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ABSTRACT 

This thesis reports the results of an investigation into, the 

ultimate stre_ngth of beams loaded in combined torsion, bending and shear 

and the deformations of members subjected to combined torsion and 

flexure. 

Chapter 2 presents the results of a critical review of the 

published investigations into the behaviour of reinforced concrete members 

subjected to torsion with and without other actions, In addition the 

various strength theories which have been proposed are discussed and a 

comparison made between the published experimental results and the 

predictions of these theories. 

The results of the experimental phase of this study are reported 

in Chapter 3. Tests were conducted on plain concrete specimens, beams 

reinforced in the lo_ngitudinal direction only and beams confaining both 

longitudinal and transverse steel. The loads were applied to produce 

either pure torsion or torsion combined with flexure, 

An empirical treatment of the problem of the ultimate strength 

of beams without web reinforcement ,is given in Chapter 4. A simplified 

design procedure is developed. 

Chapter S presents an analysis method for the ultimate capacity 

of a web reinforced beam subjected to the combined loading. Equations 

are derived for the interaction behaviour in bending and torsion. In 

Chapter 6 the results of the tests of both this investigation and 

published works are used to verify the analysis methods for web reinforced 

beams. 



The work on the ultimate stre_ngth of beams is completed 

by the·design procedure set out in Chapter 7. 

Finally a theory for the deflections and rotations of 

web reinforced beams at service loads is offered in Chapter 8. 
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In addition to special symbols which are <lefined wnere they 

appear, the following symbols are used in this thesis; 

ALI = The cross-sectional area of longitudinal steel near the 

tension face of the beam subjected to flexure. 

AL2 = The cross-sectional area of longitudinal steel near the 

side face of the beam. 

AL3 = The cross-sectional area of longitudinal steel near the 

compression face of the beam subjected to flexure. 

Aw = The cross-sectional area of one leg of hoop reinforcement. 

a1,a2 - The cover on longitudinal steel. 

a3,a4 = The cover to the hoops from the sides and bottom 

of the beam. 

b = The width of the beam (minimum ·dimension) . 

b' = The width of the hoop. 

d' = The height of the hoop. 

d = The distance from the extreme·compression fibre 

flexure) to the centroid of ALl. 

e = The strain in the web steel. 
w 

e = The strain in the longitudinal steel. 
s 

E = The modulus of elasticity for concrete. 
C 

f' t = The tensile strength of concrete. 

f' 
C 

= The compressive strength of the concrete. 

(for 



G = The shear modulus of rigidity. 

h = The depth of the beam. 

I = The cracked transformed section moment of inertia. er 

I = The gross section moment of inertia. g 

Igt = The gross transformed section moment of inertia. 

jd = The lever arm of the lo_ngitudinal steel as 

computed from the modular ratio theory. 

K1,K2 = Constants defined by the elastic theory for torsion. 

M = The bending moment applied to the section. 

Mu = The computed ultimate flexural capacity of the section 

M er 

p' 

p 

R 

r 

r 
0 

s 

in simple flexure. 

= The cracking moment. 

= The ratio of AL3 fL3 to ALl fLl. 

= A parameter relating transverse to longitudinal steel. 

= The design value of r. 

= The spacing of hoops. 

T1,T2,T3,Teff = The predicted torsional strength in mode 1, mode 2, 

mode 3 and the effective shear mode respectively. 

T = The torque resisted by the concrete. 
C 

Ts = The torque resisted by the steel. 

Tcr = The cracking torque. 



T 
0 The pure torsional capacity of a beam. = 

T = The twisting moment applied to the section. 

T' = T / 1 + 2ol 

V = The shear applied to th.c section. 

V0 = The shear capacity of the section in siimple flexure. 

V eff = An effective shear force ( V + 1. 6 T /b) . 

x1 ,x2 ,x3 = The depth of compression in mode 1, mode 2 and mode 3. 

a = The ratio of the height to the width of the section. 

13 = The ratio of the effective height to the effective width of 

the section. 

0 
Vb = 2T 

Ql,Q2,Q3 = The inclination of the compression hinge to the cross-

section of the beam in mode 1, mode 2 and mode 3. 

