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Abstract
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An effective and elegant method for classification problems, the support vector ma-
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even additive structure. Addressed in detail are the large scale computational issues
involved with support vector machines.
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sis. In doing so, the broad kernel machine methodology can incorporate the repeated
measurements of longitudinal data analysis. Additionally, the links are made explicit
between the degrees of freedom and kernel methods.

Bayes methodology is addressed with kernel methods. A variational Bayes approach
is used for linear mixed models and generalised linear mixed models. The approach is
shown to be computationally efficient. Moreover, classical methods such as restricted
maximum likelihood and penalised quasi-likelihood are shown to be special cases of
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The final chapter of this thesis addresses the issue of model selection with only

minimal assumptions. The robustness of such an approach is verified through extensive
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Chapter One

Introduction

This thesis is devoted to the use of kernel methods for the analysis of data. Many of
the topics explored are on the interplay between traditional statistical approaches and
those of machine learning. A particular focus is therefore on nonparametric regression
and classification tasks. For classification tasks, the Machine Learning literature focuses
on decision functions, while traditional statistics tends to focus more on the conditional
probabilities. Such conditional probabilities may be obtained through either a frequen-
tist or Bayesian framework.

There are some major drivers in the push towards effective, large-scale machine
learning capabilities. Firstly, there is an ever increasing availability of computational
power. Secondly, there has been a massive increase in the availability of large-scale,
quality data to analyse. The data come from such areas as detecting credit card fraud,
search engine optimisation, medical applications, handwritten document recognition
and bioinformatics.

Kernel methods are an adaptive and versatile tool. Recent years have seen kernel
methods used extensively in statistics, medicine, computer science and engineering. The
support vector machine is one such example of the use of kernel methods to produce
high quality inference. On large data sets, there are also computational advantages to
using support vector machines. With Vapnik and Lerner (1963), Wahba (1969) and Boser,
Guyon and Vapnik (1992), support vector machines were derived through geometric
arguments. Nowadays, support vector machines are investigated primarily as special
cases of kernel machines (Steinwart and Christmann, 2008). An important question of
support vector machines, and of kernel machines generally, is the optimal choice of
parameters.

An attractive aspect of the support vector machine is the lack of assumptions on the
underlying probability distribution. Traditionally, statistical models impose normality
and homoscedasticity, however real-life data will rarely hold to such high standards. We

need to be able to model the data without imposing unnecessary assumptions - it is the

data that is to guide the model.



2 1 Introduction
1.1 Thesis Overview

The thesis is structured around topics on support vector machines, penalised splines,
longitudinal data analysis, regression, classification, quantile regression, robust regres-
sion, variational Bayes, degrees of freedom, optimisation techniques and kernel meth-

ods. The rest of the thesis is divided into six chapters.

Chapter 2: Penalised Splines and Reproducing Kernel Methods

This chapter is largely based on Pearce and Wand (2006). We show how penalised
splines are embedded in the class of reproducing kernel methods. Penalised splines have
a simple structure that may be used in conjunction with the support vector machine and
other reproducing kernel methods. Key computational benefits are achieved without

significant losses in accuracy.

Chapter 3: Explicit Links Between Longitudinal Data Analysis and Kernel Machines

Much of the material in Chapter 3 originally appeared in Pearce and Wand (2009). Lon-
gitudinal data is characterised by repeated measurements of individuals over time. The
chapter gives explicit links between longitudinal data analysis and kernel machines. In-
deed, it is shown that many longitudinal data analysis techniques are special types of
kernel machines. The links shown in this chapter allow kernel machine methodology to

incorporate repeated measurements.

Chapter 4: Semiparametric Regression via Variational Bayes

In here we present a variational Bayes approach to parameter selection. The Bayesian
approach will often lead to intractable integrals, but with variational Bayes, the objective
becomes obtainable. We show that there exists a close relationship between variational
Bayes, and classical approaches such as restricted maximum likelihood and penalised

quasi-likelihood.

Chapter 5: Impact of Kernel Parameters on Degrees of Freedom

- The degrees of freedom of a model is an established concept in the Statistical literature.
The degrees of freedom give a intuitive and scale free assessment of the amount of

fitting applied. In this chapter, we investigate the relationship between the degrees of
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freedom and the model parameters. The degrees of freedom is extended to encompass

such instances as quantile regression and support vector machines.

Chapter 6: Active Set Optimisation of Support Vector Machines

The fast and reliable training of support vector machines remains a topic of much in-
terest in the Machine Learning community. With Chapter 6, a large scale optimisation
algorithm is detailed for support vector machine training. The algorithm, active set
support vector machine (AS-SVM), allows for the fast training of an support vector ma-
chines despite the large scale nature of the problem. Experimental evidence of time
comparisons with existing methods show significant improvements in the time it takes

to train a support vector machine.

Chapter 7: On Model Validation and Selection

Chapter 7 presents a new method for both model validation and selection. Model val-
idation involves the testing of a parametric null against a nonparametric alternative.
Naturally, the question is then raised, if not parametric, how do we decide what the
nonparametric fit should be? This chapter puts forward a novel criterion, called the
parameter information criterion. The parameter information criterion gives a regression

fit to data, and does so with minimal assumptions.






Chapter Two

Penalised Splines and Reproducing Kernel

Methods

2.1 Introduction

The mid-1990s saw the parallel emergence of two important areas of data analysis re-
search.! Although built on ideas that had accumulated over the previous decades, they
were both ignited by several key papers and results. One area of data analysis research,
as found in the Statistics literature, is a nonparametric regression technique known as
penalised splines. The other area, reproducing kernel methods, are founded primarily in the
Machine Learning literature, and have been used in a broad range of applications. This
chapter builds a bridge between these two sets of literature.

The main stimulus for the emergence of penalised spline research was Eilers and
Marx (1996), while another key reference is Hastie (1996). The essential underlying ideas
have been around for much longer, such as those given in Schoenberg (1969); Parker and
Rice (1985) and Wahba (1990, Chapter 7). The focus of this penalised spline research is
the generalisation of ordinary smoothing splines to knot sequences different from, and
usually much smaller than, the observed predictor variables. Hastie (1996) and Marx
and Eilers (1998) illustrated the benefits for additive models. Brumback, Ruppert and
Wand (1999) identified simple mixed model representations which allowed, for example,
straightforward incorporation of longitudinal data into nonparametric regression. Other
developments include simpler incorporation of measurement error (Berry, Carroll and
Ruppert, 2002) and geostatistical data (Kammann and Wand, 2003). Much of the work
on penalised splines up until about 2002 is summarised in the book by Ruppert, Wand
and Carroll (2003).

A major stimulus in the emergence of both support vector machines and reproducing

kernel methods was Boser, Guyon and Vapnik (1992), with Cortes and Vapnik (1995) being

IThis chapter is based on the publication: Pearce, N. D. and Wand M. P. (2006). Penalized Splines and
Reproducing Kernel Methods. The American Statistician, 60, 233-240.
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another key reference. An essential idea behind the early development of the support
vector machine, margin maximisation, is much older, with Vapnik and Lerner (1963) and
Wahba (1969). Around the same time, with Aizerman, Braverman and Rozonoer (1964),
reproducing kernel methods were researched. The support vector machine has since
blossomed into a huge literature, and has been the main catalyst for what have become
known as reproducing kernel methods, or simply kernel methods, in machine learning. These
titles should not be confused with kernel smoothing methods in the nonparametric

regression literature (e.g., Wand and Jones, 1995).

A comprehensive overview of reproducing kernel methods is provided by Burges
(1998); Evgeniou, Pontil and Poggio (2000); Cristianini and Shawe-Taylor (2000);
Schélkopf and Smola (2002); Berlinet and Thomas-Agnan (2004) and Steinwart and
Christmann (2008). Before the emergence of support vector machines, reproducing
kernel methods were prominent in the nonparametric regression literature as a frame-
work for smoothing spline methodology, as summarised in Wahba (1990). However, the
adoption of these ideas by the machine learning community has widened the scope of

reproducing kernel methods considerably.

This chapter shows how penalised splines are embedded in the class of reproducing
kernel methods and thus builds a bridge between these two bodies of research. Re-
producing kernel representation of penalised splines is relatively simple compared with
smoothing splines representation. It is envisaged that support vector machine research
has the most to gain from this connection. The reduced knot aspect of penalised splines
allows for big savings in computational complexity, as we explain in Section 2.7. This
last feature is particularly relevant since sample sizes in classification applications are
subject to continual increase. In addition, much of the support vector machine research
is done within the machine learning discipline, and largely oblivious to many statistical
principles such as interpretation, model building, diagnosis, low-dimensional structure
and proper accounting for data dependencies. Kernels based on penalised splines offer
the opportunity to incorporate some of these principles more straightforwardly than
commonly used kernels. Similar recent work has been done using the ideas of smooth-
ing spline analysis of variance; see Lin and Zhang (2006) and Lee, Kim, Lee and Koo

(2006).

An illustration of a support vector machine classifier which utilises low-dimensional
structure and is immediately interpretable is given in Figure 2.1. It arises from use of

additive model penalised spline kernels (Sections 2.5.3 and 2.7) to build a classifier for
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the "spam' data, described in Hastie, Tibshirani and Freidman (2001), with spam e-
mail messages coded as +1 and ordinary messages coded as —1. Each panel shows the
slice of the classification surface for the labelled predictor, with all other predictors set to
their medians. It is seen, for example, that frequency of the word "free" has a monotonic

effect on classification while frequency of exclamation marks (ch!) has a non-monotonic

effect.
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Figure 2.1. Visualisation of a penalised spline support vector classifierfor the “spam” data. Each
panel shows the slice of the classifier with all other predictors set to their medians. The tick-marks
show the predictor values: spam e-mail messages along the top, ordinary e-mail messages along

the bottom.

The next section provides a brief description of the simplest version of penalised
splines. Section 2.3 describes the basics of reproducing kernel methods. The link be-
tween these two concepts is laid out in Section 2.4. Various extensions are treated in
Section 2.5. Alternatives to reproducing kernel methods are given in Section 2.6. Sec-
tion 2.7 is devoted to the special case of support vector machines and advantages of the

penalised spline approach are explained. We close with some summary remarks for this
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chapter in Section 2.8.

2.2 Penalised Splines

For the moment we will consider only the regression situation where the observed data
are (x;,y;)) € RxR, 1 < i < n, and both variables are continuous. The simplest

penalised spline model is

K
yi = Po+Prxi+ ) u(xi — Kp) 4 + €. (2.1)
k=1

Here x; = max(0,x), 1, ..., kk are a set of knots over the range of the x;’s and the ¢; are
independent mean zero random variables with common variance o?. Fitting is typically
performed via penalised least squares:
n K 2 K
mind Y yi—Bo—Bixi— Y wm(xi—x)y | +AY ui (2.2)
Bu | iz k=1 k=1
where g = (ﬁg,ﬁl)T, u=(uy,..., uK)T, and where A > 0 is a smoothing parameter. The

smoothing parameter controls the trade-off between bias and overfitting.

A matrix formulation of (2.1) is
y=XB+Zu+e 2.3)

where

X =1 xili<icn, Z = [(% — &) +]1<i<n
1<k<K

and y and & contain the respective subscripted variables. Thus (2.2) becomes
. 2 2
min (|ly — X8~ Zul* + A ||u|*) (24)
Bu

where ||v|| = VoTv denotes the norm of the vector v. The solution is

B=(X"t7X)XTLly, a=Z"L!(y - Xp) (2.5)

with & = ZZ7 + AI. The notation of (2.3) suggests a linear mixed model and (2.5)

corresponds exactly to best linear unbiased prediction if u is treated as a random effects
vector with covariance matrix (02/A)I (Brumback et al., 1999).

While we use the term “penalised splines”, it should be pointed out that there are

several alternative names for what is essentially the same general approach. These

include low-rank splines, P-splines, pseudosplines and reduced knot splines.
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2.3 Kernel Machines

In this section, we provide definitions and some fundamental theorems of reproducing
kernel methods. This facilitates the kernel representation of penalised splines in the next
section, and representations called upon in later chapters. Reproducing kernel methods
are performed within the functional analytic structure known as a reproducing kernel
Hilbert space (RKHS). The theory of RKHSs was developed by Kolmogorov (1941) and
Aronszajn (1950). Contemporary summaries include Wahba (1990); Evgeniou, Pontil
and Poggio (2000); Schélkopf and Smola (2002) and Steinwart and Christmann (2008).
Of particular relevance to penalised splines are penalisations over subspaces that are
based on projection operators. Relevant background material on Hilbert space projection

theory may be found in Simmons (1963) and Berg, Christensen and Ressel (1984).

2.3.1 Review of Reproducing Kernel Hilbert Spaces

We start with some fundamental definitions and results, beginning with the following

definition.

Definition 2.1. Let X be a non-empty set. A function k: X x X — R is a kernel on X if
there exists a Hilbert space, H, and a map ®: X — H such that forall s, t € X,

k(s t) = (D(s), D(t))-
The map P is the feature map and 'H is the feature space of k.

It follows that a kernel k must be symmetric, that is k(s,t) = k(t,s) for all s, t € X.
Moreover, the function k(s,-): X — R has k(s,-) € H for all s € X. For a given kernel,
neither the feature map nor feature space are unique. We wish to determine whether a
function k is a kernel. It may not be straightforward to find a feature space and feature
map for the kernel. The following definition of a positive definite function is often

helpful in determining whether a function is a kernel.

Definition 2.2. A function k: X x X — R is called positive definite if it is symmetric, and
foralln € N, ay,..., 4y € Rand x1,...,x, € X, we have

iirx,a,k (xi,%;) > 0. (2.6)

i=1j=1

The n x n matrix, K, with entries k(x;, x]-), 1 <i,j < n,is called the Gram matrix.

For a function k being positive definite, the inequality in (2.6) is equivalent to the Gram
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matrix being positive semidefinite. The following theorem, given as stated by Steinwart
and Christmann (2008, Theorem 4.16), shows the equivalence between positive definite

functions and kernels.
Theorem 2.3. A function is a kernel if and only if it is positive definite.

We now have necessary and sufficient conditions for a function to be a kernel. In
particular, a kernel may be expressed as either as a positive definite function, or as an
inner product, with feature space and feature map. For a kernel, however, it remains
that the feature space and feature map are not unique. For an element x € &, a Dirac
functional é,: H — R is such that d,(f) = f(x). Thatis, y maps f € H to the value
f has at x. As a linear functional, J, is bounded if and only if it is continuous (e.g.,
Dudley, 2002, page 190). Making use of the Dirac functional, we have the following

fundamental definition.

Definition 2.4. A Hilbert space H is called a reproducing kernel Hilbert space over X if for
all x € X the Dirac functional d, is a bounded linear functional.

A well known result is that not only does every RKHS have a unique kernel, but
every kernel has a unique RKHS. This result is expressed in the following theorem,

proven by Aronszajn (1950) and attributed to E. H. Moore.

Theorem 2.5. Assume H is an RKHS over X, and k: X x X — R has the property
k(s,t) = (0s,0t)4,, foralls,te X.
Then H uniquely determines k, and k uniquely determines H.

Due to this uniqueness property, we can denote the RKHS by H;. Of all Hilbert
spaces, only for an RKHS does 6,(f) = 0 for all x € X imply ||f||,, = 0. The adjective

“reproducing” arises from the important result

(f k(,x))gy, = 0x(f) = f(x), forall f € Hy. 2.7)

In particular,
(k(s,-), Kk(t, )3, = (05, 0t) 9, = k(s,t), forallsteX.

A topological space is called separable if it contains a countable dense subset. If X
is separable, and k is a continuous kernel on X, then Hy is also separable (Steinwart,

2001).

The steps for a separable RKHS construction from k are:
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Name k(s,t)
Linear sTt
Polynomial (1+sTe)

Gaussian exp(—7lls — t||?)
Laplacian  exp(—7lls — t||)

Table 2.1. Examples of commonly used kernels with input space X = R?. We have v > 0 and
I eN.

i) Determine the eigen-decomposition of the kernel, k(s, t) = ): _oAii(s)¢;(t), with
{9 € NU}. This series is assumed to be well-defined (e.g., uniformly conver-

gent).

ii) Define the pre-Hilbert space (i.e., an inner product space), He, of real-valued

functions on AX’:

q q
Hpre = {f f = Za](l)], such that EHIZ/A] < 00} .
j=0

j=0

it) Endow Hp,e with the inner product

q q q
<Z(:) a;¢j, Z(:) "}‘Pf> =) aja;/A}.
j= j=

Hyre 170
iv) Complete the pre-Hilbert space.

A more general construction, allowing for non-separable RKHS, is given by Steinwart

and Christmann (2008). Trivially, the RKHS norm of f = Z?:o ajp; in Hpye is

1fllg, = /O o, = ( Zaz/}\ )"

We will see that penalised splines give rise to separable, finite dimensional RKHSs.
Examples of kernels on R? are given in Table 2.1. Linear and polynomial kernels have
finite dimensional RKHSs. Gaussian and Laplacian kernels have separable RKHSs; ex-
plicit descriptions of their RKHSs are given by Bach and Jordan (2002) and Steinwart,

Hush and Scovel (2006).
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Name y L(a,b)
Squared error R (a—b)?
Absolute value R la — b|
e-insensitive R (la—bl—€)+
Heaviside {11} Iap<o) + 31 (ap—0)
Bernoulli log-likelihood {-1,1}  log(1+e%)
Hinge loss {-1,1} (1—ab)y

Table 2.2. Examples of commonly used loss functions, together with appropriate closed domains.

We have € > 0 and (b)+ = max(0,b).

