procedures. Left: 

Mean squared prediction error based fits of maximum likelihood (ML), Stein's unbiased risk esti-

mator (SURE) and the parameter information criterion (PIC) of (7.17), Ordinary least squares 

is also included for comparison. Right: Comparison of leave-one-out cross validation (LOO) and 

the parameter information criterion (PIC) for mean squared error. 

Both (7.17) and (7.21) give residuals that appear to neither overfit or underfit. How-

ever, it is typical of fits made by SURE and LOO that the residuals show signs of fitting. 

Can an adjustment be made to ONC style fits in order to give a similar curvature? Al-

though it is clear at where should have / = 0, we may want sharper, less smooth fits 
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otherwise. 

Mean squared predictive error 

Situations are identified whereby the fits given by minimising SURE are tractable. Con-

sider the block diagonal Gram matrix 

K = 

"^mxtn ^mxm ' ' ' ^mxm 

Omxm Imxm ' " ' ^mxm 
(7.23) 

Omxm Omxm ' " ' Imxm 

For K given by (7.23), it is straightforward to calculate the fits given by either ML or 

SURE. For y^Ky > ahr(K), both ML and SURE have 

(y - y^Kiy - y)y^Ky = {a^tr{K). (7.24) 

Such fits are given by the optimisation problem 

where 

f^^^ I E {yi - + '^N WfWn, I . (7.25) 

- 7 F W 

The accuracy of parameter selection based on (7.25) may be compared with such proce-

dures as ML and SURE. The fits to (7.25) have the distinctive curvature shown by ML 

and SURE. We call the fit to (7.25)-(7.26) the curved information criterion (CIC) with 

respect to the MSFE. With respect to kernel, Hk, data and variance, we 

denote the fit by, CICMSPE(^)t, 

Mean squared error 

Some situations are identified whereby the fits given by minimising LOO are tractable. 

When K is given by (7.23), the fit given by leave-one-out has, for y^Ky > X ĴLj yiKu, 

{ A - -
The functional form of (7.27) suggests that we may provide a curvature for general Gram 

matrices. Somewhat unfortunate is the existence of the m"^ components of (7.27). There 

are a range of entities that are equal to for the special case Gram matrix (7.23). 

These include tr(K) tr{K^) tr(jC)2 
i^xr i^K^r nEU^r 
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where c, are the eigenvalues of K, for 1 <i <n. For simplicity, we approximate m"^ 0 

in (7.27), yielding 

{y - y^Kiy - y)y^Ky = - y^fKu^ ^tvi^u^ • (7.28) 

We note that (7.28) tends toward more regularised fits than those of (7.27). An attractive 

aspect of (7.28) is the close semblance to the CICMSPE curvature of (7.24). If 

we select / = 0. Alternatively, for 

y^Ky < l^yjKu, 
i=l 

y^Ky > 
i=l 

we select the maximum A such that (7.28) holds. With respect to kernel, Hk, and 

data, we denote the corresponding fit by the curved information criterion. 

By a rearrangement of (7.28), for { E L i ( y i " yO^^n} > 0/ 

jy-y^Kiy-y) 
Er=i(yf-y/)2K/f y^Ky ' 

For translation invariant kernels. Theorem 7.26 shows that calculating CICMSE is equiva-

lent to finding the zero of a monotonic function. Both PICMSE and CICMSE choose f = 0 

if and only if ONCj < 0. Otherwise, fits using CICMSE have less smoothing than those 

with PICMSE-

Figure 7.2 shows fits for both PICMSE and CICMSE/ as applied to the "motorcycle" 

data of Eubank (1999). Both methods appear to give quite sensible fits, with the PIC fit 

being smoother. The accuracy of parameter selection based on the PIC, or the CIC, may 

be compared with such procedures as leave-one-out cross-validation. Experiments on 

the accuracy of fits are delayed until Section 7.5. 

7.3.6 A Broader Null Hypothesis 

For RKHS, Hk, with null space Ho, we wish to choose the parameter A in the kernel 

machine, 

/A - ^^iri {y, - f { x i ) } ' + A , (7.29) 

where Pi is the projection onto HQ, and A G (0, oo). As was the case without null space, 

we take the extended domain of A, by taking /o = limA_o+ /a/ and /oo = limA^oo/A-
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o in 

0 LO 
1 

o o 

Figure 7.2. Mean squared error PIC and CIC fits to the motorcycle data analysed by Eubank 

(1999). The x values are the time measurements in milliseconds after a simulated motorcycle 

accident, and the y values are measurements of head acceleration. A Gaussian kernel is used, 

with 7 = 1/s^, where s^ is the sample estimate of the variance. Both the PIC and CIC provide 

sensible fits to the data, with the CIC the less smooth of the two fits. 

To begin with, we would like to test 

Ky;Wo against 

Let g* e Ho be a solution to = ^^^^ ^^^ operator norm criertia, with 

respect to Hk, Ho and P is 

(7.30) 

We wish to find an empirical estimator for ONC{Hk,Ho,Px,y)- For some special cases 

of Ho, such as Ho = {0] and Ho = K, unbiased empirical estimators are derived (e.g.. 

Theorem 7.4 and furthermore Theorem 7.35). We now put forward an estimator of (7.30) 

for general Ho-
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By application of Theorem 7.4, if some g* is known, then an unbiased estimator of 

ONC^iHk, Ho, Px,y) would be given by 

in)2' Y : iy i -g* ix i ) )Ki j {y j -g* {x j ) ) . (7.31) 

In general, however, g* will be unknown. Let ipo,... an orthonormal basis for Hq. 

We then set 

_ipo(Xn) %{Xn) 

Recall from Section 4.3.3 that X* is a matrix made up of linearly independent columns 

of X, with 

rank(X*) = rank(X). 

For some X*, let 

Denote by g the empirical risk minimiser, 
n 

Then, for each 1 < i < n, 

yi-gixi) = {{I-H)y}i. 

Replacing g* with g in (7.31), we have an estimate of ONC^ {Hk, Ho, Px,y) in 

Liil - H)y}iKtj{{I - H)y}j. (7.32) 

There is reason to believe that the estimator in (7.32) may be improved upon. Inspired by 

the REML derivation of Patterson and Thompson (1971), we now make an adjustment 

to (7.32). Consider the estimator given by 

(")2 ' E{(i - H)y}i{{I - H)K{I - H)}ij{{I - H)y}j. (7.33) 

Unlike the estimator in (7.32), we find that (7.33) is invariant through changing of scale 

of the norm on Hq. In particular, (7.32) is dependent on the empirical 

(7.34) 

where Vi = g*{xi). As (7.34) gives us no information on (7.30), the estimator given by 

(7.33) is to be preferred. We hence denote (7.33) as the empirical null operator norm 

criterion, ONC^, 

ONCl(H,,Ho, = («)2 ' LW - H)y}i{{I - H)K{I - H ) } y { { i - H)y}j. 
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The empirical null operator norm criterion may be seen as an extension of the unbiased 

estimate of the operator norm criterion. In calculating ONC^ as opposed to ONC^, we 

make the replacements 

K ^ {I - H)K{I - H) and, 

(7.35) 

We now look to adapt the PIC and CIC to allow for a broader null space. 

7.3.7 Parameter Selection with Parametric Null 

Smoothing parameter selection may be achieved by adaptation of the above argument. 

It turns out that we simply need to replace K and y with their corresponding projections 

(7.35). This approach is applied in the selection of A, either for the MSE or the MSPE. 

By Lemma 5.1, the optimised fit with null space (7.29) obeys y = Sy, where 

S = H + (J - H)K{1 - H) { ( i - H)K{1 - H) + XI]-\ 

Therefore, we have residuals to (7.29), 

y - y = { l + { I - H)K{I -H){(I- H)K(I - H) + A J } - i ) (J - H)y. 