Q = Therotation per unit length of the beam. 

Qs = The rotation per unit length of the beam induced 

by steel strain. 

Qc = The rotation per unit length of the beam induced by 

concrete strains. 

= The ratio of torque to moment (TtM). 



1.1 

CHAPTER 1 

lNTltOillJC:TION 

1.1 GENERAL 

The structural requirements of a reinforced concrete member can be 

stated as, (i) an adequate reserve of strength against collapse and (ii) 

satisfactory performance at service loads. The logical method of meeting 

these requirements is the use of ultimate strength design procedures and 

when necessary calculations of deformations at working loads. It was the 

object of this thesis to develop suitable methods so that this approach could 

be extended to the case of combined torsion, bending and shear. 

In particular a study was made into the failure behaviour and 

ultimate strength of rectangular reinforced concrete beams subjected to 

combined torsion, bending and shear. The deflections and rotations of 

web reinforced beams were also considered. A solution to these problems was 

sought that satisfied the dual criteria of accuracy and simplicity. 

An extensive expe'rimental program was undertaken to provide, 

(i) the understanding of the failure behaviour essential to the development 

of the analysis equations, 

(ii) ultimate strength test data for a wide range of parameters required 

for the confirmation of the proposed theories. 

It should be noted that the sections of this thesis which deal 

with the ultimate strength of beams were carried out as a joint project 

with Collins (ref 1. 1). The work on deflections and rotations was, 

however, an individual project. 



1. 2 

1.2 LAYOUT AND SCOPE 

In general, research is a process where new knowledge is 

built up step by step from existing work, Considerable attention was, 

therefore, devoted to a study of the literature on torsion in concrete. A 

critical discussion of previous investigations is given in Chapter 2, From 

this work it was found that al though a surprisi_ng number of investigations had 

been conducted. in this field very little of this work was sufficiently 

comprehensive for design use. Cowan and Armstrong provided the first 

satisfactory working stress design procedure for bending and torsion, but 

their work only partially answered the problems of bending torsion 

interaction and was, of course, restricted ·to working loads. Furthermore 

shear and torsion was not considered, The most important work on 

ultimate strength was carried out by Lessig, Chinenkov and Lyalin. Their 

method was complex and very restricted in its application. The ultimate 

equilibrium failure mechanisms were however of great importance and have 

affe.cted all subsequent ultimate strength theo.ries. Virtually no work 

has been done in the field of deflections and rotations in combined bending 

and torsion. The literature survey provided·ideas that· were developed and 

modified, topics for detailed study, and experimental data. 

Even if only one beam section. was chosen for study, a large 

number of tests would still be required to investigate the effect of the 

ratio of torsion to moment and the ratio of torsion to shear. Added to 

this is the need to consider plain concrete beams, beams reinforced in the 

longitudinal direction only and web reinforced be.ams. Further tests are 

then necessary to take into account factors such.as the proportion of 

longitudinal to transverse steel, overall amount of reinforcement and span 

to depth ratio. In an attempt to encompass as many of these parameters 

as possible a large experimental program was undertaken. 



The discussion of the experimental work is given in Chapter 

3. To accomplish the desired test program instrumentation to the 

early test series was restricted, Strain gauge, rotation and 

deflection results are however available for beams of the deformation 

series. 

The ultimate strength of beams containing only longitudinal 

reinforcement loaded in combined -torsion, bending and shear is treated 

in Chapter 4. For this case an empirical approach was adopted. A 

L3 

more accurate solution to this problem does not appear justified until 

better methods are available for the related probiems of shear strength of 

beams and tensile strength of concrete.· The design procedure recommended, 

although simple, offers considerable improvements·in accuracy and 

efficiency over current code rules. 

Chapter 5 presents an analysis method. for the ultimate strength 

of web reinforced beams loaded in torsion combined with bending and shear. 

The theory is based on the equilibrium of failure models. Particular 

emphasis is placed on the interaction of bending and torsion on the capacity 

of a member. In this thesis only an empirical equation·is given for the 

loading combination of shear and secondary torsion, A more detailed 

treatment of this loading case is given by Collins, 

The analysis method is extensively verified by comparison with 

experimental results in Chapter 6, 

The analysis methods in Chapters 4, 5 and 6 are brought to their 

logical conclusion in the design procedures presented in Chapter 7, 

Finally, a method which enables the deflections and rotations of web 

reinforced beams, at service loads, to be computed is developed in Chapter 

8. 