2.3.2 Loss Functions and Objectives

For regression and binary classification tasks, we wish to find a function? f: & = R,
so that f(x) is a prediction of y at x. We measure how good such a predictor is at x

through the loss function.

Definition 2.6. Let Y C R be closed. A loss function on Y is a function L: Y x R — [0, 00).
The loss function is (strictly) convex if L(y,-): R — [0, 00) is (strictly) convex forally € Y.

We would interpret L(y, f(x)) as being the cost, or loss, of predicting y by f(x).
A small L(y, f(x)) is preferred, indicating that a good prediction of y at x has been
made. Some examples of common loss functions are given in Table 2.2. The most
commonly used loss function is the squared error loss. The choice of loss can be made
in consideration of the model application.

Empirical risk minimisation (ERM) over H; involves the directly minimising the aver-
age loss over the observed data,

min {1 iayi,f(x,-))} . 2.8)

feH | N =1

For many loss functions, ERM is an ill-posed problem (Tarantola, 2005). It is not clear
if even such a minimiser exists. For strictly monotonic loss, such as the Bernoulli log-
likelihood loss, it is well known that there are data sets for which there is no empirical

risk minimiser. A characterisation of such data sets is given by Silvapulle (1981) and

2Broader functional forms would encompass instances such as multiclass classification (e.g., Lee, Lin
and Wahba, 2004; Zhu and Hastie, 2005) and unsupervised learning (e.g., Steinwart, Hush and Scovel,
2005).
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Albert and Anderson (1984). We now provide a more general characterisation of the

existence of an empirical risk minimiser.
Theorem 2.7. Let L be convex. Then there exist some f € Hy such that:

i) f(x;) >0 for all L(y;,-) not monotonically decreasing,
i) f(xi) <0 forall L(y;,-) not monotonically increasing, and

iii)  f(x;) # 0 for some L(y;, -) strictly monotonic,
if and only if there does not exist an empirical risk minimiser over Hy.

The proof of Theorem 2.7 is given in Appendix 2.A.1. For convex loss functions such
as squared error, e-insensitive and hinge loss, L(y,-) is not strictly monotonic for all
y € Y. As a consequence of Theorem 2.7, for each of these losses, a fit to the ERM exists.

For non-convex loss, the resulting ERM optimisation in (2.8) may be NP-hard. In
particular, for Heaviside loss, minimising the ERM is NP-hard (Minsky and Papert,
1988). The hinge loss serves as a convex upper bound for the Heaviside loss. ERM with
hinge loss then gives an upper bound to ERM with Heaviside loss, and ensures that the

minimisation problem is tractable (Lin, Lee and Wahba, 2002).

2.3.3 Regularisation and Representation

In practice, ERM can lead to overfitting. The fit may follow the data too closely, and
extrapolate poorly to new observations. It is a standard procedure to minimise the
empirical loss and squared RKHS norm of the fit. The trade-off is controlled by a
smoothing parameter, A > 0. A fit over H;, with respect to (x;,¥;),1<i <n, L and A, is

any solution to

min {i__'flz(yi,f(x,-)) v AIIfII%k} . 9)
Such a combination of loss and RKHS norm penalty is known as a kernel machine. Dis-
covered by Cortes and Vapnik (1995), the use of hinge loss in (2.9) results in what is
known as support vector classification, while using e-insensitive loss results in support
vector regression (e.g., Drucker et al., 1997). Collectively, support vector classification
and regression are known as support vector machines. Kernel machines with squared
error loss (e.g., Suykens et al., 2002) include popular statistical methods such as krig-
ing (e.g., Cressie, 1993; Stein, 1999), smoothing splines (e.g., Wahba, 1990; Green and

Silverman, 1994) and additive models (e.g., Hastie and Tibshirani, 1990). Recently Zhu
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and Hastie (2005) explored the use of binomial log-likelihood loss in the kernel machine
framework and coined the term kernel logistic regression.
The following theorem is often useful when fitting a kernel machine, and was first

shown for least squares loss by Kimeldorf and Wahba (1971).

Theorem 2.8 (Representer Theorem I). Let f be a fit over Hy. Then f admits a representa-
tion of the form

flx) = i’,cik(x, X;). (2.10)
i=1

forsomec; € R,1<i<n.

The representation of the fit in (2.10) is known as the dual form of the solution. The
c; are dependent on the data and the choice of £ and A. A corollary for the uniqueness

and existence is given by Steinwart and Christmann (2008, pages 168 and 201).

Corollary 2.9. If the loss is continuous, then a fit exists. If the loss is convex, then any fit is

unique.

Even though the fit may be unique, the choice of cy,...,c, in the dual form need
not be. The “kernel trick” is that we do not need to calculate the eigenfunctions of k in
order to find the dual form. The kernel trick is a popular theme in kernel methods, and
has allowed many linear algorithms to be easily converted into non-linear algorithms
(Scholkopf and Smola, 2002). The corresponding primal form of the solution is a linear
combination of the eigenfunctions. When the eigenfunctions are easily calculated, as
with the linear kernel, the primal form may offer a simpler and more intuitive form of
the solution.

It is often desirable that certain functions in Hy are unpenalised. Let H, be such a
subspace of Hj for which penalisation is not desired. Mathematically, this means that
fits over Hy are found by empirical risk minimisation. Let H; = Hg be the orthogonal
complement of Hp in Hj, so that Hy = Ho & Hi. The projection operator P;: Hy — Hy
denotes the orthogonal projection onto H;. It can be shown (e.g., Aronszajn, 1950) that
Ho and H; are reproducing kernel Hilbert spaces in their own right, with kernels kg
and k; such that ko + k; = k. With respect to the null space Hj, loss function £, and
smoothing parameter A, we define fits according to

- 2
min { 2 £l f () + 4 IlPlfllm} . @11)
The following theorem and corollary show the representation and uniqueness of fits

(Kimeldorf and Wahba, 1971; Schélkopf, Herbrich, Smola and Williamson, 2001).



2.3 Kernel Machines 15

Theorem 2.10 (Representer Theorem II). Let f be a fit over H; with respect to null space
Ho = span{yy, ..., ¢,}, with H; = Hy . Then f admits a dual representation of the form
p n
x) = E,Bil[)i(X) + Ecikl (x, xl-)

i=0 i=1
forsome B; € R,0<i<pandc;c R, 1<i<n.
Corollary 2.11. If L is convex then P, f is unique. If L is strictly convex, then f(x;) is unigue
forany 1 <i < n. Furthermore, if the n x (p + 1) matrix [;_1(x;)]1<i<n has rank p + 1, then

1<j<p+1
f is unique.
Corollary 2.11 shows sufficient conditions for the uniqueness of a solution. The
corollary does not imply the existence of a solution. From Kimeldorf and Wahba (1971)

we know that a solution to (2.11) exists for squared error loss. For convex loss, we now

present necessary and sufficient conditions for the existence of a fit.

Theorem 2.12 (Existence of a solution). Let L be a convex loss. Then there exists a fit with

respect to null space Hy if and only if there exists an empirical risk minimiser over H.

A proof of Theorem 2.12 is given in Appendix 2.A.2. Theorem 2.12 shows the exis-
tence of a solution to the projected RKHS minimisation (2.11) is equivalent to existence
of the empirical risk minimiser over the null space (2.8). For squared error, e-insensitive
and hinge loss, amongst others, the existence of a solution is guaranteed.

Following Wahba (1990, Chapter 10), we consider changing of the norm of the
Hilbert space. For RKHS Hy = H; & --- & 'H,, let Hp be an RKHS, and L: Hy — Hyp a
linear operator, such that for all f € H; and x € X

f(x) = Lf(x) and |ILfll3, = AulIPfll7g + -+ A [IPef 3, -

Then the kernel of Hy is given by k'(s,t) = Yi_;kj(s,t)/A;. This fact leads to the
following theorem of Wahba (1990, page 128).

Theorem 2.13 (Representer Theorem III). Let Hy = span{ty,..., ¢}, and Hy,..., H,
be mutually orthogonal with Hy = Ho @ --- & H,. Furthermore, let P;: Hy — Hy be the

projection onto H;, with smoothing parameter A;, for all 1 < j < q. Then, any minimiser of

2
fe’Hk {ZE yir f(x:)) + A1 ”Plf”’}ik Ay ||Prf||71k} /

admits a representation of the form

x) = iﬁilpi(x)‘*‘iai {ik, X, %)/ A; }
i=0 i=1

j=1
forsome B € R,0<i<panda; €R,1<i<n
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We require the set {Ho,...,H,} to be mutually orthogonal. If the set were not
orthogonal, H = Ho & --- @ H, would be a Hilbert space, though would not be an
RKHS. By the combination of Corollary 2.11, Theorem 2.12 and Theorem 2.13, we have
a characterisation of the representation, uniqueness, and existence of a fit to the kernel

machine.

24 Reproducing Kernel Representation of Penalised Splines

We now show how penalised splines are a special case of reproducing kernel methods.
In particular, penalised splines correspond to a finite dimensional RKHS. Here we
explicitly lay out the reproducing kernel representation of penalised splines with its
terminology and notation. This is very worthwhile as, for example, it allows exponents
of penalised splines to see how their various principles (e.g., additive modelling) can be
extended to other settings such as support vector classification.

Consider the setting of Section 2.2 with pre-specified knots «,...,kk. The kernel

that allows penalised splines to be set within an RKHS framework is
K
k(s,t) =1+st+ Y (s —#x) 4 (t — rx)+-
k=1

The eigenfunctions are, trivially,
¢o(x) =1, ¢1(x) = x, Prr1(x) = (x —#)4, 1<k <K

with eigenvalues 79 = 71 = -+ = 7k+1 = 1. As such, the eigenfunctions also form an

orthonormal basis. The RKHS is

K
Hi = {f:f(x) :ﬁ0+ﬁ1x+zuk(x_xk)+}

k=1

with inner product

k=1 k=1

K K K
<ﬁo +Bix+ Y we(x — x4, Bo+Brx+ Y u(x — Kk)+> = BoBo + B1B1 + Y wiu.
Hy k=1

In particular,

113 = NBIZ + [l

The penalised spline RKHS is a particularly simple Hilbert space in that it is finite-
dimensional and isomorphic to RX*2, This means that projections in H; correspond to

familiar Euclidean projections of the coefficients, as illustrated in the next paragraph.
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For penalised splines the subspace of unpenalised functions is the linear component

Ho={f: f(x) = Bo+ B1x}

and the orthogonal complement

o = HO_{ )= $ e }

is the spline basis function component. The projection of f € H; onto H; is given by
(ﬁo+,81x+2uk (x — Ky) > E”k X — Kg)4
k=1

and, hence, ||Pif||3, = |lu||>. Therefore (2.11) is equivalent to (2.4) for squared error

loss. For more general loss, (2.11) reduces to

rglun{xﬁ Yi, (XB+ Zu); )+/\||u||2}.

Define X, = [1 x] and Z, = [(x — 1)+ -+ (x — kk)+]. Then the primal form of the
solution is f(x) = XyB + Z,# while the dual form is f(x) = ¥, G( XX + Z;Z)) for

suitable ¢;, 1 < i < n.

2.5 Extensions

Sections 2.2 and 2.4 only considered penalised splines for scalar predictors and trun-
cated line basis functions. However, as shown in this section, the reproducing kernel
representations apply for general penalised spline models such as those involving other

spline basis functions, higher dimensional smoothing and additive structure.

2.5.1 Other Spline Basis Functions

For x € R, general penalised spline models can be written as
f(x)=XB+ Zxu (2.12)

where X, = [1 x - - - x”] for some p > 0 and Z, is a set of spline basis functions. Without
loss of generality, the penalty on u can be taken to be ||x||* by appropriate transformation
of the functions in Z,. Beyond the truncated line model (2.2) the simplest basis is

Z. = [(x—x)i ],
1<k<K
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corresponding to truncated polynomials of degree p. For numerical stability reasons, it
is usually advantageous to linearly transform the truncated polynomial basis functions
to, say, B-spline basis functions (e.g., Eilers and Marx, 1996). A suitable adjustment
needs to be made to the penalisation component.

Another family of bases is that corresponding to thin plate splines (French, Kam-
mann and Wand, 2001) and takes the form X, = [1 x --- x™!] and

zZ, = [|x - xk|2m_1] 01?2, o= [|Kk — Kk/|2m_1] .
1<k<K 1<k, k'<K

These have an advantage of simple extension to higher dimensional x (Section 2.5.2). At

this level of generality, the appropriate kernel is
k(s,t) = XX + Z,Z],

and the RKHS representation of (2.12) ensues.

2.5.2 Higher Dimensional Predictors

There are a number of ways by which spline basis functions can be extended to ac-
commodate higher dimensional predictors. For example, the extension of the thin plate

spline bases for x = (x1,...,x4) € R?is
f(x) =XxB+ Zxu

where the columns of X, consist of all d-dimensional polynomials in x;,...,x; with

degree less than m and

Zy = [tma (| — &) Q72 Q= [ra (|5 — 50 |))]
1<k<K 1<kk'<K

with

@ x2m—d, d odd,
YimdlX) =
x?m~dlog(x), d even,

(e.g., Green and Silverman, 1994). For s, t € R? the appropriate kernel is

k(s,t) = X X{ +Z:Z].

2.5.3 Additive Models

For two predictors x1 and x, the linear penalised spline model is of the form

y; = f(x1i, X2i) + &
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where
Kl KZ
f(x1,x2) = Bo+ Brx1 + Y une(x1 — Kui)+ + Paxa + Y umk (%2 — Kox) 4« (2.13)
k=1 k=1
The fitting criterion is
. 1 2 K, K>
min E (i — f(x1, x21))" + My E u + A 2 u%k} , (2.14)
Bjiua | i3 = =

where A; and A; are, respectively, smoothing parameters for variables x; and x;.
Let Ho, H1 and H; respectively denote the reproducing kernel Hilbert spaces gener-
ated by the kernels

K;
ko(s,t) =1+s"t, ki(s,t) =Y (s1 — xu)+(t1 — K1)+,
k=1
K>
and kz(s, t) = E(Sz — K2k)+(t2 — KZk)-H
k=1

where s = [s1 57]T and ¢ = [t; t;]7. Then
Hy = Ho® H1® H>

is the RKHS generated by k = ko + k1 + k2, with Hy, H; and H, mutually orthogonal
subspaces of Hy. For f € Hy let P f denote the projection of f onto H;. Then, using the
notation of (2.13),

K, K,
Pif(x;,x2) = ) une(x1 —xie)+ and  ||PifllF, = Y udy.
k=1 k=1

The projection operator P, is defined analogously and (2.14) may be written as

min {i (yi — f (x1i, %21))> + M| Puf12, +/\2”P2f”%'{k} '

feHy | i3

For general loss functions the criterion is

min {z L(yis f (x10,%21)) + MIPLf By, + Az||sz||%k} -

f €Hy i=1
The extension to other basis functions and several predictors is straightforward. The

same applies to additive models with higher dimensional components (e.g., Kammann

and Wand, 2003).

2.5.4 Semiparametric Regression Models

General semiparametric regression models contain both smooth functional (nonpara-

metric) and ordinary linear (parametric) components. The simplest is

Yi=PBo+Bzzi+ f(x;) + &
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which is often referred to as a partially linear model. If f has representation (2.12) then

the appropriate kernel is k = ko + k; where
ko(s,t) = Xle,I + sty and k(s t) = ZSIZI,

s = [s152]" and t = [t; t5]T. Let Hy and H; be the reproducing kernel Hilbert spaces
generated by ko and ki, respectively. Then Hy = Ho @ H; and the problem takes the
same form as (2.11) with null space Hj.

2.5.,5 Varying Coefficient Models

With varying coefficient models (Hastie and Tibshirani, 1993), we have both predictor
variable, x € R, and modifying predictor variable s € R. With varying coefficient
models, we assume that for fixed predictor variable, the model is linear in terms of the

modifying predictor variable,
yi = a(si) + B(si)xi + €.

The intercept coefficients, «(.) and slope coefficients, (.), are functions of the modifying
predictor variable, s. With a penalised spline form for both intercept and slope, the

penalised spline version of the model is

vi = f(si,xi) +&
where
K K>
f(s,x) =ao+arx+ Y uf(s — )4 + (50 +p1s+ Y, uf(s - Kk)+> X.
k=1 k=1

Penalising the spline terms, the representation y = XB + Zu + ¢ is obtained by setting

X = [1s; xi siXi|1<icn» Z = [(Si —Kk), Xi(8i— Kk)+]
1<k<K 1<k<K  J1<i<n

we find the appropriate kernel is k = ko + k; where

ko(s,t) = XletT1 + sty and kq(s,t) = ZSIZI.

2.6 Alternative Penalties

Aside from squared RKHS regularisation, we have also considered empirical risk min-
imisation (2.8). Examples of empirical risk minimisation include ordinary least squares

and linear quantile regression (e.g., Koenker and Park, 1996). Typically g is small and
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fixed. Empirical risk minimisation is a special case of the projected squared RKHS norm
penalty (2.11). Empirical risk minimisation is obtained either through the projection
operator projecting everything to 0, or more simply, allowing A = 0. There has been
a considerable amount of research on regularisation penalties. This section considers

several alternatives to the squared RKHS norm.

2.6.1 A Generalisation of the RKHS Norm

More general than the squared RKHS norm penalty is the penalty term Q (||||%, ), where
Q1: [0,00) — R is a strictly monotonicly increasing function (Schélkopf and Smola, 2002).
This more general form can be seen as reparameterisation of A. Suppose that f is a
solution to the optimisation problem with penalty term Q (||||#,). It is seen that fis
also a solution to the representation in (2.9), for some A € [0, o] (Scholkopf and Smola,

2002, page 90).