These residuals may be compared to the residuals of the fit without a null space (7.11), 

y-y= ( l + K{K + A / } - i ) y . 

For a null space, it is clear that the residuals may be calculated by the use of the re-

placements in (7.35). Theorem 7.27 is a generalisation of Theorem 7.23 to allow for null 

space. 

Theorem 7.27. With homoscedastic variance let S U R E ( T ) be Stein's unbiased risk estimator 

of (7.14), with f given by (7.29). Then 

lim :^SURE(t) - - 2 \ y ^ ( I - H)K(J - H)y - crhT{(I - H)K{I - H ) } | . 

Proof of Theorem 111 is given in Appendix 7.A.2. The following Theorem, an ex-

tension of Theorem 7.23, is proven in Appendix 7.A.2. 

Theorem 7.28. Let Hk be an RKHS with null space Ho, and linear operator Pi the projection 

onto Hq. Moreover, let / be the solution to the optimisation problem 

f^^^ I LiVi - fi^^i))^ + WP̂ fWn, I ^ (7.36) 
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where 

AN - 2oryJ\x{(l-H)K{l-H)}, (7.37) 

with H given by (7.3.6). Then if 

- H)K{I - H)y - a^tr{{I - H)K{I - H)} < 0, 

we have f = f^. Otherwise f ^ foo, and 

{y - y)\l - H)K{I -H)(y-y) = ahr{{I - H)K{I -H)}. 

For RKHS Hk, null space Ho and data we denote the parametric criterion, 

as the optimiser of (7.36)-(7.37). Similarly, we denote the 

curved parametric criterion, CICmspe(Ha:/'̂ o, (̂ //y/)"=i) as the optimiser of (7.36) with 

^y^I - H)KiI - H)y ' 

It is clear that in allowing for a null space, we find A by replacement of K with 

(I - H)K{I - H), and of y with (/ - H)y. 

We now consider the MSE case. Denote by PICMSE(^)t/^0/ the parame-

ter information criterion with respect to RKHS, Hk, null space Ho and data 

Similarly, denote the curved information criterion, CICMSE(Hjt,^o, (̂ z/y/)"=i) For both 

PIC and CIC, if ONCl{Hk,Ho, < 0, we take A = oo. For the PIC, we seek a 

maximum A € [0, oo] such that 

(y - g^Kiy - y) < tiy - y)HiI - H)K(I - H)}„. 
i=l 

For the CIC, we seek maximum A such that 

(y - yfK(y - - H)K(I - H)y 

< j O y / - Viflil - H)K{I - H)},j |£{(i - H)y}j{(I - H)K{I - H)},j . 

For both the PIC and CIC, if ONCl{Hk,Ho, (:c/,y/)r=i) < we have A = oo. 

7.3.8 Computational Issues 

For our experiments we would like to solve a variety of optimisation problems. The 

optimisation of the RKHS norm penalisation problem (7.18) has been considered in 

Yuan and Lin (2006). Here we provide some simple algorithms for calculating PIC and 

CIC; 

more sophisticated algorithms with guaranteed run time and accuracy are beyond 

the scope of this chapter. 
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For PICMSPE/ we search for A such that 

{ y - y y K { y - y ) = a M K y 

Rearranging gives, 

where d = a {tr(lC)}^^^, and a = (K + On initialising A, the successive approx-

imation method then gives 

(7.38) 

until convergence in a. We may not obtain convergence in A, due to the possibility that 

A ̂  oo. For CICMSPE/ we search for A such that 

( y - y ) ' ' K ( y - y ) y ^ K y = { a ^ K ) f . 

That is, 

A = 

where d = a^tr{K) The successive approximations of (7.38) then follow. 

For PICMSE/ we seek A such that 

( y - y ) ' ' K { y - y ) = t , y f K i i . 

i=l 

That is, 

where d = 1. For PICMSE/ we seek 

( y - y f K i y - y ) y ^ K y = | ¿ ( y , - y ^ f K , | | £ y^K, | . 

Rearrangement yields (7.39) with 

r y ^ K y I 

Successive approximation yields the recursive 

until convergence in a. 
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Name Ki{u) 

Uniform i 

Triangle (1 - |w|) l(|„|<i) 

Epanechnikov |(1 - u^) l(|u|<i) 

Gaussian exp { — 

Laplacian exp (— | w |) 

Table 7.2. Examples of commonly used smoother kernels, with dimension d = 1. 

The extension to a broad null hypothesis is achieved by the replacement of K and y 

with (I — H)K(I — H) and (/ — H)y in the successive approximations. On convergence, 

we have appropriate A for the optimisation (7.29). Appendix 7.A.4 contains brief pseudo-

code for optimisation. Algorithm 7.1 gives the pseudo-code for both the PICMSPE and 

CICMSPE/ and Algorithm 7 .2 gives the pseudo-code for the M S E alternatives. 

7.4 Relationship to Existing Methods 

In this section, we examine some of the tests based on the estimation of the regression 

function. 

7.4.1 Smoother Kernel-Based Tests 

Known in the literature as kernel-based tests, smoother kernel-based tests employ the 

use of smoother kernels 

Definition 7.29. A function Kh{-): R is called a smoother kernel if it is bounded with 

Ki{u) = Ki( -u) , Ki{u) > 0, for all u e and [ Ki{u)du = 1. 
JueR'^ 

The smoother kernels have parameter, h, called the bandwidth, with Kh(u) = h~^Ki(uh~'^). 

With d = 1, examples of smoother kernels are given in Table 7.2. We note that the 

Gaussian and Laplacian smoother kernels have analogs in the positive definite Gaussian 

and Laplacian kernels. That is, if K^ is either the Gaussian or Laplacian smoother kernel, 

and if k(s, t) = Kh(s-1), then fc is a Gaussian or Laplacian kernel, respectively. Smoother 

kernels are widely used in kernel density estimation (e.g., Silverman, 1986; Wand and 

Jones, 1995). Several authors, such as Hardle and Mammen (1993); Fan and Li (1996) 
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and Zheng (1996) have used kernel density estimation as an intermediate step toward 

producing model adequacy criteria. 

We now briefly review two tests based on smoother kernels: 

i) The test in Zheng (1996). 

ii) The test in Fan and Li (2000). 

The test for HQ versus Hi established in Zheng (1996) employs the Nadaraya-Watson 

kernel estimator of g{x) for x eR^ given by 

where iC (•) : R^ ^ IR is a smoother kernel and h = hn ^ 0 is a bandwidth parameter. 

Zheng (1996) suggests the test statistic 

where K^ is a kernel density smoother with bandwidth parameter, h. Zheng (1996) 

derives U^ as a biased estimate of Ex,y {yEy|x(y|x)/x(x)}, and requires /z ̂  0+ to ensure 

consistency. The rate of convergence of Uh is and is slower than the optimal 

rate of Fan and Li (2000) shows that, with a special class of smoother kernels, 

the test statistic of Zheng (1996) does not require /z ^ 0+. The use of so-called "fixed 

bandwidth'' smoother kernels dates back to Anderson, Hall and Titterington (1994). Fan 

and Li (2000, Lemma 2.2) implies the following theorem. 

Theorem 7.30. For the test based on U^ with a fixed h to be consistent, the Fourier transform 

of Kh(-), denoted must be such that there exists a compact subset © o/R^, containing 

the origin such that Kh(th) vanishes outside 0 and the set {t e0: K^^th) < 0} has Lebesgue 

measure zero. 

We recognise the conditions of Theorem 7.30 as being sufficient for k(s, t) = Kh(s - t) 

to be a universal kernel on compact X (Micchelli, Xu and Zhang, 2006, Proposition 16). 

Some differences are identified between the use of the ONC and the tests of Fan and Li 

(2000). These include: 

i) The allowance for kernels that do not conform to kernel smoothers. 

ii) The ability to test against parametric alternative hypotheses. 