2.1 

CHAPTER 2 

HISTORICAL SURVEY 

The object of this chapter is to present a critical review 

of the investigations carried out in torsion. Where possible, 

comparison with experimental results is used to evaluate the reported 

theories. 

2 .1 BEAMS i'!ITHOUT WEB REINFORCEMENT 

2.1 (a) Pure Torsion 

As early as 1911 it was recognised that beams reinforced 

with longitudinal steel only and loaded in pure torsion fail 

immediately after the formation of the first diagonal tension crack. 

The twisting moment to cause such cracking is comparable with the 

maximum twisting moment which can be resisted by a plain concrete 

section similar to the reinforced member in all respects except 

for reinforcement. The ultimate torsional capacity has been 

reported as up to 15% greater than that for comparable plain concrete 

sections, although some tests (Young, Sagar and Hughes) (2.1) have 

shown lower strengths for the reinforced sections. This decrease 

is probably due to restrained shrinkage. 

Longitudinal steel only is not effective in preventing 

the opening of diagonal tension cracks resulting from twisting 

moment, and it is inadvis·able to consider such reinforcement as 

increasing the torsional capacity of the member. In other words, 

the torsional strength of a beam with longitudinal steel only 

should be assumed to be the same as a beam without reinforcement. 



2.2 

It is therefore of considerable interest to study the case of plain 

concrete beams. The strength of plain beams depends upon the stress 

distribution across the section and the failure criterion in concrete. 

In the early investigations the classical elastic stress 

distribution was adopted. Some later reports recommend the use of 

the fully plastic stress distribution. In the plastic theory, 

concrete is assumed to behave as a rigid-plastic material. This 

results in a constant shear stress across the section. Very little 

proof of the truth of either of these theories is available. Marshall 

(2.2) chose the plastic theory on the basis of its consistency for 

groups of test results in which the same concrete was used. As the 

torsional shear stress-strain relationship exhibits a small amount 

of plasticity prior to concrete failure Kemp (2.3) recommended the 

plastic approach. In support of this conclusion he quotes theoretical 

work by Armstrong (2.4) that demonstrates that small plastic strains 

produce a relationship between maximum stress and torque that closely 

approximates the plastic theory. In both cases a formula for torque 

in terms of size and maximum tensile stress can be obtained. 

1. Elastic Theory 

T = K b 2 h f 1 
t 

Where· 

= 
1 

K 2.6 
3 + 0.45 + 

2. Plastic Theory 

T = .!. b2 
2 (h - b) 

3 f' t 

(2.1) 

Approximately 
h/b 

(2.2) 



2.3 

A far more significant problem is the failure criterion of 

concrete. As the failure of a plain specimen occurs with cleavage 

along a 45° spiral it has reasonably been concluded that a maximum 

principal tensile stress criterion would be appropriate. The actual 

value of the limiting stress to be used with the above formula has 

been largely ignored. Results of tensile tests on the concrete 

are of limited use as a variety of tests have been employed and 

generally the strength obtained depends upon an elastic analysis 

of the test specimen, e .. g. Brazilian test or Modulus of Rupture. 

Kemp suggests that a suitable value for the limiting stress to be 

used with the plastic theory is, 

f' = 4 (fi,_ 
t C 

This approach is quite useful, as in general, concrete 

is specified by its compressive strength. However, some results 

indicate strengths rather below that given by the above formula. 