2.6.2 ['-norm Penalty

An alternative to the RKHS norm is the I'-norm penalty (Tibshirani, 1996; Cristianini
and Shawe-Taylor, 2000; Antoniadis and Fan, 2001; Koenker, 2005). Here we restrict
ourselves to the finite dimensional case. Where f = E?:o aj¢j, with p < ¢, the I'-norm

penalty is
n 9
min {Eﬁ(yi,f(xi)) +/\Z|aj|} . (2.15)

= oa¢; (i=1 j=p+1

The I'-norm penalty appears to be particularly useful when there are a large number
of irrelevant variables (Tibshirani, 1996; Candes and Tao, 2007). An attractive computa-
tional aspect of the I'-norm penalty is that if £ is piecewise linear, then the minimisation

in (2.15) results in a linear program (Zhu, Kosset, Hastie and Tibshirani, 2004).

2.6.3 [P-norm Penalty

Consider the following optimisation problem

min {ic(}/i,f(x,-)) +A (|a0|p 4+ 4 |aq|p)l/p}’

=299 (i=1

where p > 1. With p = 1, we obtain the I'-norm penalty as given directly above. If we

take p = 2, we obtain the RKHS norm, that is, () (a) =a, fora > 0.
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2.6.4 Banach Space Penalty

We have seen in Section 2.3 that an inner product space can be developed into a Hilbert
space. The squared norm of an element in the pre-Hilbert space is then given by the
inner product, (f, f) = ||f ||3ik Although we have shown that many penalised spline
formulations may be expressed making use of the Hilbert space norm, the use of the
Hilbert space norm is restrictive in that the squared norm must be an inner product.
Banach spaces are defined as complete normed vector spaces. This requires a set of
functions, {¢o, ¢1, ...}, together with some norm, |-|| 5. For suitable choices of ||-||z, we

have the optimisation

min { nl L{yi f(x:)) + A ||f||3} :

feB | =
The Banach space norm penalty subsumes the [P-norm penalty, amongst others. The
completion of the Banach space does not in itself ensure that the minimum exists for
infinite dimensional case. In practice the squared RKHS norm penalty is, however, the
more common choice. The squared RKHS norm penalty also subsumes many alterna-

tives, for example Wahba (1990) and the splines of Section 2.5.

2.7 Support Vector Classifiers

Squared error and likelihood-based losses (e.g., logistic, Poisson) for penalised splines
have received a great deal of attention in the literature (e.g., Eilers and Marx, 1996; Rup-
pert et al., 2003). In this section we focus on the case of hinge loss, £(a,b) = (1 —ab),,
corresponding to support vector classifiers. In addition, we will focus on the situation
where the sample size n is much larger than the dimension of the predictors d. The
reverse situation, sometimes called high dimension/low sample size, has been the sub-
ject of a great deal of attention in the recent literature; especially due to the advent of
microarray gene expression data (e.g., Dudoit, Fridlyand and Speed, 2002; Liu, Lin and
Ghosh, 2007). Penalised splines seem to be more advantageous for the classical n > d
situation.

We consider the generalisation of the two-component additive model described in

Section 2.5.3 corresponding to x; € R%:

L
f(x,-) = (Xﬁ + Zu)l- = (Xﬁ+ 2 Zgllg) (2.16)

/=1 i

for design matrices X, Z = [Z;, ..., ZL], where each subvector u, has its own smoothing
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parameter. The criterion to minimise is then

n

L
Y (1 —yif(x), + ¥ Aclluell?, 2.17)
/=1

=1

~.

where y; € {-1,1}. Note that (2.13) and (2.14) correspond to the situation where
d=L=2,

X =[x xihcicn and Z=[21 2] = [(xlz' — K1)+ (%2 — sz)+} o
1<k<K,; 1<k<K, 1<i<n

While this example involves two univariate smooths, it should be noted that higher-
dimensional smooths can also be accommodated by (2.16) and (2.17) (e.g., Kammann
and Wand, 2003).

Unlike least squares loss and Bernoulli log-likelihood loss, hinge loss is usually han-
dled via Lagrangian optimisation methods. A summary is provided by Chapter 5 of
Cristianini and Shawe-Taylor (2000). See also Section 12.2 and 12.3 of Hastie (1996).

Minimisation of (2.17) is equivalent to the constrained optimisation problem
min (Lo Adllwel® + T 1)

subjectto &; > 0, y;(Xp+Zu); >1—¢;, foralll <i<n.

The Lagrangian primal function is

L n n n
Lp =Y Adlluel® + Y & — Y ai{yi(XB+Zu)i — (1 - &)} — ) uéi (2.18)

i=1
where «;, 7; > 0 for all 1 < i < n. Setting the derivatives of Lp with respect to B, u, and

¢i to zero results in the equalities
X" (a0y) =0, up=(2A)"'Z](aOy), 1<f<L;and 5=1-w;, 1<i<n,

where here, and subsequently, A ® B denotes the element-wise product of equal-sized

matrices A and B. Substitution into (2.18) leads to the Lagrangian dual function

Lp=1"a—3a"Da where D=3(yy")® (ZAT'Z") (2.19)
and A = diag(M1,- - -, AL1). The fitted &; values are then found by solving the quadratic
programming problem

min (3&"Da —17a)
* (2.20)
subjectto 0 < a; <1, forall1<i<n, and X' (¢ ®y) = 0.

The Karush-Kuhn-Tucker constraints include

ai[yi(XB+Zu)i— (1-3;)] =0, 5 =0 and y;(XB+Zu);i—(1-3;) >0
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foralll <i<n.

Let & be a solution to (2.20). The fitted u is then
U= %A‘IZT(& OY).

A fitted value for B is often determined by the non-bounded support vectors. These
are given by {x; : 0 < @; < 1}. Let M be the set of 1 < i < n such that x; is a non-
bounded support vector. For eachi € M, QA‘, = 0 and from the first Karush-Kuhn-Tucker

constraint we obtain the set of equations:
(XB)i = (1/y;) — (Zu); = (y — Zu);, i€ M. (2.21)

(the last equality follows from y; € {—1,1}).

If p is the length of B and m is the cardinality of M then (2.21) represents a system
of p unknowns with m linear equations. Most of the support vector machine literature
only treats the case p = 1, corresponding to an unpenalised intercept. For the case
p = 1, Cristianini and Shawe-Taylor (2000) solve for B = Bo using an arbitrary margin
point, Hastie (1996) recommends averaging over all m margin points, while Hush, Kelly,
Scovel and Steinwart (2006) recommends choosing By in order to minimise the primal
(2.17). The system of linear equations can be both over-specified and under-specified.
Hastie et al. (2004) gave extensive treatment to the under-specified case with p = 1. For
general p our current recommendation for obtaining B is to minimise the primal, and

then to minimise || Pof |5, . That is,
n n
mgn B'ZZ"B, subjectto Y L(yi, (XB+ Zi);) = argmin Y L(yi, (XB' + Zi);).
i—1 g =1

We note that many quadratic programming algorithms will implicitly or explicitly find
a fitted value E These include, for example, Platt (1999); Fine and Scheinberg (2001);
Scheinberg (2006) and Ormerod, Wand and Koch (2008).

The bulk of the computation is concerned with the solution of (2.20). For penalised
splines kernels (2.19) shows that the Gram matrix K = [k1(xi, %j)]1<ij<n @dmits the

factorisation
K=2ZA1Z" = {ZA 2} {zA /2T

and thus has rank bound above by the number of columns in Z. Fine and Scheinberg
(2001) describe interior point algorithms that take advantage of such low-rank kernels.
The algorithms involve O(nK?) operations per iteration, where K is the rank of the Gram

matrix and corresponds to the number of columns in Z for penalised splines. For fixed
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K, the number of iterations required for termination is typically sub-linear in n. Since
full-rank kernels are O(n®) this can result in large computational savings when apply-
ing interior point methods in the n > K situation. Figure 3 of Fine and Scheinberg
(2001) illustrates a more than 20-fold improvement in computation time for a particu-
lar example. There are also big reductions in storage when compared with full-rank
interior point algorithms. Under looser convergence criteria than those typically used
for interior point methods, there are algorithms that have faster rates of convergence.
Joachims (2006) gives a cutting-plane algorithm that involves only O(nK) operations in
total for convergence. Although the convergence criteria is not as strict as that used
by Fine and Scheinberg (2001), it is the first solver to achieve O(nK) convergence. For
full-rank kernels, O(n?) convergence to an approximate primal solution was achieved
by Hush, Kelly, Scovel and Steinwart (2006). Large computational savings may be made
using Joachims (2006) cutting-plane algorithm in the n >> K situation. Low-rank ker-
nels for support vector machines have also been studied by Smola and Schélkopf (2000);
Williams and Seeger (2001) and Ormerod, Wand and Koch (2008).

The significance of low-rank kernels in machine learning and related fields such as
data mining and bioinformatics cannot be overstated. Sample sizes tend to be constantly
on the increase in applications, and algorithms with O(nK) operations will become a
necessity. Penalised splines are inherently of this order without significant losses in

accuracy.

2.7.1 “Skin of the Orange” Example

We tested additive penalised spline support vector classifiers on the “skin of the orange”
simulation settings described in Section 12.3.4 of Hastie et al. (2001). Table 2.3 is mostly
a reproduction of their Table 12.2 but with addition of classifier 7 — and lists the mean
misclassification rates from the simulation study (along with standard errors). Classifier
1 is a support vector machine with linear kernel. Classifiers 2—4 are support vector
machines with polynomial kernels of dimensions 2, 5 and 10 respectively. Classifier 5 is
BRUTO algorithm of Hastie and Tibshirani (1990) and classifier 6 the MARS algorithm
of Hastie et al. (2001). Based on ideas in the current chapter, classifier 7 is described in
the next paragraph. At the time of writing, data from the Hastie et al. (2001) simulation
study are available on the internet’® and classifier 7 was applied to those data, making

the results directly comparable. Note that the Bayes error for each setting is 0.029 and

3available at http://www-stat.stanford.edu/ ~tibs/ElemStatLearn/datasets/orange/
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represents a lower bound on the expected misclassification rate.

Classifier 7 involved the 4- and 10-dimensional extension of the truncated line addi-
tive model (2.13) with 20 knots in each direction. The matter of having a good choice
of smoothing parameters in the additive penalised spline classifier is non-trivial. For
now, we have made a relatively simplistic rule. We roughly mimicked the “4 degrees
of freedom per smooth function” default used in the S-PLUS function gam() (Chambers
and Hastie, 1991). For hinge loss the usual degrees of freedom definitions for penalised
spline additive models (e.g., Ruppert, Wand and Carroll, 2003, Section 11.4) are not
immediate due to its non-differentiability. We got around this by using the Bernoulli
log-likelihood loss as a rough approximation.

Table 2.3 shows that this “rough-and-ready” additive penalised spline support vec-
tor classifier performs quite well compared with the classifiers from the original study.
Classifier 5 (BRUTO) performs better than classifier 7 in both settings, but uses much
more sophisticated smoothing parameter and variable selection strategies. Classifier 2
performs better than classifier 7 when there are no additional noise features, but the
2-degree polynomial kernel is ideal for the spherical Bayes classification boundary of
this setting. It should also be mentioned that classifiers 1-4 had their smoothing pa-
rameters chosen for optimal performance using the test data; while classifiers 5-7 used
data-driven rules for smoothing parameter selection, and possibly variable selection,

using only the training data.

2.8 Discussion

The connection between penalised splines and reproducing kernel methods has the po-
tential to be very fruitful. As is made clear in Section 2.7, support vector machines,
which are not seriously hindered by large sample sizes, are a major payoff from this
connection. It is also anticipated that many features of semiparametric regression in-
cluding variable selection, smoothing parameter selection, interpretability, robustness,
low-dimensional structure will prove to be beneficial in data mining and machine learn-
ing applications. The simple structure of penalised splines will aid research in this
direction.

Some of the properties of RKHSs were presented in Sections 2.3.1 and 2.3.3. We
have shown penalised splines to be related to the use of a special class of RKHSs. These
RKHSs are of finite dimension, and isomorphic to Euclidean space. Since Pearce and

Wand (2006), penalised spline support vector classifiers have been applied to a variety of



2.A Appendix 27

no noise features six noise features

classifier (4 dimensions) (10 dimensions)
1 SVC/orig. 0.450 (0.003) 0.472 (0.003)
2 SVC/poly. 2 0.078 (0.003) 0.152 (0.004)
3 SVC/poly. 5 0.180 (0.004) 0.370 (0.004)
4 SVC/poly. 10 0.230 (0.003) 0.434 (0.002)
5 BRUTO 0.084 (0.003) 0.090 (0.003)
6 MARS 0.156 (0.004) 0.173 (0.005)
7 SVC/add. pen. spline 0.095 (0.004) 0.123 (0.003)

0.029

Bayes error 0.029

Table 2.3. Mean (standard error of the mean) misclassification rates over 50 simulations for the
“skin of the orange” example. Classifiers 1-6 are described in Section 12.3.4 of Hastie (1996).
Classifier 7 is a support vector classifier with additive penalised spline kernel as described in

Section 2.7.

machine learning problems. Ormerod, Wand and Koch (2008) showed positive results

when compared with the use of Gaussian kernels.

2.A Appendix

There are proofs for two theorems in this chapter, Theorems 2.7 and 2.12. These two
theorems are related, and give necessary and sufficient conditions for the existence of a

minimiser.

2.A.1 Existence of an Empirical Risk Minimiser

Let us assume that H; has a finite dimensional eigen-decomposition, with eigenvectors

{0, ..., ¢4} For convex loss, £, let A: R7"! — [0, 00) be defined as
n q
A(0) =) L(yi, ) vjj(xi)). (2.22)
i=1 =0
Clearly, A is a finite sum of convex functions, and therefore a convex function itself. For

each f € span {¢o,$1,...,¢;}, we have f() = ):;.’Zoﬁjgbj(-), for some By,...,B; € R.

Therefore, .
A((Bos---,Bg) ") = X;ﬁ(yirgﬁj(f’j(xi)) = Z;,ﬁ(yirf(xi))-
i= j= i=

Let us make another definition (e.g., Rockafellar, 1970).
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Definition 2.14. A vector, v € R is called a direction of (strict) recession of A
if for all u € R, A(u+-v): R — [0,00) is (strictly) monotonically decreasing, i.e.,
h(-): R — [0,00) is (strictly) monotonically decreasing, where h(a) = A(u + av).

We now characterise the directions of strict recession of A.

Lemma 2.15. A vector, v € RI*! is g direction of strict recession of A if and only if

fG)= E?ZO v;;(-) has the properties

1) f(x;) >0 forall L(y;,-) not monotonically decreasing,
it)  f(x;) <0 forall L(y;,-) not monotonically increasing, and

iii)  f(x;) # 0 for some L(y;,-) strictly monotonic.

Proof. First, we assume that f satisfies the properties i)-iii). Let w € R" be an arbitrary
vector. Then, from properties i) and 7i), L(y;, w; +- f(x;)): R — [0, 00) is a monotonically
decreasing function for all 1 < i < n. From property iii), we then find L(y;, w; + - f(x:))
is a strictly monotonically decreasing function, for some 1 < i < n. On combining these,
we find Y, L(y;, w; + - f(x;)) to be strictly monotonically decreasing. Hence, v is a
direction of strict recession of A.

We now show the converse. Since loss functions have range within [0,00), we
have Y7 ; L(y;,0) < oo. If f does not satisfy property i) or ii), then for some
1 <i<n, L(y;- f(x;)) is not a monotonically decreasing function. As L is convex,
L(y;, tf(x;)) — o0 ast — oo, and v is not a direction of recession. Instead, if f satisfies
properties i) and i) but not iii), we find }i__; L(y;, - f(x;)) to not be strictly monotonically

decreasing, and hence v is not a direction of strict recession. O

Clearly, if such an f exists, there cannot be a minimiser; if g € span{¢y,...,$,}, then
Y L(yi, g(x:) > Yiiq L(yi,8(xi) + f(xi)). The converse is less clear; that if no such
f exists, that a minimiser does exist. The function A: R? — R U oo is called proper as
A(z) < oo for at least one z € R?. We have the following theorem of Rockafellar (1970,
Theorem 27.1 b, page 264).

Theorem 2.16. Let A be any proper convex function. Then a minimum of A exists if and only

if A has no directions of strict recession.

By Theorem 2.16 and Lemma 2.15, it is clear that an empirical risk minimiser exists,
for finite dimensional Hy, if and only if there does not exist f that simultaneously

satisfies properties i)-iii). We have however, relied on the assumption that Hy has a finite
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dimensional eigen-decomposition, as is usually the case for ERM. Consider the subspace
of Hy given by H = span{k(-,x1),...,k(,x»)}. Then H has a finite dimensional eigen-

decomposition. Moreover, if P: H; — M is the projection operator onto H,|, then
f(x,') = P”f(xi) forall 1 < i <n.

The ERM optimisation problem over Hy is then equivalent to

fEHn Eﬁ Yirf (31)

It is also clear that properties i)-iii) in Theorem 2.7 are equivalent to properties i)-iii) in
Lemma 2.15 with g = n — 1 and ¢;(-) = k(-,xj41) for all 0 < j < q. As such, for finite
or infinite dimensional RKHS, the conditions for the existence of an ERM are given by
properties 1)-iii).