Hi) Testing on general, separable domains A'. 

iv) The invariance adjustment of (7.33). 

Many of these benefits come from the use of kernel methods. There have been other 

recent applications of kernel methods to some traditional statistical problems. 
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7.4.2 Testing for Covariance 

In this section, we show a relationship between the ONC and some recent developments 

in the Machine Learning literature. Borgwardt et al (2006) and Gretton et al (2008a) use 

kernel methods hypothesis testing in the two sample problem. Kernel methods are used 

for independence testing by Song et al (2007); Song (2008) and Gretton et al (2008b). 

It is often desired that our model be invariant under changes of location. Like Prob-

lems 7.1 and 7.9, we have the following. 

Problem 7.31. Given a feature space, T, consisting of functions X does 

Cov(y,/(jc)) = 0 for all f G T? 

Problem 7.31 is of interest when testing whether the conditional mean of the re-

sponse variable, y, can be explained in part through functions in the function space, T. 

A similar hypothesis test is 

Ho: Vary(i/ )̂ = minVarx,y {y - f{x)}^, against, 
^^^ (7.40) 

Hi: Vary(y2) > min Var̂ ŷ {y - / (x) } ' . 

We will focus here on Problem 7.31, as opposed to the hypothesis test in (7.40). 

Problem 7.32. Can we test if 

Cov{y,f{x)) = 0 for all measureable f : X R.? 

In answering Problems 7.31 and 7.32, we define the following extension of the ONC. 

Definition 7.33. The operator norm covariance criterion (ONCC) of the joint distribution, 

Px,y, with respect to the Banach space, B is 

ONCC{6,P.,y)= sup Ex,y{(y-Eyy)/(x)}, 
I I / I I B < I 

where such a supremum exists. 

A biased estimate of the ONCC {B, Px,y) is then given by 

ONCC J = sup ¿ L - l^y j/n] f{xi). 

Assuming the Banach space is a reproducing kernel Hilbert space, we have the following 

simplification. 
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Theorem 7.34. Let Px,y be a probability distribution on X xR and Hk a separable RKHS on 

X. Then if {(y - y")k{x,x')(y' - y'")} < oo, we have 

ONCC^ = {{v - y")^^,x'){y' - y'")} . 

Proof of Theorem 7.34 is given in Appendix 7.A3. Where w is a random variable 

with u = y- Ey(y), the ONCC is simply related to the ONC via 

ONCCiHk. Px,u) = Px,y). (7.41) 

As with the operator norm criterion, we have an unbiased estimator of the operator 

norm covariance criterion. 

Theorem 7.35. Suppose that Ex,y,x'yy/y// {{y - y")k{x,x'){y' - y'")} < oo. Then given ran-

dom i.i.d. samples with n>A,an unbiased empirical estimate o/ONCC^ is 

given by 

ONCCl{nkAxuyi)U) 
= W i ^ E - E yiKxuXj)yk + (n)^^ E ykk{xi,Xj)yi. 

Proof of Theorem 7.35 is given in Appendix 7.A.3. Denote by y the vector of length n 

with terms y^l/n. The following theorem shows that ONCC^ may be easily calculated. 

Theorem 7.36. Denote by K the n x n matrix with Ky = Kij for i / j and Ku = 0 for all 

1 < i,j < n. Then the unbiased empirical estimate, ONCCj, may be calculated in 0{n^) by 

ONCCl (HkAxi.ydU) = [{y-yVK{y-y) - ^l^Kz;}, 

where v = -2(y -y)Q{y-y) + 

Theorem 7.36 is proven in Appendix 7.A.3. Knowledge of the ONCC can provide 

answers to Problems 7.31 and 7.32. As the ONCC is an operator norm, we have the 

following. 

Theorem 7.37. Let Px,y be a probability distribution on JM xR, and H^ an RKHS, such that 

Cov(y,/(x)) = 0 for all f eHj, 

if and only if 
ONCC (Kit,Px,y)=0. 
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The hypothesis tests associated with Problems 7.31 and 7.32 may then be given as hy-

pothesis tests concerning ONCC {Hk, Px,y) = 0. Of interest then is the empirical quantity 

ONCCl 

For the case yi e { - 1 , 1 } , with - 1 < Ex,y(y) < 1, the maximum mean discrepancy 

(MMD), given by Borgwardt et al (2006), is 

1/2 

L x ' | y ' = - l x ' | y ' = l x ' | y ' = l 

We have the following theorem showing a close relationship between the maximum 

mean discrepancy and the operator norm covariance criterion. 

Theorem 7.38. Let Px,y be a probability distribution on X x y, with y — { — 1,1}, and 

—1 < Ex,y(y) < 1. Then the maximum mean discrepancy and the operator norm covariance 

criterion satisfy 

Proof of Theorem 7.38 is given in Appendix 7.A3. For universal k, it was shown by 

Borgwardt et al (2006) that MMD = 0 if and only if P îy î = Px|y=-i. 

The Hilbert Schmidt independence criterion (HSIC) of Gretton et al. (2008b) may be 

derived via the maximum mean discrepancy. With respect to RKHSs Hk on X and Hi 

on y, and to probability distribution Px,y on X xy, the Hilbert-Schmidt independence 

criterion, HSIC(7i)t, is given by 

For universal kernels k and /, Gretton et al. (2008b) shows that HS\C{Hk,Hi, Px,y) = 0 if 

and only if x and y are independent. For y = M. and linear kernel, l(y,y') = yy', it is 

clear that ONCC(7ijt,Px,y) = 

7.5 Experiments 

We have conducted an extensive set of simulation experiments using data obtained from 

a variety of source distributions. The experiments used Gaussian, Laplacian and poly-

nomial kernels. The mean structures were generated using Gaussian processes. We 

tested Gaussian errors, double exponential, centred exponential and Rademacher ran-

dom variables. We also studied heteroscedasticity (the violation of homoscedasticity), 

and changes in the signal-to-noise ratio. Sample sizes of both 20 and 100 were used. 
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Broader null hypothesis are tested with T̂ o = ÍR- A colloquialism of Machine Learn-

ing literature is that fits made with such null space are referred to as having "offset", 

b. Finally, we considered the performance of the algorithms under both the null and 

alternative hypotheses. 

Comparisons were made with the algorithms LOO, SURE, ML and REML. Both LOO 

and SURE were calculated with grid search, followed by a finer grid search around the 

optimal. ML and REML were calculated using the "Gaussian dual optimisation" of 

Algorithm 4.3. 

7.5.1 Experimental Setup 

For Gaussian processes, the response variables may be simulated from a multivariate 

normal distribution. The covariance structure is given by 

Covyi;, (y,y') = k{x,x'), and Vary|^(y) = k(x,x)cr^. 

Equivalently, we may have y ~ w + £, for 1 < z < n, where 

Gov {w, w') = k{x, x'), and Var^| (̂ii;) = k{x, x), (7.42) 
w \x' 

and 

(7.43) 

Figure 7.3 shows a simulation of the mean structure given by (7.42). The structure of 

(7.42)-(7.43) allows for a non-Gaussian error structure. For example, with Rademacher 

errors we have 

p(ei = - 1 ) = P(ei = 1) = 0.5, independently for all 1 < i < n, 

We also use double exponential and recentred (mean zero) exponential errors. 

Table 7.3 gives the particulars of the models used in the experiments. Some models 

(a-j) test the performance of model criteria under the null hypothesis, i.e., w = 0. Other 

models (k-o) are given in the the Gaussian processes in (7.42)-(7.43). Others have non-

Gaussian errors (f,g,h,p,q,r), or heteroscedasticity (i,j,s,t). For the heteroscedastic models, 

the MSPE criteria were calculated with the average error variance, setting = 1. 