2.1 (b) Beams Without Web· Reinforcement Subjected To 
Combined Bending and Torsion 

Except in very exceptional circumstances torsion will be 

accompanied by bending in reinforced concrete construction. Very 

frequently, when torsiona1 moments are low the designer.may elect 

to use a beam with longitudinal steel only. It is therefore 

important that information is available regarding the possible 

effects of bending on torsion and vice versa. Only three investi

gations appear to have been made; one by Nylander (2.5)· in 1945, 

one by Gesund and Boston (2.6) in 1964 and one by Ramakrishnan and 

Vijarangan (2.7) in 1963. The ultimate strength of a beam of this 

(2.3) 



2,4 

type depends upon; the strength of the concrete in compression and 

tension combined with other stresses, crack propagation, dowel 

forces as a function of concrete or steel shear stresses and perhaps 

aggregate interlock, The problem is somewhat similar to combined 

shear and flexure in its difficulties, 

Nylander and Gesund and Boston have proposed methods of 

treating two of the possible mechanisms of failure, It should be 

recognised that neither of these methods accounts for all possible 

modes of failure. 

Nylander proposed a design method for normally reinforced 

beams subjected to bending and torsion. He analysed a cracked 

section resisting the combined forces and considered that torsicn 

was resisted in two ways, partly by the uncracked concrete zone 

and partly by shear forces in the steel acting about the centre of 

the concrete compression zone. The torsion re5isted wholly by the 

concrete he expressed in the form sT where T is the pure 
0 0 

torsional capacity of the section as calculated from the plastic 

theory and 8 is a constant depending upon the shape of the section 

and the amount of longitudinal reinforcement, Nylander gives a 

table of the values of B • 

d e.g. 8 ~ 0.55 when~ = 1.5 and p = 0.005 

He thus computed the shearing stresses set up in the steel 

by the remaining torque. Additionally he calculated the direct 

stresses in the steel by the normal bending formula, Then, using 

the Huber-Beltrami failure criterion. for combined shear and tension 

on the steel, he obtained the following formula for the amount of 



longitudinal steel required; 

ALl 1 (J. Md) 2 + 3 
= fLl 

2.5 

(2.4) 

This theory is based on two main assumptions, (i) that there exists 

an uncracked concrete zone and (ii) that the dowel forces are 

governed by yield of the steel. For beams tested with high ratios 

of torsion to bending a tension crack can cross the top surface 

before failure leaving no uncracked zone. Furthermore, the dowel 

forces are usually limited by the capacity of the beam· to resist 

spalling of the concrete. However the mechanism proposed by 

Nylander does give a reasonable representation of the failure beha

viour of a beam loaded with predominantly bending forces. 

Gesund and Boston considered that the torsional component 

of the loading was resisted wholly by dowel forces exerted by the 

longitudinal bars. Moreover the dowel forces were limited by 

spalling of the concrete. The torsional capacity is only influenced 

by bending in as much as the magnitude of the dowel forces depends 

on the spacing of flexural cracks. By assuming that the dowel force 

on any bar, other than the bar causing spalling, is proportional to 

its distance from the longitudinal axis about which the beam 

rotates at failure, they obtained the following formula for torsional 

capacity: 

1 
T = F (r + 

C C r 
C 

(2.5) 



2.6 

where F is the dowel force on the critical bar, that is, the bar 
C 

at which spalling occurs, 

r is the distance of this bar from the failure hinge, and 
C 

r. is the distance of the i th bar from the failure hinge. 
1 

To find the value of F, it is necessary to calculate the 
C 

force required to spall off a block of concrete. The method proposed 

by Gesund and Boston is a trial and error process and involves making 

assumptions, not easily justified, regarding the shape of the concrete 

spall, the spacing of the flexural cracks, the bond strength and 

the bearing stress distribution on the bar. Furthermore as the 

method is tedious to use it does not commend itself as a design 

procedure. 

Ramakrishnan and Vijarangan in 1963 published the results 

of a series of tests on beams without web reinforcement. They con

cluded that the torsional strength of such beams could be calculated 

by ignoring the longitudinal reinforcement and by.using· an elastic 

distribution of stress and a maximum tensile stress criterion of 

failure. They proposed the following empirical relationship for 

the tensile strength 

f' = 2.6 C 213 
t u 

(2.6) 

They further concluded that the addition of bending 

moment did not effect the torsional strength. As the stress criterion 

was based on their own tests in which only one concrete mix was 

employed correlation was good. 