2.A.2 Equivalence of Existence

Let us now prove Theorem 2.12. As given in Theorem 2.10, we know that if a fit exists,

that it has a representation of the form
p n
x) =Y Bipi(x) + Y ciki(x, x;), (2.23)
j=0 i=1

so that f(x;) = Z]}":o Biwi(xi) + (Kic);, where K; is the Gram matrix of k;. For v € R7*!

and ¢ € R", consider the function A, : R1T14" — [0, c0),
A, (:) = ic(yi,ji)v,-ﬂzp,-(x,-) + (Kie)i) + AcTKqc.
im =
We then have
Ax((Bos---/BgiCly- - sCn illﬁ vi, f +A||P1f||H ,

i=

where f is given in (2.23). Hence, any direction of recession of A, requires c¢"Kic =0,
equivalently (Kjc); = 0 for all 1 < i < n. The existence of a direction of strict recession
for A, is the same as existence of a direction of strict recession for A in (2.22). By

application of Theorem 2.16, the theorem is proved.






Chapter Three

Explicit Links Between Longitudinal Data

Analysis and Kernel Machines

3.1 Introduction

Longitudinal data is characterised by there being repeated measurements of individuals

over time.l

Such data sets abound in medical literature, where longitudinal studies
are a dominant fixture. Since the seminal work of Harville (1977) and of Laird and
Ware (1982), linear mixed models have been the mainstay of longitudinal data analyses.
The predominant distinguishing feature of linear mixed models, when compared with
linear models, is the dichotomisation of effects into fixed and random types. The fitting
of fixed and random effects differ in that the latter is subject to a degree of shrinkage,
or penalisation, dependent on the values of covariance parameters in the model. The
concept of best linear unbiased prediction appealingly accommodates the handling of
both types of effects (e.g., Robinson, 1991). Expositions on longitudinal data analysis,
including the role of linear mixed models, can be found in Diggle, Heagerty, Liang
and Zeger (2002); Fitzmaurice, Laird and Ware (2004); McCulloch, Searle and Neuhaus
(2008) and Verbeke and Molenberghs (2000).

The main goal of this chapter is to expose the commonalities shared by longitudinal
data analysis and kernel machines. We show, explicitly, that many popular longitudinal
fitting procedures are in fact special types of kernel machine. Their representation as
kernel machines offers some key benefits to the practitioner of longitudinal data analysis

as well to the practitioner of kernel machines. There are at least two potential payoffs

from such links:

i) The enrichment of longitudinal models to cope with non-linear predictor effects.

ii) The adaptation of kernel machine classifiers to account for within-subject correla-

tion when applied to longitudinal data.

IThis chapter is based the publication: Pearce, N. D. and Wand, M. P. (2009). Explicit Links Between
Longitudinal Data Analysis and Kernel Machines. Electronic Journal of Statistics, 3, 797-823.
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Sections 3.3.2-3.3.5 gives some details on 7). Sections 3.3.10-3.3.12 contains some illus-
trations of ii).

Some recent related work is Gianola, Fernando and Stella (2006) and Liu, Lin and
Ghosh (2007), each of whom combine linear mixed models with kernel machines to anal-
yse very high-dimensional genetic data-sets. However, neither of these papers deal with
regular longitudinal data analysis models. James and Hastie (2001) and Miiller (2005)
are examples of articles concerned with classification when the data are longitudinal.

The connections between longitudinal data analysis and kernel machines are not as
strong in the case of classification tasks. The next section gives a concise overview of
continuous response longitudinal data analysis. Section 3.3 forms the main body of
the chapter and gives an explicit case-by-case description of kernel machine represen-
tations of popular longitudinal data analytic models, as well as explaining some non-
linear (kernel-based) extensions. Generalised response models and kernel machines are

treated in Section 3.4. Concluding discussion is given in Section 3.5.

3.2 Gaussian Linear Mixed Model

In this section, and the following section, we suppose that the response variables are

Gaussian. In this case, the main vehicle for longitudinal data analysis is the linear

()

The use of (3.1) for longitudinal data analysis dates back to Laird and Ware (1982).

mixed model

u
y=XB+Zu+eg, [
€

Good summaries of estimation and prediction within this linear mixed model structure
may be found in, for example, McCulloch, Searle and Neuhaus (2008); Robinson (1991);
Ruppert, Wand and Carroll (2003, Chapter 4) and Verbeke and Molenberghs (2000). We
will just present the main results here.

For given covariance matrices G and R the the theory of best linear unbiased predic-

tion (BLUP) can be used to guide choice of B and u, and results in the criterion:
(y—XB—Zu) 'R (y—XB—Zu) +u' G 'u.
This is minimised by
Bor = (XTVIX)TIXTV Yy,

(3.2)
UgLup = GZTV_](y - XﬁBLUP)
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where V = Cov(y) = ZGZT + R. Expressions in (3.2) are known as the BLUPs of g and

u.

In practice, longitudinal data are fitted via the steps:

i) Estimation of G and R. Usually, these matrices are restricted to a parametrised
class of covariances matrices. Most commonly this is achieved though maximum
likelihood, or restricted maximum likelihood (REML), under the normality as-

sumption (3.1).

ii) Substitution of the estimated covariance matrices into (3.2). The resulting estima-

tors, E and #, are commonly known as estimated BLUPs, or EBLUPs for short.

The EBLUP phrase can be transferred to any linear function of B and #. Thus,
AP + Bii is the EBLUP of AP + Bu for any pair of matrices A and B for which AB + Bu
is defined. These two steps show a division into two types of estimation targets that
arise in longitudinal data analysis: the covariance parameters in the G and R matrices,
and the effects B and u. The strong connections between longitudinal data analysis and
kernel machines occur at the EBLUP step for estimation of the fixed and random effects.
For this reason, we will not dwell on the estimation of the covariance parameters, and
instead refer the reader to Pinheiro and Bates (2000). In further sections with Gaussian

response variables, the covariance parameters will be taken as given.

3.3 Explicit Links for Gaussian Longitudinal Analysis

In this section we show, explicitly, how longitudinal data analysis is connected to kernel
machine methodology. General kernel machines can be formulated in a number of ways.
Among the most common are: optimisation and projection within reproducing Hilbert
spaces (e.g., Kimeldorf and Wahba, 1971), maximum a posteriori estimation in Gaussian
processes (e.g., Rasmussen and Williams, 2005) and Tikhonov regularisation of ill-posed
problems (Tarantola, 2005). Due to its prominence in the Statistics literature (e.g., Wahba,
1990; Berlinet and Thomas-Agnan, 2004) we will use the first of these formulations.

We show that all longitudinal data analyses that use EBLUPs are actually just fitting
a special type of kernel machine. To make these connections clear, we first treat some

special cases of (3.1). We build up to complete generality in the later subsections.
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3.3.1 Random Intercept Model
The simple linear random intercept model is

yi=potphrxijtU+eg, 1<j<m, 1<i<m, (3.3)

where (x;;,y;;) € (R x R) is the jth predictor/response pair for subject i, and the &;; are
independent N(0,07) within-subject errors. The regression coefficients B9 and p; are

fixed effects, while the subject-specific intercepts
U; % N(0, 02),

are random effects.

Given estimates G2 and 02 of the variance components, the fitted line for subject i is
Bo+pPix+U, 1<i<m, (34)

where BO' 31 and the fIi are EBLUPs, as given by (3.2) with

(1 x| (100 -+ 0]
1 xim 100 0
1 xn 010 0
X=11 xm;m and Z=|(010 --- 0. (3.5)
1 xm;m 000 --- 1
|1 X, | (000 -+ 1]

Figure 3.1 shows the EBLUPs for data on longitudinally recorded weights of 48
pigs (source: Diggle, Heagerty, Liang and Zeger, 2002), with 02 and ¢? estimated via
REML. We now explain how (3.4) and the fitted lines in Figure 3.1 can be obtained as
a solution to an RKHS optimisation problem - thereby making them a special case of
kernel machines. In the following discussion, we assume that the estimates of ¢ and ¢?
have been obtained (either via REML, or some other means) and are equal to 2 and 2,

respectively.



3.3 Explicit Links for Gaussian Longitudinal Analysis 35

80
60
40
20

60

40

20
- 80
- 60

% - 40

- 20

A 80
60

40
20

e

- 60

- 20

1 Ir
2 4 6 8
number of weeks

Figure 3.1. The EBLUP-fitted lines to the pig-weights datafor the simple linear random intercept
model. The panels are ordered according to the size of the 48 pigs.

Let n = E/li arid re-subscript the (xij*ytj) and efy sequentially; i.e., according to

the map:
11), ..., 1), ..., (272), (m,1), oo )
1 i i eee i I (3.6)
1, ..., ni, ™M+ 1, .. "1+72, +

This leads to the representation
m

Vi= +h +E NilNj+ 1<i<
;=1
where Zfyis (/,;) entry of Z as given in (3.5) and is an indicator of {xi,yi) being mea-
surements for subjectj {1 < i < n, 1 <j < m). Next, form the RKHS of real-valued

functions on

- (3.7)

with kernel

kist) = k({Si,...,.Sm+]),{ti,....tm+])) = 1+Sifi + JASi+jti. (3.8)
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Note that, while H; is defined on the whole of IR™*1, its members of interest in longitu-

dinal data analysis are actually on:
R x (1,0,0,...,0) x (0,1,0,...,0) x (0,0,0,...,1) c R™".

Let
Hp = {f: f(x,21,-.,2m) = Po + Prx} (39)
be a subspace of H.

Theorem 3.1. Let (x;,yi, Zi1,---,Zim), 1 < i < n, be a sequentially subscripted longitudinal
data set. Consider the RKHS Hy given by (3.7) and (3.8), and subspace Hg given by (3.9).
Let P, be the projection operator onto H, = ’Hg. Then the solution to the RKHS optimisation

problem

n
min | Y {yi — f(x, Zit, - - Zim) 12 + A\ Puf I3, (3.10)
fer i

with A = 62 /G2 corresponds to the EBLUPs of (3.4). Explicitly, the solution to (3.10) is

o~

f(x,l,O,...,O) :Eo+/§1x+f11,

o~

f(x,0,1,...,0) = Bo+ B1x + U,

and f(x,0,0,...,1) = Bo + 1 x + Up,
where x € R, Bo, B1 and the U are given by (3.2) with G = 521, R = 621, and both X and Z
given by (3.5).

Proof. As Hy is finite dimensional, any f € H; may be expressed as

m
f(x,z1,...,2m) = Bo+ P1x + Z Ujzj,
j=1

so that
m
Puf(X,Zl,. ..,Zm) = EUIZ], and ||Puf(x,zl,...,zm)||§ik — ”u“2
j=1
Also,
vi — f(xi,2zi1, - - Zim) = (y — XB — Zu);,
so that

Y {i— f(xizin, - zim} = ly — XB — Zu|%.
i=1
The RKHS problem in (3.10) is then equivalent to
min (1/52)|ly — XB = Zu|* + (1/57) |ul®

which corresponds to EBLUP for the random intercept model. O
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3.3.2 Kernel based Extension to General Mean Curves

Note that the kernel for the simple linear random intercept model can be written as

k((slr~ . -/Sm+1)l (tlr X -rtm+1)) = kﬁ(sr t) +ku(5/t)

where k,(s,t) = E}":l $1+jt14+; corresponds to the random intercept structure in the
model, and kg(s,t) = 1+ s1t; corresponds to the population mean structure. More

general population mean structures can be obtained by
kﬁ(S, t) =ko(s,t) +ke(s t) = ko (s1,t1) + ke1(s1,t1)

for kernels kp;: R x R — R, and k;;: R x R — R. The kernel ko3 corresponds to
unpenalised functions, and typically kg;(s1,#1) = 1. We take k.; to be a kernel on
R x R. Examples include:
AR L i it
(I+7lsi—tl)exp(—7ls1 —#l)

where v > 0 is a kernel parameter. The later kernel is known as the Matérn ker-
nel (Matérn, 1960; Seeger, Kakade and Foster, 2008). [Each of these kernels have
infinite-length eigen-decompositions and result in an infinite dimensional, separable
RKHS. The kernel trick ensures that fitting and representation do not require an eigen-
decomposition.

Let Ho, H¢, and 'H,, be the RKHS generated by ko, k. and k, respectively. Then
Hy = Ho @ (Ho @ Hu)™ & H, (3.11)

is an RKHS. Moreover, if Hg and H, are orthogonal, then H, = (Ho ® H,)*, and Hy has
kernel k = ko + k. + k. Let P.: Hx — 'Hy be the projection operator corresponding to
projection onto (Ho @ Hu)*, and let P, be the projection operator onto H,,. Then a mean
curve, with random intercept shifts, can be fitted via the RKHS minimisation problem
. 2 2 2
min {; {vi = f(xi, Zits -, Zim) }* + Ac | Pef |3, + Au “PufH’Hk} , (3.12)
where A > 0 and A, = ¢2/0? are smoothing parameters. With multiple penalisations,
we consider the solution to a generalised RKHS minimisation problem. By the Repre-
senter Theorem, a solution to (3.12) admits representation of the form
f(x,z1,--,2m) = Bo + iai{kc((x,zl,. crzZm)y (X, Ziny -+ o Zim)) / Ac
=1 (3.13)
+ k(% 21, .., 2m), (X, Ziny - Zim) ) / A},
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where 4y, ...,a, € R. Substituting the representation of (3.13) into (3.12) then gives the

matrix criterion:

min [y — 180 — Kpal| + a"Kia, (3.14)
where K, is the n x n matrix with (i, j) entries
ke((xi, Zits -+ o) Zim), (%, Zj1s - oo, Zi) ) I Ac + k(%00 Zin, - - < 0 Zim), (%0 Zijts + -0 Zjm) )/ A
The matrix criterion is minimised by
Bo= 1TV 1)1V Yy,
a=V~'(y—1Bo),

where V=K, + 1.

We may express the representation in (3.13) in a more intuitive form, as
n m
f(X) = ﬁo + ZCikC(x, x,‘) + Z u,'Z,']',
i=1 i=1

where ¢ = a/A., and U = Za/A,. Such an expression delineates the within-subject
effects. The fitted values are for ¢ and # are given by ¢ = @/A. and # = Za/A,.
Explicitly, for x € R we have,
n
f(x,1,0,...,0) = Bo+ ;ak(x,xi) + 1,

n

f(x,0,1,...,0) = Bo+ Y Gk(x, x;) + Uy,
i=1

-~

n
and f(x,0,0,...,1) = Bo+ Z@k(x,xi) +{,.
i=1

It still remains to choose the kernel, which we now briefly address.

3.3.3 On the Selection of Kernel

For the longitudinal data analysis of the Section 3.3.2, the user is required to select a
kernel. There are a wide variety of choices that can be made for k. ;. A popular choice is
the Gaussian kernel, typically with some data-dependent parameter y. We briefly look
at the issue of selecting the kernel. To the analyse the properties of the kernels, and

classes of kernels, we have the following definition.

Definition 3.2. A subset of a vector space is called a cone if it is closed under multiplication by

positive scalars. The cone of a set, A, is the smallest cone containing A.
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We have the following lemma as an immediate consequence of the positive definite-
ness of a kernel (i.e., Definition 2.2).
Lemma 3.3. Let ki and ky be kernels, and A1, Ay > 0. Then A1k + Azks is a kernel.

Lemma 3.3 shows the set of kernels to be a cone. We now restrict these cones to
particular varieties of kernels. For example, the cone of the Gaussian kernels, Cggyss,

comprises all kernels, k, that can be expressed as

k(JC, x,) = /Oookt-Gauss(xr x')dy(t)
= [Cexp-t]x ~ ¥ [)ant),

for some measure y, where k;.G,uss denotes the Gaussian kernel with parameter t. The
following example shows that the cone of the Laplacian kernels lies within cone of the

Gaussian kernels.

Theorem 3.4. Denote by Crapiace and Cgayss the cone of Laplacian and Gaussian kernels respec-

tiUely. Then CLap[ace C CGauss.

Proof. For each y € [0, c0), we search for some function, g, : [0,00) — [0, 0], such that

/ kt,—Gauss (X, X')ga(t)dt = kyLaplace (X, ¥'), forall x,x’' € R,
0

where k, 1aplace denotes the Laplacian kernel, k. paplace(x, x') = exp(—7|x — x'|). Let

s = |x — x'|>. Then we have
/ e5tg ()dt = e~"F, foralls > 0. (3.15)
0

We recognise (3.15) as a Laplace transform. Inverting the transform (e.g., Korn and

Korn, 2000, Appendix D),

=2
N W
As g, is non-negative, we conclude that Crgpiace C Ciauss- O

Theorem 3.4 provides a helpful interpretation of the Laplacian kernel. We may sus-
pect that a Gaussian kernel is appropriate, though need to choose a value for 7. The

Laplacian kernel may be expressed as an integral over Gaussian kernels.

3.3.4 Extension to Additional Linear Predictors

Our final extension of the random intercept model involves the possible inclusion of ad-

ditional predictors, assumed to have a linear effect on the mean of the response variable.
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Corresponding to each y;, 1 < i < n, let xf a p x 1 vector of such predictors. Then we

should replace (3.11) by
Hk = HO & Hc v/ Hu

where each of these RKHSs are now on R™*?P+1 and
Ho={f: f(x',x,z1,...,2m) = [1 ()] B}

corresponds to the fixed effects. The RKHS minimisation problem is now of the form

n 2
min {E (yi — f(xf, i, Za, - ~-/Zim)) +Ac ||P6f||$-(k + Au ||Puf||$-tk} :

fere | ia

By the Representer Theorem, the minimisation reduces to
n;lian ly — XB — Kpa||* +a"K)a, (3.16)
where X = [1 (x{)T]1<i<» and K} has terms
[Kp)ij = kea(xi, %)/ Ae + ZT Zi/ As.
The minimisation of (3.16) leads to the solutions:
B=(X"v'X)"'X"V-ly, and a=Vl(y-XB),
where V=K, + 1. Let¢ = a/A, and # = Z7a/A,. The fit can then be expressed as

n
flf,x,1,0,...,0) = [1 (x)T]B+ Y Gik(x, x;) + +10y,
i=1

n
f(x4,x,0,1,...,0) = [1 (T]B + Y Cik(x, x;) + Uy,
i=1

and f(x%,x,0,0,...,1) = [1 (x")"1B+ Y_Gik(x, x;) + Un.
i=1

We now provide illustration of fits for this most general random intercept model.
The longitudinal data set on spinal bone mineral density was originally analysed by
Bachrach et al. (1999). The study comprised some 230 girls and young women. Many
of the individuals in the study had repeated measurements, with a total of some 405
measurements across the study. The subjects are categorised as belonging to one of four
ethnicity groups: Asian, Black, Hispanic and White. With double subscript notation, the
model is

yij=[1 (xfj)T]ﬂJf c(xij) + U; + &
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where the y;; are spinal bone mineral measurements (g/cm?), the xfj contain indicators
for ethnicity and the x;; are age measurements. The function c: R — R indicates a curve
corresponding to the kernel k..