7.5.2 Mean Squared Prediction Error 

For the MSPE, the results are displayed as 

n"^MSPE. 
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model kernel 7 errors Var(y x) hypothesis 

a Gaussian 1 Normal 1 Ho 

b Gaussian 5 Normal 1 Ho 

c Gaussian 25 Normal 1 Ho 

d Laplacian 5 Normal 1 Ho 

e Cubic Poly. 1/6 Normal 1 Ho 

f Gaussian 5 Double Exp. 1 Ho 

g Gaussian 5 Exponential 1 Ho 

h Gaussian 5 Rademacher 1 Ho 

i Gaussian 5 Normal Ho 

j Gaussian 5 Normal xVx/3 Ho 

k Gaussian 1 Normal 1 Hi 
1 Gaussian 5 Normal 1 Hi 

m Gaussian 25 Normal 1 Hi 
n Laplacian 5 Normal 1 Hi 
o Cubic Poly. 1/6 Normal 1 Hi 

P Gaussian 5 Double Exp. 1 Hi 

q Gaussian 5 Exponential 1 Hi 
r Gaussian 5 Rademacher 1 Hi 
s Gaussian 5 Normal X Hi 
t Gaussian 5 Normal Hi 
u Gaussian 5 Normal 0.01 Hi 
V Gaussian 5 Normal 100 Hi 

Table 7.3. Gaussian processes and other models used in the simulation: (a-f) Independent, 

identically distributed Gaussian noise with a variety of kernels; (f) double exponential; (g) ex-

ponential noise, with mean zero and variance one; (h) Rademacher noise; (i-j) heteroscedastic 

noise; (k-o) Gaussian processes, with a variety of covariance structures; (p-r) alternative error 

distributions; (s-t) Gaussian processes with heteroscedastic errors; (u) high signal-to-noise ratio 

(v) low signal-to-noise ratio. 
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Figure 7.3. Sample mean -path for a Gaussian process. We have Gaussian kernel with j = 5. 

The covariance structure is given by (7.42). 

The scaling by n ^ was made to ease comparisons across differing sample sizes. The 

results are shown in Table 7.4 and in Table 7.5. Table 7.5 incorporates the offset. 

Under HQ, it is seen that PIC provides a very clear and significant improvement over 

SURE, ML/REML, and CIC. For the Gaussian processes (a-e), the performance of CIC is 

similar to that of ML/REML, similar or better under the non-Gaussian errors (g-h), and 

clearly better when there are violations of homoscedasticity (i-j). Under the Hi models, 

we see that ML outperforms the alternatives for all of (k-r). For heteroscedasticity (s-

t), we see a preference for PIC, then CIC. Model (v) shows a preference toward PIC. 

SURE was consistently outperformed by both ML/REML and by CIC. Such results 

were consistent across changes in sample size, and with and without offset. 

We now specifically compare ML/REML and CIC. For Gaussian processes they have 

a similar performance, albeit with a slight preference for ML/REML. The largest differ-

ences in performance are seen with the heteroscedastic models (g,h,s,t). With each, we 

see a strong preference toward CIC. 
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model SURE ML PIC CIC model SURE ML PIC CIC 

a 0.040 0.019 0.006 0.018 a 0.011 0.006 0.002 0.006 

b 0.032 0.021 0.007 0.020 b 0.008 0.006 0.002 0.006 

c 0.025 0.023 0.007 0.023 c 0.007 0.007 0.002 0.007 

d 0.023 0.023 0.007 0.023 d 0.007 0.007 0.002 0.008 

e 0.030 0.019 0.007 0.018 e 0.007 0.006 0.002 0.005 

f 0.097 0.043 0.012 0.034 f 0.010 0.007 0.002 0.007 

S 0.136 0.055 0.018 0.048 g 0.016 0.007 0.002 0.006 

h 0.013 0.017 0.006 0.018 h 0.006 0.005 0.002 0.005 

i 0.201 0.130 0.024 0.067 i 0.249 0.071 0.005 0.015 

j 1.875 1.634 0.670 1.272 i 1.969 1.302 0.238 0.582 

k 0.243 0.200 0.248 0.206 k 0.069 0.057 0.103 0.059 

1 0.317 0.286 0.342 0.293 1 0.115 0.106 0.164 0.107 

m 0.402 0.377 0.431 0.383 m 0.178 0.172 0.242 0.174 

n 0.436 0.430 0.479 0.441 n 0.265 0.259 0.340 0.276 

o 0.157 0.144 0.209 0.149 o 0.037 0.035 0.076 0.036 

P 0.411 0.318 0.362 0.319 P 0.120 0.109 0.164 0.111 

q 0.409 0.294 0.351 0.297 q 0.134 0.107 0.157 0.108 

r 0.295 0.286 0.355 0.293 r 0.106 0.102 0.160 0.104 

s 0.475 0.408 0.363 0.386 s 0.327 0.188 0.153 0.176 

t 2.228 1.993 1.023 1.725 t 2.050 1.421 0.419 1.052 

u 0.006 0.006 0.015 0.006 u 0.002 0.002 0.008 0.002 

V 5.298 3.520 1.696 3.477 V 1.567 1.426 1.026 1.449 

Table 7.4. Comparison of model performance for mean squared prediction error case, without 

offset. Left: n = 20. Right: n = 100. 
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model SURE REML PIC CIC model SURE REML PIC CIC 

a 0.089 0.069 0.055 0.068 a 0.021 0.016 0.013 0.016 
b 0.075 0.070 0.055 0.070 b 0.019 0.017 0.013 0.017 

c 0.074 0.071 0.054 0.071 c 0.017 0.018 0.013 0.018 
d 0.069 0.072 0.054 0.072 d 0.017 0.018 0.013 0.018 

e 0.080 0.066 0.053 0.063 e 0.017 0.016 0.013 0.015 

f 0.142 0.090 0.061 0.083 f 0.021 0.017 0.012 0.017 

g 0.182 0.102 0.067 0.095 g 0.026 0.016 0.011 0.015 

h 0.058 0.063 0.052 0.065 h 0.015 0.016 0.013 0.017 

i 0.240 0.188 0.086 0.147 i 0.255 0.090 0.019 0.037 

j 1.918 1.724 0.894 1.502 j 1.972 1.333 0.338 0.737 

k 0.247 0.212 0.233 0.216 k 0.070 0.060 0.087 0.061 

1 0.332 0.302 0.341 0.308 1 0.116 0.107 0.154 0.109 

m 0.420 0.397 0.440 0.403 m 0.180 0.174 0.238 0.176 

n 0.449 0.446 0.483 0.454 n 0.267 0.261 0.333 0.276 

o 0.161 0.149 0.172 0.151 o 0.037 0.036 0.058 0.037 

P 0.413 0.327 0.349 0.326 P 0.121 0.110 0.155 0.112 

q 0.418 0.308 0.342 0.308 q 0.137 0.109 0.151 0.111 

r 0.305 0.295 0.342 0.301 r 0.107 0.104 0.151 0.106 

s 0.496 0.438 0.378 0.421 s 0.328 0.197 0.154 0.185 

t 2.263 2.057 1.203 1.855 t 2.050 1.443 0.500 1.093 

u 0.006 0.006 0.014 0.006 u 0.002 0.002 0.007 0.002 

V 9.569 8.378 6.690 8.318 V 2.350 2.232 1.858 2.245 

Table 7.5. Comparison of model performance for mean squared prediction error case, with offset. 

Left: n = 20. Right: n = 100. 
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7.5.3 Mean Squared Error 

For the MSE case, there are optimal fits to which we may compare the MSE. If we knew 

the w in (7.42), we would be able to make optimal fits, that would on average have lower 

MSE than any fit based on y. The results are displayed as 

MSE - MSEoptimal/ 

where MSEoptimal is the mean squared error of the optimal fit using knowledge of w, 

and where appropriate, the offset. For models (a-j), we have MSEoptimal = 1/ the Bayes 

optimal error rate. 