It is of interest to compare the predictions of the above 



2.7 

theories with experimental results. For this purpose, Table 2.1 

was prepared. In this table the test results are· compared with the 

predicted ultimate torsion capacities obtained from the three 

theories. The table shows that although each investigator obtained 

good correlation between his own test results and theory, comparison 

with other results is not so satisfactory. The method of Gesund 

and Boston gives the best results, but even then the correlation is 

only fair. The theories of both Nylander and Ramakrishnan and 

Vijarangan are unreliable and at times unsafe. It may be concluded 

that none of the above theories offers a satisfactory basis for 

design. 

2.1 (c) Shear and Torsion in Beams without Web Reinforcement 

Despite the relative importance of the problem of shear 

force combined with torsion and bending, very little experimental 

work has been carried out for beams with longitudinal reinforcement 

alone. Nylander tested one series of beams and concluded that 

failure would occur when the sum of the shear stresses due to torsion 

and direct shear equals the tensile strength of the concrete. This 

approach would seem an oversimplification, as even in pure shear 

the stress at failure is not constant. 

Based on Nylander's results Kemp suggested the following 

failure criterion:-

T 
-+ 
T 

0 

V v = 
0 

1 (2. 7) 

Where T and V are failure loads, T is the failure torque in pure 
0 

torsion, and V is the failure shear in flexure and torsion. 
0 



TABLE 2.1 

A COMPARISON OF EXPERIMENTAL RESULTS WITH THE THEORIES 
OF NYLANDER, RAMAKRISHNAN AND VIJARANGAN AND GESUND 

AND BOSTON 

Investigator Beam Failure Loads T 
exp/Tth 

No. 
eor. 

Torque Moment Nylander Rama- (}esund 
kip. in. kip. in. krishnan and 

and Vija- Boston 
rangan 

1 39.0 52.1 1. 12 0.72 1. 09 
2 31. 2 52.l 0.97 0.72 0.88 

Nylander 3 39.0 58.0 1. 15 0.79 1. 10 
4 35.1 58.0 1.07 0.79 0.99 
5 54.6 75.7 0.85 0.86 1. 70 
6 50.7 75.7 0.90 0.80 1. 61 
7 50.7 110. 0 0.98 0.74 1. 51 
8 54.6 110. O 1.03 0.80 1. 63 
9 31. 2 58.0 1.07 0.89 0.89 

10 19.5 58.0 0.89 0,89 0.89 

B4 17. 1 99.0 1. 36 1.34 1. 34 
BS 24.8 45.4 0.90 1.03 0.81 

Ramakrishnan B6 10.7 108.0 1. 39 1. 39 1. 39 
and C3 21. 7 111.0 1. 12 1. 06 1. 08 

Vijarangan C4 20.l 90.7 1.00 0,95 0.91 
CS 23.2 105.0 1. 03 1. 01 0.99 

3 58 58 1. 10 0.69 1. 09 
4 64 64 0.82 0.77 1. 60 
5 43 86 0.74 0.83 1. 48 

Gesund 6 36 108 0.74 0.68 1. 24 
and 7 59 177 1.05 0.93 1. 31 

Boston 8 49 195 1. 06 1.02 1.09 
9 42 83 0.44 0.49 1.50 

10 39 156 0.63 0.63 1. 56 

Summary Maximum 1. 39 1. 39 1. 70 

Minimum 0.44 0.49 0.81 

Mean 0.98 0.87 1. 23 

Standard Deviation 21°/o 24°/o 
0 

24 /o 
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Kemp suggested that this formula would be generally 

applicable, if V was based on a limiting stress of 2 FT'_ and T 
0 C 0 

based on 4 ./"f'_ 
C 
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2.2 BEAMS WITH WEB REINFORCEMENT 

A large number of experimental investigations have been 

undertaken on the effects of combined longitudinal and transverse 

steel on the torsional strength· of concrete beams. In some of this 

work attention has been focussed solely on the problem of pure 

torsion, but in a number of cases the problem of combined torsion, 

shear and bending has been investigated, 

2.2 (a) Beams Subjected· to Pure Torsion 

For beams subjected to pure torsion there is agreement 

between most investigators that, irrespective of the amount or 

disposition of reinforcement, tensile cracks appear.on the face 

of the beams with an inclination to the longitudinal axis of the 

beam of approximately 45°, when the twisting moment is approximately 

the same as the cracking torque of a similar beam of plain concrete. 