We used the Gaussian kernel with v = 0.05, A, = 1 and A, = 1. The fitted curves
in the upper part of Figure 3.2 show an increase in spinal bone mineral density up to
the age of 22, and a higher spinal bone mineral density for Blacks. The mean age effect
is clearly non-linear and is estimated well by the Gaussian kernel. The discussion of
Section 3.3.3, suggests a Laplacian kernel-based fit. The lower part of Figure 3.2 also
shows a Laplacian kernel-based fit, with parameters y = 0.0005, A, = 1 and A, = 1. For
this example, the Laplacian curve appears to be less smooth that the Gaussian curve.

Both curves model the observed data well.

3.3.5 Extension to Multivariate Kernels

We briefly mention one last extension: the replacement of c(x;) by c(x;) where the
x; € R%. This can be achieved by making k. a d-variate kernel as opposed to the uni-
variate kernels treated so far in this section. The relevant RKHS is now on R™tPt4 and
the kernel k. is on R? x RY. Models of a similar type were recently considered by Liu
et al. (2007). Kernels methods allow the input domain to be very broad, many examples

of the possibilities are given in Shawe-Taylor and Cristianini (2004).

3.3.6 The Linear Mixed Model as a Kernel Machine

We now review the relationship between the linear mixed model and kernel machines.
This helps us facilitate the longitudinal analysis of later sections. For inputs x € R and
z € RY, we seek a function, f, so that f(x, z) predicts y. For a set of mutually orthogonal

functions P R—->R,0< j < p, the functional form for f is

4 q
flx,z1,...,24) = ;),lepj(x) + ;ujzj.
j= j=

For a strictly positive definite 4 X g matrix, G, consider

k((x,z1,.-.,29), (X, 21, ., 25))

|
M‘u

¥i(x)p;(x") +27GZ, (3.17)

~—
Il
[l

I
'M“’

~
i
(o]

q /
Z (z2"GY%);(zTGY?);.  (3.18)
]:

It is then clear from the expression in (3.18) that

i) kis a kernel, and
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Figure 3.2. Upper part is the Gaussian kernel-basedfitto spinal bone mineral, 7 = 005, AC = 1
and Am = 1. Lower part is the Laplacian kernel-based fit to spinal bone mineral, 7 = 0.0005,
Ac= 1land A«= 1.
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ii) 'Hj has an orthonormal basis in
{$o(x), ., ¥p(x), (2TGY2)s, ..., (zTGV2), ).

With the RKHS corresponding to the null space denoted by Hg, let

Hﬁ = {f f(x,zy,.. .,Zq) = iﬁ]l[)](x)} . (3.19)
=0

In the following theorem, we consider R = 02I. The more general case will be consid-

ered in Section 3.3.9.

Theorem 3.5. Let Hy be an RKHS with kernel given by (3.17), and subspace Hg given by (3.19).
Furthermore, let Py : Hy — Hy be the projection operator onto the orthogonal complement of Hg.

Then the solution to the kernel machine

2
fer Z‘C yzr xllzlll . rziq)) +A “Puf”Hk (320)

with A = 62 corresponds to that of the observed BLUP. Explicitly, the solution to (3.20) is

9

~ P . ~
f(x,zl,.. .,Zq) = Eoﬁ]ll)](x) + ZUZ
j=

=1

where x € R, Bo,. . .,Ep and the ﬁl, el ﬁq are given by (3.2) with

Po(x1) -+ Py(x1)
X = , (3.21)

Wo(xn) -+ Py(xn)

Z a matrix with terms z;;, R = 021 and G the matrix in (3.17).

Proof. By the representer theorem, the solution to (3.20) admits a dual form represention
r
f(x,zl,..., Z ﬁ,—f—Zc, x zl,...,z,,),(xi,Zil,...,Z,-q)),
where it is clear that
ku((x,21,...,24), (¥, 2}, .. .,z;)) =2z'G7
is the kernel with RKHS H,. We then have

P
f(x,z1,...,2 Z ,B,+ZCZTGz.

i=1
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In particular, for 1 < ¢ <mn,
4 q
f(xeze,- - ,2e9)) = Y 9i(x0)Bi+ Y ciZ[ GZ,
j=0 i=1

= (XB + Kyc)y, (3.22)

where K, has terms ku((x,-,zil,...,z,'q), (x;,zgl,...,z;q)). On substituting (3.22) into
(3.20), we find

min(y = X — Kuc) T (y — XB — Kuc) + 07 Kue. (3:23)

Some algebra then gives the minimiser of (3.23) as

E — (XTv—lx)—lev—ly’

R (3.24)
c=V(y-XB),
where V = K,, + 0?1.
Let # = GZ'¢. Then since K, = ZGZ7,
XB+ K= XB + Z7,
and (3.24) becomes
B=(XTv1X)IXTv 1y,
i=GZ'Vl(y—XB)
which is the same as for the BLUP. O

We have shown a connection between kernel machines and the BLUP of the simple
linear mixed model. In particular, the covariance of # in (3.1) is seen as a feature of the
expression for the kernel in (3.17). This is used in the following sections, as we return

specifically to longitudinal data analysis.

3.3.7 Random Intercept and Slope Model

Close inspection of Figure 3.1 shows that the parallel lines restriction imposed by the
random intercept model is questionable. A more realistic model is one that allows each
pig to have his/her own slope. This is achieved through the random intercept and slope
model

yi=Ppo+Vi+(B1+Wixij+e; 1<j<m, 1<i<m, (3.25)

where, as with (3.3), &; ~ N(0,0?), while

Vi | i 0 05 pouOy
YN , (3.26)
W; 0 POu0y O3
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Figure 3.3. The EBLUP-fitted lines to the pig-weights datafor the simple linear random intercept
and slope model The panels are ordered according to the final weights of each of the 48 pigs in

the sample.

allow for subject specific deviations in both intercept and slope from the mean line

+ Mix. Figure 3.3 shows an EBLUPs fit of this model to the pig weights data,
with the covariance matrix parameters estimated via REML. The resulting fits com-
pare favourably with the random intercept model of the same data shown in Figure 3.1.
It appears that the pigs do have different growth rates. A first step is to switch from the
double subscripting of longitudinal data analysis to single subscripting notation via the
map (3.6). The single subscript version of the random intercept and slope model (3.25)
is

m

yi = N0+ NXi+ YNV + XiWj)Zij+ I<i<n (3.27)
M

where, as before, Zfy is (/,;) entry of Z as given in (3.5).
The extension of (3.27) may be made to obtain a canonical form. To achieve canonical

form, let

U=IViWi  ~-Vm WmV, (3.28)
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and the replacement of Z and G by

(1 x; 0 0 -~ 0 0 ]
1 1, 0 0 -~ 0 O
0 0 1 X21
0'3 Poy0w
Z=10 0 1 xpp --- 0 O and G = blockdiag

: 1<i<m oo S
0 0 0 O 1 xn1
(000 0 0 -+ 1 xum|

(3.29)
in the BLUP equations (3.2). From these replacements we now describe RKHS represen-
tation of these EBLUPs.

Let us form the RKHS of real-valued functions on R?"+1:

Hy = {f:f(x,zl,...,zm):ﬁo—l—ﬁlx—kiujz]—} (3.30)
j=
with kernel
k(s, t) =k((x,21--.,22m), (‘x’,zi,...,z’zm)) =1+xx'+2'Gz. (3.31)
Note that
k(s,t) =ko(s, t) +ku(s, t),
where

kg((x,21...,20m), (%', 24, ..., 2hy)) = 1+ xX/,
g " b (3.32)
and ku((x,21...,20m), (X, 2}, ..., 2by)) = 2" GZ'.
Let Hg and H, be the RKHSs generated by kg and k, respectively. Since Hg and H, are

mutually orthogonal, we have RKHS
Hy = 'Hﬁ & H,.
The following example is a straightforward application of Theorem 3.5.

Example 3.6. Let (x;,yi, Z,--.,Zim), 1 < i < n, be a sequentially subscripted longitudi-
nal data set. Consider the RKHS H; defined by (3.30) and (3.31) and subspaces Hg and
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H. be generated by (3.32). Let P, be the projection operator onto H,,. Then the solution
to the RKHS optimisation problem

n
min |3 (e = f 50 Zas o, Zim) P+ M PufI, (3.33)
i=1

with A, = G2 corresponds to the EBLUPs. Explicitly, the solution to (3.33) is

f(x,1,%,0,0,...0,0) = By + Vi + (B1 + Wi)x,

~

f(x,0,0,1,%,...0,0) = Bo+ V2 + (B1 + Wa)x,

f(x,0,0,0,0,...1,x) = Bo+ Vm + (B1 + Wy)x,

where x € R, EO, El, V; = Uy_; and W; = Uy for 1 < i < m, are given by (3.2) with X
given by (3.5), Z given by (3.29), R = ¢ and G given by (3.29). g

The above example shows the random intercept and slope model (3.25)-(3.26) to be
a special case of the kernel machine. We can make the connection more explicit by

considering the orthonormal basis of Hy. The singular value decomposition (or spectral

decomposition) of the random effects matrix is

02 pouoy B « V1—a? d, 0 a V1—a?
POu0y O V1—a?2 —a 0 dy V1—a2 —a

where the eigenvalues d, and d,, are given by

dy = dy(09,00,0) = (02 +02)/2+ /(02 — 02)2 /4 + (0,00p)3,
and dy, = dyy (0, 00, 0) = (02 +02) /2 — /(02 — 02)2 /4 + (0,00p)2.

The first normalised eigenvector component a takes the form

00w/ \/ (000wp)? + (02 —dy)?, if p # 0 or 0y, # 0y,
a = a(0y, 0y, p) =

0, otherwise.
The matrix

U=
V1 —a? —

is orthonormal: UUT = UTU = 1. From (3.18), an orthonormal basis for H; is then
{1, X, \/c_i;fle +vdyV1—a?zy, \/d_z,\/l — a2z — \/dyazs,
oV AoZom 1 + VA V1 — 020m, VAV 1 — 82251 — / dwazzm}-

« \/1—0&2:|
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3.3.8 Kernel Extension to Random Intercept and Slope

As in Section 3.3.2 we can extend the random intercept and slope model to allow for
non-linear mean structure. The representation of an RKHS optimisation problem given
by (3.33) allows a kernel-based extension for nonlinearities. As well as maintaining the
random intercept and slope, a nonlinear component is included.

The extension to (3.25) considered here is of the form
Yyij = Bo+ Vi+ (B1 +Wi)x,~]-+c(x,-]-) + &ij, 1<j<mn, 1<i<m,

where c: R — R. In this model By + B; - +c(+) is the smooth overall function. Changing
to single subscript notation, we have the canonical form
m
yi=Po+pPixi+c(x)+ Y ZjUi+e, 1<i<n,
j=1

where u and Z are given by (3.28) and (3.29).

Subject specific deviations in both intercept and slope are allowed. The relevant
RKHS over R?"*1 js

Hi=Ho®Hc® Hy

where Ho = {f: f(x) = Bo+ B1x}, H. is any RKHS over R and orthogonal to Hy, and
H, is the RKHS corresponding to k, in (3.32). The kernels are of the form

ko((x,2),(x,2) =1+ xx, k((x,2),(X,2") =kea(x, '),

and k,((x,z),(x',2) =2"GZ.

With projections P, and P,, the RKHS optimisation problem is then

~

n
min | Y2 {s = f (i Zas - Zam}? + Ac [Pef g, + A |1 Puf Iy,
k Li=1

where A. € R and A, = 02. Applying Theorem 3.5, the fit takes the form

£(x,1,%,0,0,...0,0) = Bo+ V1 + (B1 + Wi)x + Y Gikc1(x, x:),
i=1

~ —~ n
F(x,0,0,1,%,...0,0) = Bo+ Vo + (B1 + Wo)x + ¥ Gikc1 (x, xi),
i=1

n

f(x,0,0,0, 0,...1,x) =Bo+ Viu + (B1 + Wi )x + Za’kc,l(x/ Xi),
i=1

where ¢ = a/A. and

[Vl Wl ce Vm Wm]T = GZTﬁ.
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The coefficients * and a are the solution to

min{lly - X B - Kxaf +

where Kx has terms kex IK + ZiGZj.

We illustrate this method with the rats data set. The rats data set is from Gelfand,
Hills, Racine-Poon and Smith (1990). The data consists of the weight measurements
of 30 rats. The rats were weighted weekly, for a total of 5 measurements each. Each
rat portrays an almost linear increase in weight over the time of the study. A quadratic
kernel was found to fit well. The parameterisations, G and Ac, were estimated via REML.
The random intercept-and-slope model does not give a good fit to the data. There is a
noticeable curvature that is adequately modelled under the kernel extension, as shown

in Figure 3.4.
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Figure 3.4. Kernel-based fit to rats data. Each of the 30 rats shows an increase in weight. The is

a noticeable curvature, and this is adequately modelled by the kernel extension.
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3.3.9 Extension to General Random Effects Structure

The general form of the XB + Zu, u ~ (0, G), structure for parametric longitudinal data

analysis has

1 Xxf u
, Z =Dblockdiag(X®), and u=

F 1<i<m
1 Xm Um

with

G = Cov(u) = blockdiag(X).

1<i<m
Here X is an m x p matrix corresponding to the ith subject’s fixed effects contribution
(XFB) , XX is an m x ¢ matrix and u; is a g x 1 random effects vector corresponding
the ith subject’s contribution (XRu;) and I is an unstructured g x q covariance matrix

satisfying Cov(u;) = E,1 < i < m. The BLUPs for B and # minimise
(1/02) ||y — XB — Zu||* + u" Gu. (3.34)

Theorem 3.1 and Example 3.6 can be generalised to the situation where BLUP cor-
responds to the solution of an RKHS optimisation problem. The relevant RKHS, Hj,

consists of real-valued functions on RP*™4 with kernel

P mq
=1 ii=1

Subspaces of interest are those generated by

p m
ke(s, t) =1+ Esjtj and kg(s,t) = E Sp+i[z‘]ijtp+j~
i1 ij=1

We denote these by Hr and Hy respectively. We have
Hy = Hf ® Hk.

Let Z; be the ith row of Z. Then the BLUPs given by (3.34) correspond to the RKHS

optimisation problem

n
(yi — f(xi,zi1, e /Zim))z +A “PRf”ifk ’
=1

1

where A = 02, and P is the projection operator corresponding to projection onto Hg.
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3.3.10 Correlated Errors

Each of the longitudinal models considered so far have
R = Cov(e) = o’I

However, in longitudinal data analysis it is common to allow more general structure in
the R matrix. Longitudinal data models such as these do not fit as comfortably into the
RKHS framework. The RKHS corresponding to general positive definite R is given by

the following theorem.

Theorem 3.7. Let Hy be an RKHS with kernel given by (3.17), and subspace Hg given by
(3.19). Furthermore, let P,: Hy — Hy be the projection operator onto Hz, and R be a strictly

positive definite n X n matrix. Then the solution to the kernel machine

n
}Teu,’_{: Z (yl _f(xilzilr- . -rzim))[R_l]ij(yj _f(lezjl/' . '/ij)) + ”Puf”%{k (335)
ij=1

is the same as that for the BLUP, with X given by (3.21), Z a matrix with terms z;;, G is given
by (3.1).

Proof. By the representer theorem, the solution to (3.35) admits a represention of the

form
p n
f(xz1,.002m)) = Y ®i(x)Bi+ Y ciku((x, 21, -, Zm), (XisZit, - - s Zim))-
j=0 i=1
In particular, for 1 <i < n,
: T
f(xirzil/ .- -rzim) = ECI’j(x,-)ﬁ,- +ZGZ c.
j=0

On substituting into (3.35), we find
r%icn(y —XB—ZGZ'¢)'"R"Y(y—XB—-ZGZ c) +cZGZ <. (3.36)
Some algebra then gives the minimiser of (3.36) as
B=(XTvx)'xTvly, 637)
c=Vl(y-Xp),
where V= ZGZ" + R. Let #t = GZ"a. Then (3.37) becomes
B= (XTV-1x)"1XTv 1y,

.

GZV~'(y - XB),

)
I

which is the same as for the EBLUP. 0
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Example 3.8. The random intercept model with first-order autoregressive (AR(1)) errors

has
Yij = Bo+ U; + ,31x,‘]' +&ij, € = pEij-1 + Ci]'/
for1 <i<m 1<j<mn, where |p| <1, U ~ N(0,02), and the &; ~ N(0,0) are

independent. The R matrix in this case is

1 p . e pni_l
p 1 e pni_z
R =07 blockdiag _ . _ )

1<i<m

-1 pni_z 1

P

The kernel machine is then

n
?;%‘k Y (i — f(xizi - zim)) IR iy — (620, Zim)) + 1Puf 134,
ij=1

and is equivalent to

) _ 1
min(y — Xp — Zu) R~ (y — XB — Zu) + — |lu]*.