Results for the MSE case are given in Tables 7.7 and 7.6. Under Ho, with sample 

size 20, we see a clear ordering of the performances from PIC to CIC to ML/REML 

and to LOO. For sample sizes 100, we see again a consistent preference for PIC. For the 

Gaussian processes (k-o), there are similar performances by ML/REML and CIC. 

For n = 20, we see that CIC tends towards more conservative models than those of 

ML/REML. This is apparent in the strong performance of CIC under HQ, and the com-

parative degradation in performance in the low-noise model (u). Like with MSPE, we 

see the largest disparity between ML/REML and CIC is with heteroscedasticity (i,j,s,t). 

Both PIC and CIC perform well in such situations. 

7.6 Discussion 

By using universal kernels we have generalised the results of both the nonparametric 

model estimation, and nuisance parameters methods. Methods such as Bierens (1982); 

Zheng (1996); Bierens and Ploberger (1997) and Fan and Li (2000), amongst others, are 

special cases of our tests. We have also extended the range of admissible kernels by 

using bivariate, universal kernels. Moreover, in choosing a low-rank kernel, we may test 

a parametric alternative hypothesis. 

By ensuring that model residuals appear to be mean zero, the parametric criterion 

emerges naturally. The operator norm criterion allows for heteroscedasticity, and un-

der such heteroscedasticity we see an improvement in the performance of the PIC in 

comparison to ML/REML. The CIC offers sharper, less smooth fits than that of PIC. 

There is an overall strong performance by the CIC. The robustness of the PIC has been 

promising; the derivation of the PIC required very little assumptions. In light of the 

demonstrated convexity, we find good reason to recommend their widespread use. 
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model LOO ML PIC CIC model LOO ML PIC CIC 

a 6.744 0.038 0.012 0.029 a 0.014 0.006 0.002 0.006 
b 0.104 0.041 0.013 0.033 b 0.007 0.006 0.002 0.006 
c 0.104 0.047 0.014 0.034 c 0.007 0.007 0.002 0.007 
d 0.055 0.047 0.014 0.036 d 0.008 0.007 0.002 0.008 
e 0.189 0.031 0.010 0.023 e 0.014 0.005 0.002 0.005 
f 0.232 0.044 0.011 0.028 f 0.010 0.005 0.002 0.005 

g 0.354 0.053 0.015 0.036 g 0.054 0.010 0.003 0.007 
h 0.831 0.041 0.014 0.033 h 0.006 0.007 0.002 0.007 
i 0.418 0.170 0.018 0.043 i 0.191 0.107 0.003 0.009 

j 1.351 0.752 0.070 0.135 j 1.018 0.971 0.016 0.044 

k 0.867 0.245 0.307 0.249 k 1.110 0.064 0.116 0.068 

1 0.596 0.379 0.429 0.368 1 0.143 0.116 0.177 0.116 

m 0.616 0.423 0.446 0.406 m 0.215 0.202 0.283 0.202 

n 0.304 0.283 0.285 0.271 n 0.225 0.219 0.295 0.224 

o 0.491 0.243 0.345 0.259 o 0.054 0.047 0.109 0.055 

P 0.578 0.384 0.433 0.375 P 0.149 0.117 0.178 0.118 

q 1.390 0.385 0.415 0.363 q 1.719 0.119 0.185 0.121 

r 0.724 0.367 0.433 0.373 r 0.152 0.119 0.182 0.121 

s 1.140 0.414 0.369 0.343 s 0.772 0.215 0.167 0.160 

t 2.569 1.043 0.483 0.582 t 4.554 1.394 0.247 0.407 

u 0.116 0.037 0.100 0.053 u 0.019 0.007 0.021 0.009 

V 17.49 5.215 2.044 3.984 V 2.146 1.276 0.964 1.284 

Table 7.6. Comparison of model performance for mean squared error case, without offset. Left: 

n = 20. Right: n = 100. 
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model LOO REML PIC CIC model LOO REML PIC CIC 

a 26.96 0.050 0.017 0.040 a 51.96 0.009 0.003 0.008 
b 0.129 0.052 0.015 0.038 b 0.008 0.007 0.003 0.007 

c 0.094 0.063 0.016 0.040 c 0.007 0.007 0.002 0.007 

d 0.057 0.078 0.018 0.045 d 0.009 0.008 0.003 0.008 

e 0.237 0.049 0.016 0.031 e 0.016 0.007 0.002 0.005 
f 0.445 0.057 0.014 0.036 f 0.014 0.007 0.002 0.006 

g 0.359 0.072 0.018 0.042 g 0.096 0.014 0.002 0.006 
h 0.233 0.052 0.018 0.041 h 0.006 0.007 0.002 0.007 

i 0.408 0.271 0.032 0.072 i 0.241 0.181 0.004 0.011 

j 2.000 1.399 0.235 0.430 j 2.596 2.223 0.045 0.134 

k 1.089 0.262 0.277 0.255 k 1.160 0.067 0.100 0.070 
1 0.611 0.410 0.430 0.397 1 0.145 0.118 0.167 0.119 

m 0.650 0.476 0.476 0.453 m 0.219 0.207 0.279 0.206 
n 0.343 0.339 0.310 0.311 n 0.230 0.222 0.288 0.228 
o 0.469 0.262 0.279 0.258 o 0.057 0.051 0.085 0.057 

P 0.567 0.426 0.440 0.412 P 0.153 0.120 0.170 0.121 

q 1.206 0.413 0.421 0.391 q 0.227 0.125 0.180 0.126 
r 0.627 0.403 0.437 0.409 r 0.146 0.121 0.173 0.123 
s 0.703 0.486 0.405 0.388 s 0.835 0.229 0.179 0.164 
t 3.144 1.291 0.643 0.719 t 5.176 1.527 0.285 0.375 
u 0.098 0.047 0.103 0.062 u 0.026 0.008 0.020 0.009 
V 25.87 10.99 7.453 9.605 V 2.931 2.047 1.762 2.053 

Table 7.7. Comparison of model performance for mean squared error case, with offset. Left: 

n = 20. Right: n = 100. 
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For simplicity, our analysis has been limited to the use of reproducing kernel Hilbert 

spaces, as well as to the use of least squares loss. Some further research has so far been 

promising. Current research includes the use of operator norms for parameter selection 

for the "lasso'', as well as for quantile regression and other alternative loss functions. 

7.A Appendix 

7.A.1 Proofs for Section 7.2 

Proof of Theorem 7.3. The first part of the proof shows that ONC (B,Px,y) = 0 implies 

7ex,y(0) = inff^s Ex,y {y - f{x)}^. For any e > 0, 

ONC(^,Px,y)= sup Ex,y{y/(x)} 
ll/lle<i 

= sup e-iEx,y{y/(x)} 

>(28)-i sup E , , y { 2 y f ( x ) - f { x f } 
\\f\\B<^ 

= (2e)-' E y / - Ex,y{y-/(x)r 

Hence, if ONC {B, Px,y) = 0, taking e ^ oo yields 

Eyy2-mfEx,y{y- /Wr <0 . 

2» ^ 
Noting that, clearly, i n f f ^ s Ex,y { y - f ( x ) } < Eyŷ , we obtain 

Eyy2-mfEx,y = 

and 7^x,y(0) = Tê y.̂ . 