Once the member has cracked the torsional stiffness is reduced. 

The behaviour beyond this stage depends primarily on the amount 

and position of the reinforcement. 

Some disagreement exists about the final nature of failure. 

Particular points of disagreement are the contribution of the un

cracked concrete to the torsional capacity, and whether yielding 

of the reinforcement actually causes failure. 

The earliest researchers merely noted that reinforcement 

increased the torsional capacity. Rausch, (2.8) in 1929, attempted 

a rational solution to the problem of estimating the torsional 

capacity of reinforced concrete beams" Rausch considered the 

reinforced member as being analogous to a space frame in which 
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tensile forces could be resisted by ~he steel, In this way he 

developed the following expressions for the required web and longi

tudinal steel:-

A s 
T = b' d' w 2 f w 

(2.8) 
w 

and 

AL 
b' + d' 

T = b' d' fL w (2. 9) 

In these expressions fw and fL represent the permissable 

stresses in the transverse and longitudinal steel. His expressions 

could be regarded as relationships between the area of reinforcement 

and the ultimate torsional strength i.e. 

if 

T = 

A = 
L 

2 b'd' 
s 

f A w w (2.10) 

(2 .11) 

Rausch in discussing certain published test results stated 

that the very high twisting of members led him to believe that the 

reinforcement yielded before failure of the member. It is to be 

noted that Rausch did not allow for any contribution due to con

crete shearing stresses to the torsional capacity. In Figure 2.1 

the above equations are compared with the test results. Only 

b'd'f A within a certain range of values of w w (i.e. 0.5 to 1,0) 
s T 

C 

is tolerable agreement with experimental results obtained. For 

lightly reinforced beams the failure torque is primarily influenced 

by the concrete and for heavily reinforced beams failure may occur 
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prior to yielding of the reinforcement, Rausch's expressions are 

still quoted in many modern codes for reinforced concrete construction: 

Germany, Egypt, Hungary and Poland (2.9), 

Turner and Davies (2,10) in 1934 proposed a relationship 

for calculating the ultimate torsional capacity of a reinforced 

member. 

T = T (1 + 0.25 p' ) 
C 

(2.12) 

where p' is the total percentage of reinforcement. The percentage 

of longitudinal steel is p'/2 and an equal volume per unit length 

of transverse steel is required" They recommended that p' should 

not be less than 1% if the section is to carry considerable torque. 

Marshall and Tembe (2, 11) in 1941 agreed with Turner 

and Davies proposal for values of p' less than 1.5, but recommended 

that the following expression be used for higher values 

T = T (1.33 + 0.1 p') 
C 

. '." (2.13) 

These criteria agree only approximately with the results 

shown in Figure 2.2. In plotting this figure values of the crack

ing torque have been obtained from companion test specimens without 

web reinforcement. If this method is used for design the cracking 

torque would have to be computed resulting in further loss of 

accuracy of the approach. 

Andersen (2.12) carried out a large number of tests in 

1935 and 1937. He employed spiral reinforcement in a large propor

tion of his reinforced specimens, Andersen analysed circular 

specimens by assuming a stress distribution and a failure criterion. 
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The results were then related to square sections by "efficiency 

factors". The method obtained was neither simple nor accurate. 

Marshall and Tembe concluded that Andersen's formulae did not agree 

with test results; 

Cowan (2.13), who has written extensively on the subject 

of torsion in concrete, proposed a theory for a working stress 

approach to torsion design. He considered that the torsional 

resistance of a concrete beam was provided partly by the concrete 

and partly by the steel. With several assumptions, he obtained from 

the theory of elasticity an equation for the contribution of the 

steel; 

T = 
s 

= 

1.6 b'd' 
s 

A f w w 

2 (b I + d I) ____.______ A 
s w 

(2.14) 

(2.15) 

The elastic formula is recommended by Cowan for the 

computation of the contribution of the concrete. Experimental 

results show that the effect of the steel on the ultimate strength 

of a web reinforced beam as compared with an unreinforced specimen 

is far less than the above equation would imply (See Figure 2.1). 