Bu
The fit is given by
f(x,1,0,0,...0) = Bo + U1 + B1x,
F(x,0,1,0,...0) = Bo+ Uy + P1x,
f(x,0,0,0,...1) = Bo+ Unm + B1x,
where (B\O, B\])T = ﬁBLUPI (al,. . .,am)T = UgLup, and G = (731. <l

3.3.11 Alternative Regression Loss Functions

So far in this section we have only considered squared error loss L1s(a,b) = (a — b)2.
A range of alternatives for regression are available to the practitioner. We call a loss
function a regression loss if it admits the representation L£(a,b) = h(a — b), for some
function h: R — [0,00). The Statistics literature identifies various reasons why we

would choose a regression loss other than least squares. These include:
i) The distribution of the errors may be non-Gaussian.
i) To improve the robustness of the model.

iii) We may be interested in a quantity other that the conditional mean, such as the

conditional median.
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iv) It may be computationally cheaper to use an alternative loss function.

Recall that the Gaussian linear mixed model (3.1) assumes that the errors are from

the normal distribution. More generally, for some distribution f,, we have
y=XB+Zu+e, u~N(0,G), andg ™ f,. (3.38)

The log-likelihood of (3.38) is then
n
log(p) = Zlogfg((y —XB—Zu);) — %uTG‘lu — %log |G| — 5 log(2m).
i=1

We then choose (B, #) by the maximising the log-likelihood,

nl}ax {ilogfe((y - XB — Zu);) — %uTG_lu} . (3.39)
# =1

The connection between the maximum likelihood and the kernel machine is well
established in the literature (e.g., Poggio and Girosi, 1990; Green and Silverman, 1994).

It is made clear by the following theorem.

Theorem 3.9. Let L(a,b) = —log f.(a — b). Then the solution to the kernel machine

;2%—2 { 1£(yi’f(Xi)) +A ”PufH?-tk}

i:

corresponds to the maximum likelihood estimator in (3.39).

Proof. By the representer theorem, any fit admits the representation
9 n
fx) =} ¢(x)B; + ) ciku(x, xi)
j=0 i=1

for some B;, 1 < j <gq and ¢;, 1 < i < n. The result then follows by substituting for

1<i<n. O

It is well known (e.g., Huber and Wiley, 1981) that the least squares loss is non-robust
against outliers. The motivation with robust statistics is to produce estimators that are
not unduly affected by small departures from model assumptions. In particular, we are
concerned with departures in normality in the error component.

The use of the t-distribution for modelling the errors has attracted some interest
in robust modelling, for example Lange, Little and Taylor (1989); Peel and McLachlan
(2000) and Staudenmayer, Lake and Wand (2009). An attractive aspect is that is that we
may maintain an elegant mixed model framework. For a ¢-distribution with degrees of

freedom, v, and scale parameter, ¢, the probability density function is given by:

v+1 )

_ ey AN
fro(x) = ;ﬁ(%) (1 + VTI’Z) '



54 3 Explicit Links Between Longitudinal Data Analysis and Kernel Machines

where I'(-) is the Gamma function, I'(z) = f0°° t*~le~tdt. As an alternative to the Gaus-

sian linear mixed model (3.1), we now have
y=XB+Zu+e u~N(0,G), ande; St,,. (3.40)

The maximum likelihood estimator of # and ¢ in (3.40) is then given as the solution

to

n
rgiun {Z cv,a—tdist(yir (Xﬁ + Zu);) + UuTG_lu} ’
4 i=1

where,
a—b\?
ﬁv,a-tdist(a/ b) = (1/ =+ l) log 1+ vl (T) .

The relationship between L, ;.4ist and fy,+(x) is given by

ﬁv,a-tdist(ar b) = -2 logfl/,(f(a — b) +c

where ¢ is a constant, independent of a and b.
The relationship of the loss to twice the negative log-likelihood of the error distribu-
tion has been well established in the literature (Green and Silverman, 1994). Consider

the double exponential distribution, again with scale parameter o,

_ exp(—|x[/(20))
fo(x) = i -

Minimising the double exponential loss is then equivalent to minimising over the abso-
lute value loss,

Lay(a,b) = B;—b’ (3.41)

= —2log(fs(x)) +¢,

for constant c. The absolute value loss has been use to find a median regression curve
(Barrodale, 1968). A similar approach can be made using a nonsymmetric double expo-
nential distribution. For some 0 < T < 1, we have the quantile regression loss,

—(1-7)(a—b), (a—b)>0,

Lriqr(a,b) =p(a—b) =

T(a—b), (a—b) <.
The quantile regression loss has attracted some recent attention in the machine learning
literature (Takeuchi, Le, Sears and Smola, 2006; Christmann and Steinwart, 2008). For
some J > 0, Huber’s loss, L tjyper, is given by

(a—1b)? a—b| <6,

ﬁé-Huber(al b ) =
26la—b| — 62, |a—b|> 6.
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Name Prior distribution on ¢ L(a—D)
BLUP Normal (a—b)?
Robust regression t-distribution log (1 +t(a—b)?)
Median regression Double exponential |a — b]
Quantile regression Weighted double exponential pr(a—b)
Support vector regression 71— exp (—%) (la—bl—€)4

Table 3.1. Regression formulations with corresponding regression loss functions and priors. We

require the parameterisations t > 0,0 < T < 1,and € > 0.

For small values of |a — b|, Huber's loss is equivalent to the least squares loss, while for
large values the penalty is linear. An alternative to the Huber’s loss is the e-insensitive

loss Le-insens (4, b), first given by Drucker, Burges, Kaufman, Smola and Vapnik (1997),
‘Ce—insens(ar b) = (|a - b| - €)+ .

Note that the e-insensitive loss ignores deviances smaller than €, and has a linear penalty
for larger values of |a — b|. Both Huber’s loss and the e-insensitive loss may be expressed
as a constant (not dependent on x), plus twice the negative log-likelihood of a distribu-

tion. Girosi (1998) showed that the density

fool) = gz e (-0t

leads to the use of the support vector regression loss. The median regression loss,
Huber’s loss and the support vector regression loss are all known to be robust. It is of
no suprise that the densities that generate them are also fat tailed. The linear mixed

model has
y=XB+Zu+e, u~N(0,G), ande ¥ f, (3.42)

with solution given by

n
n;in { L(y;, (XB+ Zu);) + uTG_lu} ,
u

i=1

where L£(a,b) = —2log fe(a —b) +c.

3.3.12 Example: Median Longitudinal Regression

The traditional approach to regression estimation is concerned with finding the condi-
tional mean. For many problems, we may instead be more interested with finding the

conditional median, or by extension, the conditional quantiles.
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Along with the book Koenker (2005) there has been a increase in interest in median
regression as a helpful data analysis tool. Median and quantile regression has had a
substantial interest in the ecology, economics and statistics literature with Albrecht, Bjrk-
lund and Vroman (2003); Buchinsky (1994); Cade and Noon (2003); Chaudhuri, Doksum
and Samarov (1997); Engle and Manganelli (2004); Knight and Ackerly (2002) and Yu
and Jones (1998) to name but a few. Recent literature, such as Takeuchi, Le, Sears and
Smola (2006),Li, Liu and Zhu (2007) and Christmann and Steinwart (2008) have shown
the appropriateness of reproducing kernel methods for the task, though do not consider
longitudinal data.

The spinal bone mineral data set was previously analysed in Section 3.3.4, whereby
the conditional mean spinal bone densities were modelled. For measurements of spinal
bone mineral density, it may be of more interest to model the conditional medians.
Authors, such as Koenker (2005), have argued that for many practical problems, it is the
conditional median that is of interest.

We now detail the use of the absolute value loss (3.41) for median longitudinal re-

gression. The RKHS problem is of the form:

n
min
o {Z

where the parameter ¢ in (3.41) has been absorbed into A. and A,. (As REML is for least

Vi — f(e5, %0, Zit, -, Zim) | + Ac || Pef |3y, + Au ||Puf||%k} , (3.43)

squares loss, we do not have ready estimates for ¢.) By Theorem 2.13, any minimiser of

3.43 may be expressed as
f(xtx,z) =11 (x T]/B+E A ko1 (x, xi) + Ay (2, 21) )i
Evaluating (3.3.12) at each observation,
f(xf,xi,zi) = (XB+ Kxc); .

Substituting (3.3.12) into (3.3.12) gives the optimisation problem

n
r?in {E |(y — XB — Kyc),;| + cTK)\c} .

i=1

Via the use of Lagrangian multipliers, a dual form of (3.43) arises as the QP
(1T T
min (5“ Kya—-vy a)
subjectto —1<4; <1, forall1<i<mn, and X"a = 0.

The illustration given in Figure 3.5 shows a fitted median curve to the males cohort

of the spinal bone mineral data set. Like the support vector machine, median regression
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Figure 3.5. Median regression applied to the males in the spinal bone mineral data set.

results in a quadratic program. The kernel kci was chosen to be Gaussian with 7 = 0.05.
The parameterisations A*= 0.1 and A«= 0.1 were chosen by hand. The curves show an
increase in median spinal bone mineral density up to about the age of 22. The curves
also show a higher median spinal bone mineral density for Black males, and lower

medians for the Hispanic cohort.

3.4 Generalised Response Extension

We have relied on the assumption of homoscedasticity of the errors, more specifically,
that the variation of the errors is independent of the conditional mean. Many longitu-
dinal studies have a non-continuous response, such as count or binary variable. With
a binary variable, the conditional variance is dependent on the conditional mean. In
such circumstances the linear mixed model in (3.42) is not appropriate and alternative
approaches are required. The most common involve generalised linear mixed models
(GLMM) and generalised estimating equations (GEE). In this section we describe ex-
plicit connections between kernel machines and the popular penalised quasi-likelihood

(PQL) methodology for fitting GLMMs to generalised response longitudinal data.

To keep the notation simple, we will work with GLMMs confined to the canonical
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one-parameter exponential family framework:
f(ylu) = exp{y" (XB+ Zu) —1"b(XB+ Zu) +1"c(y)}, u~ (0,G) (3.44)

where f(y|x,u) denotes the conditional distribution of y given x and u, and b and
¢ depend upon the family member. The most common examples are Bernoulli, with
b(s) = log(l +¢°), c(s) = 0, and Poisson with b(s) = €°, c¢(s) = —log(s!). The one-
parameter exponential family makes the assumption that there is a functional relation-
ship from the conditional mean to the conditional variance (e.g., Rabe-Hesketh and
Skrondal, 2008). The matrices in the linear predictor X + Zu, as well as G, have defi-
nition and structure identical to those in the continuous response situation described in
Sections 3.2 and 3.3. The simplest example is the generalised response random intercept
model
m n

fyilUy, ..., Un) = exp ;jzl{yij(ﬁo +B1xij+ U;) —b(Bo+ B1x; + Ui) } | (3.45)
with U; ¥ N (0,02),1 < i < m, which corresponds to (3.44) with X and Z as in (3.5) and
G =02l

A common approach to fitting GLMMs is maximum likelihood for (B, G) and best
prediction for u under the normality assumption u ~ N(0, G). However this requires
numerical integration techniques and, especially if the integrals are multi-dimensional,
approximations are used instead. The most common of these is PQL (e.g., Breslow and
Clayton, 1993). However, we will not treat quasi-likelihoods here, so the label penalised
likelihood (PL) is appropriate. For (3.44) with u ~ N(0, G) and G known this involves

maximisation of the penalised likelihood,
exp{y" (XB+Zu) —1"b(XB+ Zu) — 1u" G 'u} (3.46)

to obtain the estimates EPL and #p; .

We now show that the penalised likelihood (3.46) can be treated as an RKHS optimi-
sation problem. Hence, obtaining EPL and #p, for a given G involves a particular kernel
machine. Again, with simplicity in mind, we give the full explanation for the random
intercept model (3.45). The general case follows via the linear algebraic arguments and
structures given in Sections 3.3.7 and 3.3.9.

Re-subscript the (x;;,y;;) sequentially (as in Section 3.3) and, as before, let Z;; be the
(i,7) entry of the matrix Z defined at (3.5). Then (3.45) is

m

f(y,'|ul,...,um) = exp i{y, (ﬁo +,61x,- + ZZ,']'U]') —_ b(ﬁ0+ﬁ1xi+ ZZ,']'U]') }
i=1 =1 j=1

i j= =
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Model

Linear regression
Logistic regression
Probit regression
Poisson regression
Gamma regression

Inverse Gaussian
regression

Distribution = Link
Normal U
Binomial A ()
Binomial O1(p)
Poisson log(u)
Gamma p!
Inverse

Gaussian u?

Table 3.2. Some examples of commonly used GLMMs.
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Let Hy, k and Hg be defined by (3.7), (3.8) and (3.9) respectively. Then penalised likeli-

hood estimation of B and u is equivalent to the RKHS optimisation problem

2
fer{Zﬁyw f(xi, Za, . --/Zim))‘*’/\“Puf”Hk}

where P, is the projection operator onto H, = Hg, A = 1/02 and the loss function is

given by L(s, t) =

—2{st —

b(t)}. For example,

—2{st —log(1+e¢')}, in the Bernoulli case,

L(s,t) =

—2(st —et),

If f is the solution to (3.47) then

where (Bo, B1)T= Bn and (U, ..

o~

f(x,1,0,...,

o~

f(x,01,...,

and f(x,0,0,...,

in the Poisson case.

0):Eo+31x+f11,
0) = Bo+Brx+ Uy,

1) = Bo+ B1x+ Up,

.z am)T: iZPL'

(3.47)

The relationship between the fits, f, and the conditional mean, y, is given by a

bijective link function, g(u(-))

log

On inverting the link function we find

exp f(-)
1+exp f(-)’

exp f(-),

u()
1-u(-)’

log p(-),

f(-). For example,

in the Bernoulli case,

in the Poisson case.

in the Bernoulli case,

in the Poisson case.
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3.4.1 Kernel Extension

With GLMMs, the link function gives an explicit relationship between the mean, y, and
some linear function, f. At times, there may no exist a suitable linear relationship, and

a kernelised approach may be desired. A regularised setting for classification tasks is

fEHk i—1

min {i‘c(yilf(xilzilr' . 'IZiM)) + /\llpf”%'lk} ’

where L is some loss function.

In order to fit a linear model, we have H; = { f:f=PBo+pix+ ):}":1 U,-Z,-j} . Let Hp
and H,. denote the reproducing kernel Hilbert spaces generated by the kernels ko(s, )
and k. (s, t), where ko(s,t) = 1+ s1t; and k(s, t) = ):;":1 S14jt1+j- As before, let P be the
projection of f onto H,. Like the EBLUP, we would like to allow for correlation among
repeated measures.

For a non-linear model, especially for those with high dimensional Hilbert space,
a regularisation of the nonlinear component is required. For example, consider:
ko = 1, ke(s,t) = ke(s1,t1) and ky(s, t) = ):;":1 s14jt14+j, where k. is kernel, such as
ke(s1,t1) = exp(—7|s1 — tllz). With Hy, H. and H, corresponding to ko, k. and k; re-
spectively, Hy = Ho & Hc & Hy. Regularising both the nonlinear component and the

ll]-’s we have

n
min {zﬁ (Wir f (%is Zits -, Zim)) + Ac | Pef I3y, + IIPufllik} ;349
ki=1

where P, is the projection onto H,, and P, is the projection onto H,. The question also

remains as to the suitable choice of parameterisations, £, H, A and A,.

3.4.2 Bernoulli Loss for Classification

An example of a Bernoulli response data involves longitudinal measurements on 275
Indonesian children from Diggle et al. (1995). The response variable is an indicator of
respiratory infection. The study was conducted to determine the effects of vitamin A
nourishment on the respiratory health of children. The aim was to see if vitamin A
supplementation would be of benefit. For our purposes, we look to see the effect of
age on the presence of respiratory infection. The analysis also needs to account for
correlation among repeated measures on the same child as well a possibly non-linear
age effect. We have included, as a fixed effect, both the sex of the child and whether

they are vitamin A deficient.
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A non-linear fit to the age of the individuals is used, making use of the Gaussian
kernel. For each individual in the study, we have between 1 and 6 measurements over
time. Due to the small size of the data set possible interactions between the predic-
tors are excluded from the model. However, analysis needs to account for correlation
among repeated measures on the same child as well a possibly non-linear age effect.
The Bernoulli log-likelihood is used in logistic regression and kernel logistic regression,
for example Green and Yandell (1985) and Zhu and Hastie (2005). The RKHS problem

is
2 2
min {Z £ (viof (%0 Zas o) Zim) ) + Acl|Pef By + A ||Puf||m}, (349)
where L(s,t) = —2 {st +1og(1+¢') }. Using the Bernoulli loss, and applying the Rep-
resenter Theorem to (3.48), we have the matrix optimisation problem

ngin {i L (y;, (XB+Kya),) + aTK,\a} , (3.50)
4 \i=1

where K, is given by (3.14). The minimisation in (3.50) is convex, and can be solved
through standard optimisation techniques such as quasi-Newton optimisation (Nocedal

and Wright, 1999; Zhu and Hastie, 2005).

For an individual in the study, the fit is then given by

F(xl,%,21,...,2m) = Bo + Prxf + Baxb + Y Gk(x, x;) + Zu,
i=1
where € = @/A,, and U = Za/\,, with @ a solution to (3.50). The discriminant is given

simply by
n
f(xe,x,zl,...,zm) =50+,‘31xf+/32x2 E (x,x;),
i=1
and provides a fit to the data, excluding the subject-specific random effects.