With the second part of the proof, we wish to show that ONC (^,Px,y) > 0 im-

plies Eyy2 > inifeB^x,y{y-fix)}^' Since < oo, we may set 

C = sup||̂ ||̂ <i Ex{/(:c)2}. Moreover, since 7̂ x,y(0) < oo, we have, for 0 < e < 1, 

inf Ex ,y {y - /Wr 
Lll/ll5<l 

- Eyy2 = ^̂  inf ^ Ex,y { - 2 y f { x ) + f { x f } 
<1 

= - sup Ex,y{2y/W-/(x)2} 
I I / I I B < I 

< - sup Ex,y{2y/W-C} 
ll/lle<i 

= - sup E x , y { 2 £ - V W - e - 2 c | 

= -2e-^ONC {6, Px,y) + -2, 
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For e - C{ONC we have -2e- iONC + e-2c < 0, and hence 

and7^x ,y (0 ) • 

Proof of Theorem 7.4. As ^ is a kernel, there exists a feature map A! ̂  H such that for 

all X, x' e X, 

k{x,x') = (<D(x),O(x0). (7.44) 

By the reproducing property, for / 6 Hk, 

fix) = . (7.45) 

Moreover, for g e H^, 

sup {gj)n, = ' 

Hence, 

sup [Ex,y {y / (^ ) } ] - sup 
<1 

-X/Y 

= sup 

(7.46) 

(7.47) 

'n, 

where (7.47), (7.48) and (7.49) are due to (7.44), (7.46) and (7.45), respectively. 

(7.48) 

(7.49) 

• 
Proof of Theorem 7.5. The essence of the proof is to show that E^{k{x,x)} < oo implies 

<1 ^ M i ^ ) ^ } < Following e.g., Dunford and Schwartz (1963), Serfling (1980, 

page 196) and Scholkopf et al. (1998), let Ai > . . . > 0 be the solutions to the eigenvalue 

problem 

[ k(x,x')ipi(x)dp,(x)=\ijpi{x'). 
J X 

Then k has an orthogonal expansion in k{x,x') = where we have 

^ i M = For / in the pre-Hilbert space given by span.{<I>,(;c)}, we have 

/ - Liai<^i{x). Then E ^ f i x ) ^ } = and - Ei«?- Hence, 

sup EX{/(x)2} = sup = Al. 
Il/llw,<l Lia}<l i 
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However, E4k{x ,x ) } = = A,- > Aj = E4f (x )^ } . Therefore 

have Ey,{k{x,x)} < oo implies E^{f(x)^} < oo, and under the conditions set 

out in Theorem 7.5, 

^x,y(0) < OO, sup Ex,y{y/(x)} < 00, and sup E^{f{xf} < oo. 

The result then follows by application of Theorem 7.3, with B = Hk̂  • 

Proof of Theorem 7.8. We consider an expression for ONC^ {Hk, . We have 

h] 
^ \ / « \ 

. J \i=l / J 

i=i 

Hence, we find an unbiased estimator of ONC^(Hk, is given by the empirical 

n-^y'^Ky-'S^.afK,). • 

Proof of Theorem 7.11. By Theorem 7.5, we know that either 

i) ONC^ {Hk, Px,y) = 0 and 7^x,y(0) = Te^y.̂ ^ or 

nj ONC^ {Hk. Px,y) > 0 and 7^x,y(0) > 

for all probability distributions Px,y on A" x R, with 

7^x,y(0) < oo, E^,yyy{yk(x,x')y'} < oo, and E^{k{x,x)} < oo. 

Now assume that 

for all probability distributions Px,y with 7ex,y(0) < oo. On substituting with 7^* y 

in i) and ii), we obtain the required result. • 
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7.A.2 Proofs for Section 7.3 

Proof of Theorem 7.19. We have, for n> 2, 

= - 2 n - ' £ \ £ K i j y j \ y i (7.50) 

i,jeq 

where (7.50) is due to the result lim^_O+ /(T) (X) /T = E"=I • 

Proof of Theorem 7.20. We know from Theorem 7.19 that, for n>2, 

riSV = - (7.51) 

Subject to the regularity conditions Ex,y,x'y < oo and Ey,{k{x,x)} < oo, the 

expected value of either side of (7.51) yields 

^LIM ^ M S E „ _ I ( T ) = -2{n - l)ONC\nk.P.,y). 

As ONC^(Hk, Px,y) is not dependent on the sample size, replacing n - 1 with n, we have 

URN ^ M S E N ( T ) = -2NONC^(NK,PX,Y), 

where n >1. • 

Proof of Theorem 7.12. We have seen in (7.13) that 
n 

i=i 

Hence, 

TO ¿ M S P E ( T ) = ¿ M A 

= ¿ ^ v y i . , { (y ' - rKy)^iy' - } 
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Proof of Theorem 7.23. We have seen that 

n 

} ^ J { T ) { x ) / r = (7.52) 

Substituting (7.52) into (7.14) and taking the derivative at 0+ gives 

= l̂im I -2{Kyy(y - rKy) + 2(7̂  £ | 

= -2{y'^Ky-a-^tr{K)] 

Proof of Theorem 7.24. As the theorem only considérés the probabiUty distribution Px,y 

through its conditional, Py|(;j. , without loss of generality, Px,y = PyK̂ .̂ . As Hk is an 

RKHS, we have k{x,x) < oo for all x ^ X, and we have Ey^{k{x,x)} = k{xi,xi) < oo. 

Assuming Ey(i/^) < oo, we obtain the similar expression E^^y^yf^yf{yk{x,x')y'} < oo. More-

over, applying Theorem 7.5, we haveONC^ 

> 0, with equality if and only if 

Eyi/̂  = inif^y^^ Ex,y [y — f{x)Y. On replacing Px,y with the equivalent Py|(;c,)f_/ ^^ 

OKC^{Hk, ) > 0/ with equality if and only if 
t (y' I = inf t [{y - I • ° 

Proof of Theorem 7.25. Let / be the solution to the optimisation problem 

î^ii^ i t ( y i - n ^ i ) ) ' + ^ ^ 11/11 I ' 

feHk J 

as well as the equivalent, for some A > 0, 
+ (7.54) 

The task is to find A, given An, such that the minimisers of (7.53) and (7.54) are identical. 

By the Representer Theorem, we have f{x) = ELi The optimisation problem 

(7.53) becomes 

mm I (1/ - Ka^iy - Ka) + An . (7.55) 

Differentiating the objective function of (7.55) with respect to a, 

A {(y - Ka)^iy - Ka) + AnV^o^} = -2K{y - Ka) + 
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for a^Ka > 0. Setting the derivative equal to zero, while temporarily assuming that 

such a solution a exists. 

a = 
iVa'^Ka J 

However, as / is the minimiser of (7.54), 

a = (K + A 7 ) - V 

On equating alternative expressions for a, 

An AN 
iVal^ 211/11^/ 

which rearranges to give Â  = However, 

{y - y^Kiy - y) = (y - K{K + Aiy^y^Kiy - K(K + U)-'y) 

= K^a^Ka = Â  . 

Recalling that An = 2ay^tT(K), we have 

(y - yfKiy - y) = A^ = ^ = a^tr{K). 

We have required the assumption that such an a exists with a^Ka > 0. As a unique so-

lution exists to (7.53), we must now only consider the special case of the differentiability 

of the objective fimction of (7.55) at a^Ka = 0. 

As A ^ 00, we have a^Ka 0+. Using the notation T = we check the boundary 

point T = 0 for optimality, 

Ĥm -^{{y- Ka)^iy - Ka) + AnVflT^fl} = Ky + y/y^Ky 

= + (7.56) 

The right-hand-side of (7.56) is non-negative if and only if 

in which case T = 0 is optimal, and we have f = 0. • 

Proof of Theorem 7.26. As K is real symmetric, we have 

K = Q^AQ, 

where A is a diagonal matrix, with the diagonal made up of the ordered eigenvalues 

ci > ... > Cn > 0. For corresponding eigenvectors r i , . . . , Z7„ the matrix Q is orthogonal, 

Q= Vi Vn ' 
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We have 

( y - y ^ J ^ i y - y ) = { y - K { K + \ i ) - ' y ) ^ K { y - K { K + a j ) - ^ ) 

and 
n 

E i y - y)i^n = + AJ)-idiag(iCn,... + 
i=l 

As /c is a translation invariant kernel, we have iCn = . . . = > 0. Hence, 

t i y - = A'i^iiy^iK+Aj)-2y, 
i=i 

and we have 
(y - y)TK(y - y) yT(K + + A i ) - ^ 

fC„yT(K + A/)-2y ' 

Let a = Q^y, then 
n 

y = Q(i = 
i=l 

Since 

= V' 

it is seen that 

Therefore, on the denominator of the right hand side of (7.57), we have 

a} 
+ = Ku £ (7-58) 

Similarly, we find that 

(K + + AI)-V ^ £ 

and hence 
Cvfl? 

/ ( K + A i r ' m + A I ) - V = £ ( i ^ T ^ -

Substituting (7.58) and (7.59) into (7.57), 

(7.60) 
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We now show that the right hand side of (7.60) is monotonically decreasing in A > 0. 

We have 

( J^n Li=i ) 

( ^ m f I T ^ } ( z ^ l {E^} 
~r ¡ r ~ 7 2 • (7.61) 

i^ii ( E L i 

As the denominator of (7.61) is positive, we need further consider only the numerator. 

We have 

[ d " c,a? ] [ " gf 1 f " ] i d " a} \ 
¿-I ir, 4- M ¿ J >12 f 1 L j . >12 f 1 J> dA (C, + A)2 j (C,- + A)2 J (C; + A)2 J \ dA (C; + A)2 / 

= 1 ^ E TTTZTia I 1 E 777X112 f 1 L 77717^12 r 1 ^ E (c,- + A)3 / (ĉ  + A)2 / (C; + / \ (c,- + A)3 

= -2{y 1+2 i r ^ 
/ - Cy) {(Q + A)-^ - (Cy + A)"^} ) 

i V (Q + A)2(cy + A)2 J 

> 0 , 

with equality if and only if 

- Cj) = 0 for all 1 < < n. (7.62) 

As such, (7.60) is monotonically increasing. 

We now show that (7.62) will hold true if and only if y is an eigenvector of K. If 

fli = • = fl„ = 0, then Ky = {)y = 0, and y is an eigenvector of K. Hence, without loss 

of generality, we may assume a^ / 0 for some 1 < I <n. The conditions of (7.62) are 

then equivalent to Cf = c^ for all i such that flj ^ 0. We have 

Ky = K{]2 CiVi) 
ai^O 

= CiVi 
Ui^O 

and y is an eigenvector of K. 
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We now consider the linut as A ^ 0+. By (7.60), we have 

lim (y - - 9) ^ ^^^liâv 

The right hand side of (7.63) is equal to zero if and only if ai 0 and c/ = 0 for some 

1 <i <n. Equivalently, we have equality in (7.63) if and only if y is not in the column 

span of K. Hence, 

lim ( y - y ) ^ J ^ ( y - y ) 
A^o^ ruiiy-mu 

y G s p a n ( X ) , 
KnEci>oat/cf 

0, y ^ span(liC). 

Similar to the discussion around (7.58), it can be shown that, for y G span(liC), 

EC ,>O4/Q ^ y^K-y 

We then have 

(y - - y) ^ I v « ^ v M K ) , 

0, y € span(K), 

as required. • 

Proof of Theorem 717. With parametric null, we have y = Sy, with 

S = H + (I - H)K(I - H){(I - H)K(I - H) + A i } - ^ 

Recall Stein's unbiased risk estimate, 

SURE(T) = ¿ { y , + 
¡=1 i=i "V' 

¿=1 

Let K* = {I- H)K{I - H), y* = (I - H)y. Furthermore, let SURE*(T) denote Stein's 

unbiased risk estimate with Gram matrix K*, response vector y* and variance 

SURE*(T) == ¿ { y * - ^ } 2 + 2i72tr(K*(K* + Ai ) - I ) 
i=i 

By the argument preceding Theorem 7.34, yt - yi = y* - ^ and we have 

SURE(T) = SURE*(T) +ir2tr(H). 
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Applying Theorem 7.23, 

lim ^ S U R E ( T ) - l im ^ S U R E * ( T ) 
UT dr ^ ' 

= - 2 { / ( J - n)K{l - H)y - cr^tr{{I - H)K{I - H)}] • 

Proof of Theorem 7.28. The proof essentially follows that of Theorem 7.25. Let / be the 

solution to the optimisation problem 

- / f e ) ) ' + An \\Pif\\n,y (7.64) 

as well as the equivalent, for some A > 0, 

^^^ - / f e ) ) ' + A . (7.65) 

The task is to find A, given A^, such that the minimisers of (7.64) and (7.65) are identical. 

By the Representer Theorem, we have f{xi) = (X*j8 + Ka)i. The optimisation problem 

(7.64) becomes 

mm { ( y - X*j8 - Ka)^(y - X*j8 - Ka) + An . (7.66) 

Differentiating the objective function of (7.66) with respect to a, 

^ {(y - X'^ - Ka)^{y - X'p - Ka) + An vT?^} = -2K{y - X'/S - Ka) + 

for a^Ka > 0. Temporarily assuming that such a solution a and ^ exists, 

V J ^^ ^^ 

As / is the minimiser of (7.65), 

a = {K + \I)--\y-X'^). 

On equating alternative expressions for a, 

An AN A = 
2 V 7 ^ 211/ -Hk 

Hence, noting {y - y)T(J - H)K{I -H){y-y) = (y- y)''K{y - y), we have 

{y - yVil - H)K{I -H){y-y) = A^ ^ ^ ^ ^tr{(i - H)K{1 - H)}. 

It is then straightforward to check the optimality at a = 0 with y = {I - H)y. • 
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7.A.3 Proofs for Section 7.4 

Proof of Theorem 7.34. Applying Theorem 7.4 to probability distribution 

sup {{y - Eyy)f{x)} = {y - }i)k{x,x'){y' - ji)} 
WfWn^.-^ 

Hence we have 

ONCC^ (H,, Px,y) = {(y - x') (y' - y'")} . • 

Proof of Theorem 7.35. For n> 2, we have 

E = E ^ ' y ^ y {(y-y")k{x,x'){y' - y ' O } . (7.67) 

for n > 3, 

^yik{xi,xj)yk = {(y " . (7-68) 

and for n > 4, 

Y^ykk{Xi,Xj)yi = Ex,yyyy/y// {(y " y ' O ^ i ^ / " V")} • (7-69) 

Recall that 

ONCcliHkA^uydU) 

= Wi^ E - ^ E yMxhXj)yk + (n)4 ^ ^ ykk{xi,xj)yi. 
{hi)eq {hj,k)eq {hixneq 

On substituting equations (7.67)-(7.69), we have, 

• 

= (n)2 ^ E - ^ E yMxuXj)yk + (n)41 £ ykk{xi,xj)yi 

[ {i,j)eq {i,i,k,i)ei", 

= E,,yyy {yk{x,x')y'} - 2E,,yyy. x ' ) / ' } s + E,yy.y. {y"fc(x, x ' ) / " } 

= E,,yyyy/,y.. {(y - - } 

hence ONCC^ {Hk, (x/,y/);Li) is an unbiased estimator of ONCC^ {Hk, Px,y). • 

Proof of Theorem 7.36. We have 

Ti Y^yik{xi,xj)yj = y Ky, 
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and 

£ yik{xi,xj)yk = ( i ' k y y ' ^ l - y^Ky) 

I ] yMxuXj)yk = £ yik{xi,xj)yk - ^ yik[xi,xj)y^ - £ yik[xi,xj)y^ 
{i,j)eil {i,j)eil {i,j)eil 

k k=j k=i 

= l ^ K y y ^ l - y ^ K y - l K { y Q y ) . 