Figure 3.6 contains plots of the discriminants for Bernoulli log-likelihood loss. They
were fitted with the Gaussian kernel with y = 5. In all the plots, the smoothing param-
eter for withon subject correlation was chosen as A, = 10. For the upper part of Figure
3.6, we chose A, = 10, and for the lower part we chose A, = 1. With A, = 1 we have
a less smooth fit, the curve better follows the data. We find that the model shows that
having a vitamin A deficiency indicates a higher probability of respiratory infection. A
similar level of increase was noticed for males; the fits show that males showed a higher

probability of respiratory infection.
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Figure 3.6. Results of fitting Bernoulli log-likelihood loss, with 2 different values of the rég-

ularisation parameter Ac. If viewed as a classification problem then the curves correspond to

discriminants. The longitudinal data are jittered to enhance wvisualisation.
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3.4.3 Alternative Loss Functions for Classification

In the classification setting, with now y € {—1, 1}, examples of loss functions include

log(1+e~%") (Bernoulli log-likelihood)
L(a,b) =

(1—ab); (hinge loss).
We have seen the Bernoulli log-likelihood loss being used in the previous subsection.
The Bernoulli log-likelihood falls within the scope of GLMMs, and the use of Bernoulli
log-likelihood can be justified from a maximum likelihood standpoint. There are, how-
ever, popular loss functions that do not conform to the GLMM framework. The hinge
loss, in particular, does not conform to the GLMM framework.

The use of the hinge loss comes at the cost of not having asymptotically consistent
estimates of the conditional probabilities (Steinwart, 2001). What the hinge loss produces
a classifier in the sense that it classifies new observations as being either in one class or
the other. The support vector classifier avoids the somewhat intermediatory step of
predicting the probabilities. In the Indonesian children’s example, we are interested in
whether the children have respiratory infection. In our sample, around 9.5% of the cases
have a respiratory infection at a given time. Using hinge loss, we can produce a support
vector machine that predicts whether they are at a high risk of respiratory infection.

A weighted hinge loss function is

Llab) = Ci(1-b);, ifa=1,
C.1(1+b)y, ifa=-1,

for some positive constants, C; and C_;. In one example, shown in in the upper part
of Figure 3.7, we have chosen C; = 1 and C_; = 0.05. These costs relate to the cost of
misclassification, estimating the cost of falsely diagnosing the presence or respiratory
disease to be twenty times less that not detecting the disease when it is present. In the
second example in Figure 3.7, we have C; = 1 and C_; = 0.1. This is an indication of the
relative costs of misdiagnosis. We would consider the relative cost of falsely diagnosing
a patient with respiratory infection as being around one tenth the cost of missing a
diagnosis on a patient with thé infection. The RKHS problem is given by (3.49), and the
class predictions are made with sign(f(xf,x,21,...,2m)).

The upper part of Figure 3.7 shows the discriminant to be greater than zero in most
cases. It is only with vitamin sufficient females over the age of five and a half years does

the discriminant drops below zero. In the lower part of Figure 3.7, the ratio of C; to
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Figure 3.7. Results of fitting hinge loss, with 2 different values of the cost parameter for the
smaller class. If viewed as a classification problem then the curves correspond to discriminants.

The longitudinal data are jittered to enhance visualisation.
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C_1 better reflects the observed number of observations per class. Like with Bernoulli

log-likelihood, we find the discriminant to be higher with vitamin A deficiency.

3.5 Discussion

In this chapter we have shown that two ostensibly different areas of research - longitu-
dinal data analysis and kernel machines - are, in fact, very similar in their underlying
mathematics. It is anticipated that the explicit connections that have been established
here will facilitate a more fluid exchange of ideas between the two fields. For longitu-
dinal data analysis, there is the possibility of using kernel machines to better deal with
non-linearity and to develop improved classification procedures. From the kernel ma-
chine perspective, we envisage kernel methodology that is tailored to longitudinal data

models and accounts for complications such as within-unit correlation.






Chapter Four

Semiparametric Regression via Variational

Bayes

4.1 Introduction

Bayesian inference is an effective and popular method for learning tasks. If 6 is a vector
of Bayesian model parameters, and y the observed data, Bayesian inference is based on

the posterior density
p(0,y)
r(y)

For many models of practical interest, the posterior distribution does not have a closed

p(0ly) =

form. Moreover, it is often computationally demanding to calculate expectations with
respect to the posterior (Bishop, 2006). For continuous distributions, taking expectations
over the joint distribution, p(8, y) may result in an analytically intractable integral.

Variational approximation techniques offer an approximate solution to Bayes learn-
ing. Widely applicable, variational approximation has its roots in the “calculus of vari-
ations” (Gelfand and Fomin, 2000), that is, in finding the optimum of a functional. The
learning framework is popular in statistical physics (e.g., Feynman, 1972; Callen, 1985),
under such names as mean-field variational approximation and free-energy minimisation. For
Bayesian learning, this learning framework is known as variational Bayes. With Jordan,
Ghahramani, Jaakkola and Saul (1999) and Jaakkola and Jordan (2000), variational Bayes
has become a popular way to learn otherwise intractable models. Recent books on the
topic include MacKay (2003) and Bishop (2006).

The essential idea is to introduce a set of approximating densities to p(-|y). These
approximations are then optimised so as to minimise the discrepancy between them and
the true posteriors, using some measure of the difference. The optimisation is carried
out by varying the parameters of these approximations, thus giving the approximation
its name.

An alternative to variational Bayes is the numerical evaluation of the posterior dis-

tribution, such as Markov chain Monte Carlo algorithms. A variety of numerical inte-
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gration methods have been developed with Metropolis, Rosenbluth, Rosenbluth, Teller
and Teller (1953); Hastings (1970); Gelfand and Smith (1990) and Gilks and Spiegelhalter
(1996). An overview of developments is given by Robert and Casella (2004). Monte Carlo
algorithms have been developed and applied to Bayesian inference (Pearl, 1988; Gilks,
Thomas and Spiegelhalter, 1994). Numerical methods such as Monte Carlo can offer
convergence to the true posterior distribution. However, a complex, high-dimensional
integral may make make numerical integration methods prohibitively expensive. The
Monte Carlo methods can be slow to converge, with convergence hard to diagnose
(Cowles and Carlin, 1996).

This chapter examines the use of mean-field variational Bayes for semiparametric re-
gression. We show that a close relationship exists between mean-field variational Bayes
and classical techniques such as maximum likelihood (ML) and resticted maximum like-
lihood (REML). In particular, we derive REML as a special case of mean-field variational
Bayes when applied to semiparametric regression. The Bayesian framework allows el-
egant generalisations. Following the approach of Albert and Chib (1995) and Girolami
and Rogers (2006), we apply the mean-field variational approximation to the binary
response situation. The resulting estimators are closely related to those of penalised
quasi-likelihood, as given by Breslow and Clayton (1993) and Wolfinger and O’Connell
(1993).

In the next section, we review some properties of mean-field variational approxi-
mation. In Section 4.3, we apply variational Bayes to the Bayesian linear mixed model
and show the relationship with REML. Section 4.4 delves into the Baysian generalised
linear mixed model, in particular, the probit mixed model. A discussion of this chapter
is given in Section 4.5. Pseudo-code for algorithms of this chapter are given in Sections

4 A6and 4.A7.

4.2 Mean Field Variational Approximation

The most common type of variational approximation involves the notion of Kullback-
Leibler convergence applied to a Bayesian network. Bayesian networks correspond to mod-
els with hierarchical dependence structure, such as mixed models and empirical Bayes
models. With nodes corresponding to parameters and to observed data, a directed acyclic
graph (DAG) describes the dependence structure of a Bayesian network. Variational in-
ference approximation has a wide literature. Our focus here is on Bayesian inference for

semiparametric regression.
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4.2.1 Kullback-Leibler Divergence

For arbitrary density functions q and p over ©, the Kullback-Leibler (KL) divergence

from g to p is

_ 9(6)
KLlglp] = [ 4(0)log Tsdo. @1)

It was shown by Kullback and Leibler (1951) that for all densities g, the divergence
satisfies the inequality

KL[gp] > 0. (4.2)

Furthermore, if 4 is absolutely continuous, then there is equality in (4.2) if and only if

q9=7r

By a standard manipulation,

log p(y) = log p(y) [ (66 = [ 4(6) log p(y)do
_ p(y.6)/4(8)
= Jo 1(0) log { p(61y) q(e>} 40

= L(q) + KL[gllp(-ly)]

where we have defined

L(q) = /@ 4(6) 103{3%} 4. 4.3)

The quantity L(g) serves as a lower bound for log p(y). Their difference, KL[q]|p(-|y)], is
the Kullback-Leibler divergence from the density g to the true posterior p(-|y). Having
a small Kullback-Leibler divergence indicates that the probability distribution g is, in

the sense of (4.1), close to the true p(:|y). In maximising L(g), we serve to minimise

KL[g|lp(-|y)]-

4.2.2 Factorised Density Transforms

With variational Bayes, we restrict the space of functions approximating densities 4 to a
smaller class. The aim in doing so is to ensure that the integrals in (4.3) are tractable.
The restriction that we use is that of a factorised density. Let us partition the elements
of 8 € R™ into groups denoted by 0; for 1 < i < M. We make the restriction on ¢ that

these groups are statistically independent. That is, g admits the factorisation

M
q(0) = [ J4:(6:). (4.4)
i=1
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The factorisation restriction (4.4) is known in physics as the mean-field approximation
(e.g., Parisi, 1988). This factorisation is the only restriction being placed on g; it is non-
parametric in its assumptions. Note that if M = 1, then no restrictions are being made.
The literature contains several alternatives to mean-field approximation. These include
the Laplace approximation (e.g., Tierney and Kadane, 1986), as well as parametric as-
sumptions (e.g., Attias, 2000). The mean-field assumption will often implicitly subsume
the alternatives.

Amongst all distributions 4(6) having the form (4.4), we now seek the distribution

for which the lower bound L(gq) is the largest. By a standard manipulation,
/ l_[flz log{ _p(5.0) } 0
ITiZ1 4i(6:)
= /(al_[qi(ei) {logp y,0 Elogq, }
i=1
M
- /@H"i("i)log p(y,0)do — Z/ 9i(0;) log q:(6;) d6;
—/ 9;(0 {/ log p(y,8) [ [ 4:(6; dez;é]} do; —Z/ 9:(6;)logq:(0;) dé

i]
-/ qi(6;) {E—o,log p(6,y)} db; —Z/ q:(0:) log 4:(6;) d6; (4.5)
i q;(0;)
_/@qu(ej)log{exp(E_el.logp(Oy } ;}/ 4i(8:) log 4;(6;) 40

where (4.5) has E_g, denoting the expectation with respect to the density [ T4:(6:), for

i#]
1 <j < M. Let z; be the normalisation factor for exp(E_gj logp(6,y)), ie.,

5= [ exp(E-g,logp(6,4))d0;y;
Oix;
On optimising L(q) over g;(8;), we have

q;(6;)
L(q) = - /@j qi(ei) log {eXP(E—ej lég;?(e,y))/zj } de]' +C,

where C is a generic constant, not dependent on g;(8;). We then recognise

9i(6;)
/@,- 9j(6;) log { xp(E-3 108 (0,977 } “

as being the Kullback-Leibler divergence between g;(6;) and exp(E_g;logp(6,y))/z;.

On maximising L(q) with respect to ;(8;), we then find

q; () « exp{E_g;log p(6,y)}. (4.6)
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The optimal factor gj{dj) is dependent on the choice of the remaining q*{6i), i /. As
jisany 1 < ; < M, equation (4.6) represents a set of M consistency conditions. It is
required that each condition be satisfied simultaneously.

It is typical for variational Bayes for a coordinate ascent procedure to be used (e.g.,
Blei and Jordan, 2005; Ormerod and Wand, 2009). The coordinate ascent procedure is as
follows. After initialising the factors, we cycle through ql(di),... maximising
L(g) with respect to each of the M factors individually. This is a recursive procedure,
repeated until the change in L{g) becomes negligible. Upon convergence, we have our
optimal parameters. It is well known that the Kullback-Leibler divergence is convex in
its first parameter, KL(-,q): P R. As such, L(-) is concave, moreover, it is concave
under the factorisation restriction (4.4). Under some mild assumptions (e.g., Luenberger
and Yinyu, 2003, page 253), the convergence of coordinate ascent is guaranteed. We

consider an alternative to coordinate ascent in Section 4.3.4.

4.2.3 Markov Blankets

A directed acyclic graph is an important compo-
nent in the representing of a Bayesian network.
For a DAG, a probability distribution p is called
a Bayesian network with respect to the DAG if p

admits the representation

m

= /Ny Iparents of y) parents of 0/),
inl

where the parents of each of the  are given by the
DAG.

The DAG representation of Bayesian models
gives rise to a useful result arising from the no-
tion of a Markov blanket. The term was coined

by Pearl (1988). The Markov blanket of a node is

Figure 4.1. An example of a directed
the parents, children and other parents of the chil- 8 " ple of

li h. Th d ,
dren. An example of a Markov blanket on a DAG acyctic grap e four nodes com

, NN ., , prising the Markov blanket of 0, are
is given in Figure 4.1. In the figure, the element la- * N
shaded.

belled 6j has two parents, one chilcll, and one other

parent of the child. The set of these four nodes comprise the Markov blanket of 6j. The
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key element of the Markov blanket is in the result
p(j|rest) = p(6;|Markov blanket of ). (47)

This means that determination of the required full conditionals involves only the
Markov blanket. The Markov blanket is localised on the DAG, comprising only nearby
nodes. It is hence only the nearby nodes that determine the conditional distribution. It
follows from this fact and expression (4.6) that the factorised density approach involves

only local calculations on the DAG. Mathematically, this is

q; (6;) o exp{E_q, log p(6,y)}
o exp{E_g, log p(6)|rest) }
= exp{E_g, log p(6;|Markov blanket of 6;)},

where the last line follows from the Markov blanket result (4.7).

4.3 Gaussian Response Semiparametric Regression

The Bayesian version of the Gaussian linear mixed model takes the general form
y|B,u,G,R~N(XB+Zu,R), u|G~N(0,G) (4.8)

where y is an n X 1 vector of response variables, B is a p x 1 vector of fixed effects, u is
vector of random effects, X and Z are corresponding design matrices and G and R are
covariance matrices. Several possibilities exist for G and R (e.g., McCulloch, Searle and

Neuhaus, 2008). For now, we restrict attention to variance component models with
G = blockdiag(o? I, ...,0%,Ix,) and R =02l (4.9)
We also impose the conjugate priors:
B ~N(0,02I), 0% ~1IG(Ay;,By), 1<i<r, 02 ~IG(A B (4.10)

for some 02, Ay;, Bui, Ae, B > 0. The DAG representation of the Bayesian Gaussian linear
mixed model (4.8)-(4.10) is displayed in Figures 4.2 and 4.3.
We find that a tractable solution arises with the two-component factorisation

9B u, 0%, -, 0y, 07) = Apu(B )02 (0%, -, Oy, OF). (4.11)

It is shown in Appendix 4.A.1 that application of (4.6) leads to the optimal densities
taking the form

q;&,u(ﬁru)NN(luqrzq)l and q:-2(05 ,(73,,6762 qu'z uz (4-12)
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Aar Aur

niKi

Figure 4.2. Directed acyclic graph representing the Bayesian linear mixed model (4.8)-(4.10).
Large nodes correspond to scalar random variables in the model, with the observed random vari-

ables shaded. The smaller nodes correspond to constants.
with
)- (4.13)
The parameters Aq* and A® are deterministic,
AN, = Ae+ f and = Aui+ f, 1< /<.
The parameters fiq and Jlq in (4.12), and Bt and Bqg'ui in (4.13), however, are dependent

on g. Let (pig* and (fiqui denotes the components of  corresponding to j6 and Uj

respectively;

(Hg)" = , and = for 1<i<mr

Similarly, let {*q)" denote the p x p matrix corresponding to the * components of
y q pxp p g p

and {*q)ui to the K/ x K, matrix corresponding to the i/, components of ILq. Furthermore,
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Au B~

(a) With fixed effects shown (b) Without fixed effects shown

Figure 4.3. Directed acyclic graph representing the Bayesian linear mixed model.

letting C = [X Z], coordinate ascent gives the following four update equations:

-1

i Aur
Bour
(A,

B Be+ H\\y- C"nf + triC~CL.)}, and

+ + for 1< /<.

These update equations arise from maximising L{g) with respect to either or gMi,
and are derived in Appendix 4.A.I. Furthermore, pseudo-code is given in Appendix
4.A.6, and allows for the B¥t update to be performed in an efficient manner. After a

complete cycle though the updates, the lower bound L{g) takes the form:

m = - Mog(2.) - f +1 log-
+ A, log(B,) - Aq,log(B",)+1 o g - logr(A)) (4.14)

i=I
We refer the reader to Appendix 4.A.2 for the derivation of this expression.

Upon convergence to fi¥, E*, B*j"j,..., B* and B*", the approximate posteriors are:

p{"u\y) ~ the density in (/Sm)
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and

p(ofl,...,aﬁ,,aﬂy) ~ product of IG(A} ., B ), 1 <i<r,

qui’ q ui
and IG(Ag,, B; ) densities,

whereA;m~Am+ for1 <i<r, and A7, = A, + 3.

4.3.1 Characterising the Optimality

We find that for large K;, that the convergence of the coordinate ascent is slow. We have a
more serious problem in infinite dimensions; if K; = oo (as with Gaussian processes) the
algorithm breaks down. To use a rich kernel, such as the Gaussian kernel, an alternative
algorithm is to be found. Similar problems have been noted by Gibbs and MacKay (2000)
and Opper and Winther (2000).