Moreover, 

ykk(xi,xj)yi = y^k{xi,xj)yi - 4 £ y^k{xi,xj)yi - 2 £ y^k{xi,xj)yi 
{W)eil {i,j)eq {hhk)eq {i,j)eq 

k,i i=k (W)=(w) 

- E ykHxi,Xj)yi 

k=l 

= E ykHxi,Xj)yi - 4 E ykKxi,Xj)yj - 2 E yMxuXj)yj 
{ i m i {hj,k)eq {i,j)eq 

k,l 

[ i m i 
k 

= I ' k l i y - ' l f - 4 [ I ' k y y - ' l - y^Ky - l K { y © y ) } - l y - ' k y 

- i ' k l y ^ y 

= l ^ k l i y ' ^ l f - 4:i^kyy^l + ly^Ky + 41K(y © y) -

Gathering like terms gives 

ONCCl{Hi„(xi,yi)U) 

= ( n ) 2 ' E yMxi,Xj)yj - { n ) 3 1 J ] yik(xi,xj)yi + £ yik{xj,x,,)yi 

= ( n ) 2 - - (n)3-i { l ^ K y / 1 - y'^Ky - lK(y © y)} 

+ {n)-^ {l^Kl(yTi)2 _ i l ^ k y y ^ l + ly^^Ky + 41K(y ©y) - r x i y ^ y } 

Since y = we have 

(y - _ y) _ ^ j T k I _2(y - y) © (y - y) + l i ^ ^ l j l i p l ) | 

= y^^y - { - ^ ( y © y ) + 2 y / i + • 



7.A Appendix 199 

Hence, 

ONCC^ {H,. {xuy^)U) = { ( y - - y ) - ^ 

where p = -l{y - y) © (y _ y) + i . It is dear that ONCC^ {H^, 

may then be calculated in O(n^). • 

Proof of Theorem 7.38. Let us begin by considering the MMD, 

MMD2 = {k(x,x')} - {k{x,x')} + {k{x,x')} . (7.70) x'|y'=-l x'|y'=l x'|y'=l 

Let p = P(y = 1). Bayes' theorem gives 

Ex|y=-1, {k{x.x')} = (7.71) 

x'i/=i yy^ V) 
and 

{k(x,x')] = . (7.73) 
x'|y'=l V 

Since Var(y) = p(l - p), substituting (7.71)-(7.73) into (7.70) gives 

Var(y)2MMD2 = Ê ,; 

Now considering the ONCC, since Eyi/ = 1 - Ip, 

ONCC^ = {(y - y")k{x, x') (y' - y'")) 

= E,,yyy { (y - 1 + 2v)k{x, x'){y'-l + 2p)} 

= {k{x, x') (y - 1 + 2p) (y'-l + 2p)} . (7.74) 

k{x,x') ^ - 2p{l - + (1 -
I y'=-l y'=l /=1 

However, since y = { - 1 , 1 } , 

(y-l + 2p) {y^-l + 2p)=4\ p'ly^-i, - 2p{l - p)Iy=-i, + (1 - i . (7.75) 
[ y'=-i y'=l y'=i J 

Substituting (7.75) into (7.74), we have 

and the stated result follows. • 
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7.A.4 Pseudo-code for ONC-based Modelling 

Algorithm 7.1 Pseudo-code for PICmspe and CICmspe-

Require: K, y, CIC 

1: A ̂  (7-2 

2: if CIC then 

3: d ^ 

4: else 

5: d ^ 

6: end if 

7: repeat 

8: « ^ ( K + A i ) - ^ 

9: A^rfiflTKfl}-!/^ 

10: until convergence in a 

11: y ^ K a 

12: return A, a, y 

Algorithm 7.2 Pseudo-code for P ICmse and CICmse-

Require: K, y, CIC 

1: A ^ l 

2: if CIC then 

4: else 

5: d ^ l 

6: end if 

7: repeat 

8: fl ^ (K: + A/)-1i/ 

9: y ^ K a 

11: until convergence in a 

12: return A, a, y 

1/2 



Notation and Symbols 

K the set of reals 
N the set of natural numbers, N = {1,2,...} 
X input space 
Xi inputs 
y response domain 
xji responses 
n number of training examples 
/, j indices, by default running over {1,. . . , n} 
Si errors 
X matrix corresponding to unpenalised component 
X* full rank matrix corresponding to unpenalised component 
Z matrix corresponding to penalised component 
/S coefficients to unpenalised component X 
u coefficients to penalised component Z 
(.)+ max(0,-) 
Ki knot points 
B Banach space 
H Hilbert space 
k kernel 
Hk RKHS with kernel k 
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T a family of functions 

/ a function ^ R 

5x Dirac functional 

0 feature map, X -^H 

ai, Ci dual form coefficients 

b constant offset 

K Gram matrix 

K smoother kernel 

M indicies of the non-bounded support vectors 

C indicies of the variables at their lower bound; overloaded with the 

loss function 

U indicies of the variables at their upper bound 

A indicies of the variables in the active set 

S indicies of the variables in the free set (Section 6.3.1) 

E(f) expectation of a random variable ^ 

P(C) probability of a set (event) C 

p{x) density evaluated at x 

CT-̂) normal distribution with mean ¡i and variance a'̂  

(7̂ ) approximately normally distributed with mean }i and variance cr̂  

£ parameter of the £-insensitive loss function 

oii Lagrange multiplier or expansion coefficient 

pi Lagrange multiplier 

oc vectors of Lagrange multipliers 

f f slack variables 

inverse matrix 

A~ Moore-Penrose generalised inverse 

AT transposed matrix (or vector) 

det A matrix determinant 

{x, x') dot product between x and x' 

A © B element-wise product between equalsized matricies A and B 
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= y/{x, x') or the operator norm 

B 

n, 
log 

C 

A 

X G [a, b 

X e {a, h 

X € (a, h) 

h 

IA 

0 

On 

1 

In 

card(C) 

Ho 

Hi 

0{g{n)) 

Cov{x,y) 
< 

• 

absolute value 

norm, such as the 2-norm 

^-norm, \\x\\^ ^ {EiM^)'^' 

oo-norm, = sup̂  

Banach space norm 

RKHS norm 

natural logarithm 

régularisation parameter in front of the empirical risk term 

régularisation parameter in front of the régulariser 

interval a < x <b 

interval a < x <h 

interval a < x <h 

function spaces with finite p-norm 

characteristic (or indicator) function on a set A 

zero vector of unspecified length 

zero vector of length n 

unit vector of unspecified length 

unit vector of length n 

cardinality of a set C 

null hypothesis 

alternate hypothesis 

the set of continuous, bounded functions on A' ^ R 

a function f{n) is 0{g(n)) if there exists constants C and HQ such 

that \f(n)\ < Cg{n) for all n > HQ 

covariance between x and y, Cov{x,y) = Eyx (xy) - Ex {x) By (y) 

the end of an example 

the end of a proof 





Abbreviations 

Aie Akaike's an information criterion 

a.s. almost surely 

AS-SVM active set support vestor machine 

BIG Bayesian information criterion 

BLUP best linear unbiased predictor 

BRUTO an adaptive back fitting algorithm 

EBLUP estimated best linear unbiased predictor 

e i e curved information criterion 

ne Fisher information criterion 

cev generalised cross validation 

GEE generalised estimating equations 

GLM generalised linear model 

GLMM generalised linear mixed model 

i.i.d. independent and identically distributed 

KKT Karush-Kuhn-Tucker 

LASSO least absolute shrinkage and selection operator 

LOO leave-on-out cross-validation 

MARS multivariate adaptive regression splines 

ML maximum likelihood 

MNIST a handwritten upper-case letter database 

MSE mean squared error 
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MSPE mean squared prediction error 

LIBSVM a library for support vector machines 

OLS ordinary least squares 

ONC operator norm criterion 

ONCC operator norm covariance criterion 

PIC parameter information criteria 

PRESS prediction error sum of squares 

PQL penalised quasi-likelihood 

QP quadratic program 

REML restricted maximum likelihood 

RKHS reproducing kernel Hilbert space 

SURE Stein's unbiased risk estimator 

SVC support vector classifier 

SVM support vector machine 
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