We now consider the optimality conditions, in order to ascertain the properties of

the maximiser of L(g). These optimality conditions include
Byui = Bui+ 3{(#)ull® + r((Z))u)}, for 1<i<r,

therefore,
2

u;

1 Afe yx T *
B;ul B‘“ + 2 { (ngzqc y) + tr((z‘q)ui)}
A; ui B Aui + E2" .

Some algebra shows that tr((Z7).,) admits the expression

(4.15)

B> . Ag
H((Z;)ui) = % {Ki - B* tr((CTCZ*)u,)} (4.16)

Substituting (4.16) into (4.15) and rearranging then gives

A* B> . A
q.£ T * q.ut 1 e ~T
Ay + tr((C'CX)y, = Byi + 5 Lr,C
{ ui 2B;,g (( ‘7) .)}A;m u 2 (B* y>ui

2

4.17)

We now make a similar argument for A7, and B .. The optimality conditions give

By, Be+i{lly—cml?+u(cTexy)}

A;;/e Ae + g

* 2
Be+1 {Hy — gCE;CTy| +tr(cTc>:;)}

_ , 418
A+ (419)

Let V* = blockdlag( 20, 3 i’ = IKI, .oy BZ = IK,) Then tr(CTCZ;) admits the expression

{p+(21<> VZ*)} (4.19)

tr(CTCL;) =
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Substituting (4.19) into (4.18) and rearranging then gives

2
B A
* gk q,€ , *
{ (n—p EK) trVZ)}A* =B+ y—B;:CZqCTy (4.20)
B; ul B; L Ur B
The solution {Z;Ll . A% , A* } to equations (4.17) and (4.20) may be considered
q.u ur

as comprising part of the solution to the variational Bayes optimisation. That is, we

B .
may solve in terms of the ratios 5, without the requirement that Bq ui < 0. A similar
q, ux

approach to Bayesian problems have been used in Wahba (1985).

4.3.2 A Dual Space Formulation

Unlike the coordinate ascent, the optimality conditions of (4.17) and (4.20) allow for
a dual space formulation. This ensures that the algorithm may be kernelised. Other
authors, such as Harville (1974); Hastie and Tibshirani (2004) and Friston et al. (2006)

have given versions of algorithms in both primal and dual forms. Let us begin by

setting
B Bl 17
* _ T q.ui T
nqz{ XX +2A* ZZ, +A* 1} : (4.21)
q.ui

We now express the equations (4.17) and (4.20) in a manner amenable to kernelisation.
It is shown in Appendix 4.A.3 that the solution to the Bayesian Gaussian linear mixed

model requires

2
B B . B* .
{Au,+ 5 f;’j" (zizfn;)} A‘i X = Byi+1 ( A‘Z;“’) y'I;Z;Z] Iy, (4.22)
quz quz qut

foralll <i<r and,

B; .\ B (B 2 )
A+2A* tr(IT7) A, =B+ A* Iy (4.23)

The formulation of (4.22) and (4.23) allows the Bayesian Gaussian linear mixed model
to be expressed in terms of inner products. Let K; = Z,~Zl.T for1 <i <rin (4.21). Then
(4.22) simplifies to

B B, B\’
{Au, +5 /;’f’ r(K; nq)} G =But3 ( A‘i’“’) y LK y. (4.24)

qui

In the expression (4.24), the to reference to Z occurs only through the inner products,
K; = Z,Z[, for 1 <i <r. As such, the Gaussian linear mixed model (4.8)-(4.10) may be

kernelised; with positive definite functions k;, foreach 1 <i <.
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4.3.3 Relation to Restricted Maximum Likelihood

We now show that ML and REML are a special cases of the variational Bayes framework.
This helps improve the interpretation of the mean-field approximation variational Bayes.
Introduced by Patterson and Thompson (1971), REML is a mature and well-regarded
method method for estimation of covariance matrices or variance parameters in semi-
parametric regression problems. There are stable algorithms for performing either ML

or REML. These can be adapted for the variational Bayes framework.

B;. B: B; . . 0 .
Theorem 4.1. Let {Zq;ﬁf' 74‘3',—‘;‘1, ooy AZZ:} be a stationary point to the likelihood function of the
Gaussian linear mixed model (4.8)-(4.10). Let
Bq £ Bq ui
0 = —— and i=——, for 1<i<r.
lp Aq,s le Aq,ui

B, B B
* * *) — q,€ qul qur : 4 :
Then {5, ¥1,....¢¥;} = {_As,e’ A Ao } is a stationary point of

r
pax 3log|T,| — 3y Ty — Aclog o — Beypy ' — Y (Au,- log ¢; + Bu,'l[)l-_l) , (4.25)
’ TAALlA 44 l':l

where

-1

,

I, = {agxxT +Y vizzt + IPOI,,} :
i=1

Proof of Theorem 4.1 is given in Appendix 4.A.4. The Gaussian linear mixed model
(4.8)-(4.10) has the prior parameters Ay;, By, A¢, Bc and og. The prior distributions are
improper in the limit as Ay, By, Ae, B — 0 and 0g — oo. It is noted that equation
(4.25) bears some resemblance to the classical log-likelihood. The expression in (4.25) is
recognised as a constant plus the log-likelihood of an n + r + 1-dimensional Gaussian
distribution. We now clarify a simple connection, as a direct consequence of Theorem

4.1.

Theorem 4.2. Let Ay, Byi, Ac, B — 0%, Then a maximal point to the optimisation in (4.25)

gives a stationary point to

max  1ilog || — 1y Ty, 4.26
{‘PO,tpl/ule’r}GQ 2 g | ql zy qy ( )

where the domain is

Q={¢0201.-.,¢r20}~

We recognise (4.26) as a constant plus the log-likelihood of an n-dimensional Gaus-
sian distribution with mean 0 and covariance matrix l'Iq_ 1. It is well known that such

likelihoods may have local maxima. For a recent discussion on such bimodality, see



78 4 Semiparametric Regression via Variational Bayes

Welham and Thompson (2009). As 0 — oo, the equivalent optimisation problem (e.g.,
Patterson and Thompson, 1971; Harville, 1977) is

jmin 310§ x| - § log | X" THRX"| — 3(y — XB) Tx(y — XB),  (427)
0, 1,..., r

where
-1
r
Ig = {ZlPiZiZiT+l/JOIn} ,
i=1

and X* is a matrix made up of linearly independent columns of X, with
rank(X") = rank(X),

and

B=(X"X)"X"y,

where (XTX)~ denotes the Moore-Penrose generalised inverse of X' X. The quantity in
(4.27) is know as the restricted log-likelihood. The stationary points of (4.27) over () are
REML estimates.

The relationship between REML and empirical Bayes is well known (Harville, 1974).
It perhaps should not then be surprising that improper Bayesian conjugate priors lead to
REML estimates. A close relationship between parametric empirical Bayes and REML is
shown in Friston et al. (2002). The link between Laplacian approximations and REML is
shown in Friston et al. (2006). Moreover, it is shown in Wipf et al. (2007) that, regardless
of the choice of prior, there is always a relationship between Bayesian models and REML.
The given technique, however, does not specify the functional form (4.25). With proper
priors, variational Bayes gives a lower bound for log p(y) in (4.14). The existence of
posterior probability estimates then distinguishes variational Bayes from either REML
or from empirical Bayes. With a lower bound on log p(y), it is then straightforward
to approximate the deviance information criterion for comparing models (Spiegelhalter

et al., 2002).

4.3.4 Optimising the Parameters of Variational Bayes

We now detail an alternative to the coordinate ascent algorithm. We have shown the
maximiser of L(g) under the factorisation restriction (4.11) is the same as the maximiser
of REML-style optimisation in (4.25). It is now (4.25) to which we apply a standard

optimisation technique. Let ¢y = %fe and ¢; = %ﬁi, for 1 < i < r. The dual space

i
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formulation is

-1
r
Hq = {O'EXXT + ):lp’ K; + IPOIn} ,

i=1

o = Bt ST
Ae + %4’0“(1141)

Bui + 39}y T, KLy
Ayi + JPitr (K1)

and

P = , for 1<i<r.

A reliable method for finding ML estimates is in the method of successive approxima-

tions (e.g., Harville, 1977). We have the updates

-1
r
I, {agXXT+ }::piK,-+tpOIn} ,

i=1
gy Bt 3UEITyI
A+ %l,llotr(nq)
o Bui+ 397y T KLy
Ayi + Lyitr(KIL,)

and

, for 1<i<r.

P

Coordinate ascent can also be applied to the equivalent primal form. The optimality

conditions, as update equations, are
V « blockdiag (%‘21,,, ¥k, ,tp,_lIK,)
-1
5, {w'cTc+v}
g — ¥y ECTy
2
Be+ 3 |ly — Cy|

, and
A + % (n -—p-Yi4 K,-) + %1;Jotr(V}:q)

Yo —

2

Bui + % ” ("‘7)1&,
Aui + 1K =t ((VEg)y,))’

P — for 1<i<r.

The sequence of updates {iyo,...,¢,} are equivalent whether made in the dual or
primal form. Computationally, however, there are important differences. Naively, it
takes O(n?) operations to calculate I, and O((p + ¥j—_; K;)?) operations to calculate Z,.
Each ¢; update in the dual form requires O(n®) operations. As such, a complete iteration
in the dual form takes O((r + n)n2). In the primal form, a gy update requires some
O(n(p + X711 K;)), for an overall cost per iteration of O((n + p+ X7_; Ki)(p + Li_; Ki)?)
operations. The dual form is suitable for small n, and the primal form is suitable for
small p + Yi_; K;. The cost per iteration of the coordinate ascent is very similar to that

of the primal form.
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iteration number iteration number

Figure 4.4. Comparison of the convergence of coordinate ascent and successive approximation
methods. The details of the penalised spline model used are given in Section 4.3.5. The comparison
is made under two different optimisation criteria that share the same optimum. Under both
criteria, successive approximation method exhibits faster convergence. Left: Convergence in

as given by equation (4.34). For the coordinate ascent, (4.34) simplifies to (4.14). Right:

Convergence in the simpler optimisation given by (4.25).

A comparison with coordinate ascent is made. A simple spline model was fitted
with twenty knots; the details are given in the next section. Figure 4.4 shows the conver-
gence of the coordinate ascent and successive approximation methods. The left side plot
shows the convergence in L(g). The successive approximation method displays a better
convergence than does that of coordinate ascent. On the right side of Figure 4.4, we
make comparisons under the log-likelihood style optimisation criteria given by (4.25).

There is a clear preference for the successive approximation method.

4.3.5 Spinal Bone Mineral Example

We now give an example of the spinal bone mineral density data set, as per Chapter 3
and Bachrach et al. (1999). The longitudinal data set includes a cohort of 193 young
males, with subjects categorised as belonging to one of four ethnicity groups: Asian,

Black, Hispanic and White. With single subscript notation, the model is

where the y/ are spinal bone mineral measurements (g/cm”), the xf contain indicators
for ethnicity and the Xi are age measurements. The function c: R — R indicates a curve.
Two different kernels were chosen to model the curvature. The first was a penalised

spline kernel of Chapter 2, with 20 knots equally spaced over the observed domain of
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Figure 4.5. Spinal bone mineral density measurements from the male cohort. Fits were made
using Variational Bayes. Both curves fit the data well. Upper: Penalised spline fit, with twenty

evenly spaced knots. Lower: Gaussian kernel based fit.
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ages. As a low-rank kernel, the primal updates were used. The second kernel was a
Gaussian kernel with v = 0.05. As the corresponding design matrix Z, is infinite di-
mensional, the optimisation must be carried out in the dual. We used the uninformative
prior parameters A, = A,; = Ay = B = By = Byz = 0.1, and 0 = 10%. The spline
fit gave P, = 1.52 x 1072, ¢, = 1.49 x 1072 and ¢p = 1.98 x 10~3. The Gaussian kernel
gave P; = 4.31 x 1072, , = 1.50 x 1072 and Pp = 1.94 x 1073, The fits are shown
in Figure 4.5. Both fits appear appropriate, and would appear to neither oversmooth
or overfit. It is of interest in comparison is the estimates of §. For spline fit we have
Po = 1.98 x 1073, and for Gaussian we have the slightly lower § = 1.94 x 1073. These
serve as estimates for the errors, 082, and would indicate that the Gaussian kernel is only

slightly preferable.

4.4 Binary Response Semiparametric Regression

It is of interest to extend the Bayesian Gaussian regression model. In this section, it is
the Bayesian probit regression model that is considered. We note that a similar approach
may be made, for example, with Bayesian Poisson regression. The Bayesian version of

the Gaussian probit mixed model takes the form
y|B,u, G ™S Bernoulli(®(XB + Zu)), u|G ~ N(0,G) (4.28)

where y is an n x 1 vector of Bernoulli response variables, encoded as {0,1}, and

o(x) = [7 gp(v;zt—#dt. The components B, u, X, Z and G are as in the previous

section,

G = blockdiag(c Ix,, - - ., 02,Ik,). (4.29)

We also impose the conjugate priors:
B~N(0,03I), 0% ~IG(Ay,Bu), 1<i<r. (4.30)

for some ag >0and A,;,B,; >0,forall1 <i<r.
Following Albert and Chib (1995) and Girolami and Rogers (2006), we introduce the

vector of auxiliary variables a = (a3, ...,4,) where
ai| B, u ™ N((XB + Zu);, 1).
This allows us to write

p(yila:) = I(a; > 0)¥il(a; < 0)7%, 1<i<n.
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(@) With constants shown (b) Without constants shown

Figure 4.6. Directed acyclic graph representing the probit mixed model The inclusion of the

node a allows the problem to be tractable under the factorised density assumption (4.31).

These associations are represented in Figure 4.6 as a DAG. In particular, the introduction

of the auxiliary variables allows us to make the three-component factorisation.
(4.31)

It is shown in Appendix 4.A.1 that application of (4.6) leads to the optimal densities

taking the form

and

with

We also have

i=]
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with
Ha = C"qr
and TN(-, -, -, -) is the truncated normal distribution.
Like the Gaussian case, the parameters A, ,; are deterministic,

Aq,ui:Aui‘F%;lSiSr-

The parameters p, and Z; in (4.12), and B, and By i in (4.13), however, are dependent
on g4. Denote by # the mean of a under g,
1] = Eq( ,,)a.

The mean of a truncated normal is given by (e.g., Johnson and Kotz, 1970):

yo(ra) (1—y)p(pa)
O(p) 1-O(pa)

We now minimise the Kullback-Leibler divergence, by application of (4.6). It is shown

Eq(a)@ = pa +

in Appendix 4.A.5 that coordinate ascent gives

A A -1
T . -2 q.ul qur
L, — {C C + blockdiag (aﬁ I, —Bq,ul Ik, ..., _Bq,ur IK,) } ,
Bg — quT’lf
MBa — C}‘qr
yo(ra)  (1—y)¢p(pa)
+ — , and
TR T Sua) ~ 1— D(a

(Ha)
Byui — Bui + 3 {|(g)ul* + tr((Zg)u)}, for 1<i<r,

1

until convergence.

Upon convergence to ;4;( Bu) L}, B 1, -+ By the approximate posteriors are:

p(B, uly) ~ the N(uz4,), E;) density in (B, u),

p(c2,,...,0%|y) ~ product of IG(A? ., B} ;) densities,

q.uir 2qui

and

pi(aly) ~ product of TN((3);, 1, —c0,0)

and TN((#;):,1,0,00) densities.

As with the Bayesian Gaussian mixed model, the optimality criteria given by co-

ordinate ascent may be expressed in different forms. In primal form, the method of
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successive approximations gives
V « blockdiag ((75'21,,, Py Ik, . .,q;,"lIK,)
z, — {gg1cTC+ V}—l,
Mg — Py 'L CTy,

Ha — Cpg,

yP(ra)  (1—y)¢(pa)
D(p,) 1-D(ua) ’

2
Bui + % H (Iu‘f)u,-
Aui + 5(Ki —tr(VEg)w,)’

A dual space formulation is

N — pa+ and

Pi —

-1
r
I, — {XXT+Z¢,»K,~+I,,} ,

i=1

i=1
yo(ra)  (1—y)p(pa)
D(pa) 1- q)(.ua) ’
Bui + 3?ul TL KT p,
Ayi + it (K1)

The resulting estimators may be seen as a generalisation of the ML and REML esti-

’
Ha — (XXT —+ Elpl Ki) H,,r;,

N o+ and

, for 1<i<r.

Pi —

mators to the probit model. In particular, with improper priors, the resultant estimators
appear to match those of the penalised quasi-likelihood approach of Breslow and Clay-
ton (1993) and Wolfinger and O’Connell (1993). The mean, 7, is known as the pseudo-
data (e.g. Molenberghs and Verbeke, 2005). The literature contains several methods that
can be seen as generalisations of ML or REML to non-Gaussian response. For binary
response, it is common for such generalisations to display a bias in the mean estimates
of the parameters (e.g., Lee and Nelder, 2003). That is, such generalisations are known
to oversmooth.

There are alternative restrictions that lead to tractable solutions. Most notably,
it would appear as if a Laplace or Taylor series approximation (e.g., Wolfinger and
O’Connell, 1993) may both lead to a tractable solution, and to a generalisation of pe-

nalised quasi-likelihood.

4.4.1 Spam Data Example

We illustrate the Bayesian Probit mixed model with an example. The “spam” data is

described in Hastie, Tibshirani and Freidman (2001), with spam e-mail messages coded
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as 1 and ordinary messages coded as 0. For ease of presentation, some sixteen predic-
tor variables out of a total of fifty-seven were selected. An additive model penalised
spline kernel (Section 2.5.3) was used to build the de<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>