Additionally, the effect of reinforcement on the cracking torque 

has been observed by many investigators to be negligible. If, 

however, the above formula is used in conjunction with a low estimate 

of the contribution of the concrete, useable results may be obtained. 

Cowan's theory has been used in this manner in the Australian code 

(S .A.A. - CA 2). 

All of the aforementioned proposals agree in one respect 
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in requiring equal volumes of steel pert unit length of beam in both 

the longitudinal and transverse directions. 

Ernst (2.l4) in 1957 conducted a series of tests to in

vestigate the effect on torsional strength of variations in the 

ratio of longitudinal to transverse reinforcement. He found that 

both the longitudinal and transverse steel yielded at failure for 

wide variations in this ratio. Further he found that increasing 

the amount of longitudinal steel while maintaining a constant 

amount of transverse steel·increased the torsional capacity of the 

beams. The theories outlined above cannot account for this increase 

in strength. 

Lessig's ultimate equilibrium method does account for 

this increase. However, pure torsion is treated by Lessig as a 

particular case of the more gene·ral loading condition: bending, 

torsion and shear. In view of· this fact a review of her work will 

be given in a later section of this report. 
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2.2 (b) Beams Subjected to Combined Torsion, Bending and Shear 

Beams subjected simultaneously to the combined action of torsion, 

shear force and bending moment are of much more interest, from the practical 

viewpointi than members with torsion only, This subject has received consider

able attention of late years, 

In 1953 Cowan (2, 15) put forward a theory of strength for combined 

bending and torsion, He emphasised that his theory was concerned only with . 

the visco-elastic limit or the point where pronounced cracking occurs. This 

point also corresponds with a marked change in the slope of load rotation 

curves, He divides the complete range of bending and torsion into "cleavage" 

failures associated with high torsion and "crushing failures" when bending 

moment is predominant, For cleavage failures he computed the visco-elastic 

limits from the uncracked stress distributions and a tensile failure 

criterion, This approach results in a predicted increase in torsional 

capacity with moderate bending, Although this effect was observed for 

Cowan's test beams, later work has shown that this effect is not universally 

true (Chapter 6). 

Cowan concluded that "It is therefore reasonable to design 

reinforced concrete section subject to combined bending and torsion without 

reduction or adJustment to the maximum permissable concrete or steel 

stresses"o 

In light of more recent investigations the above statement seems to 

require modification, 

An intensive study of the behaviour of reinforced concrete beams 

subject to combined torsion, bending and shear has been carried out in the 

Laboratory of Reinforced Concrete Structures - Moscow, The first major series 

of tests were conducted by N .N. Lessig (2 ., 16), She concluded from this 

work that failure in most cases was initiated by yielding of the reinforcement. 

Other types of failure were observed but these appeared to be of less 

frequent occurrence. They will be discussed later, Lessig described two 

principal modes of failure .. 
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In the first mode, which occurs most frequently with beams subjected 

to bending and torsion with negligible shear force (see Figure 2.3) cracks 

form on the sides and in the lower portions of the beam. The opening of 

these cracks is inhibited until either the longitudinal or both transverse 

and longitudinal reinforcement yields. As the steel yields the two lengths 

of beam rotate about an axis near the top face of the beam until the concrete 

in this face finally crushes. 

A second failure mode (see Figure 2.4) may occur when relatively 

large shear forces are present in conjunction with bending moment and 

twisting moment. In such cases the inclined tension cracks are predominant 

on the side of the beam, where tensions arising from twisting moment and 

from direct shear force are additive. After yielding of the steel the 

lengths of beam rotate about an inclined hinge located near the face opposite 

to that in which the tension cracks first appeared. 

Lessig derives expressions for predicting the failure loads for 

the two modes of failure described above. For the purpose of the analysis 

she assumes that the intersection of the failure surface with the beams 

faces are straight lines and further, that the inclination of these lines 

on the three sides corresponding to the tension cracks. is constant. The 

assumption is also made that all steel traversed by the failure cracks 

yields. 

In the analysis for Mode 1 the forces in the vertical legs of the 

hoops intersected by the failure crack, dowel forces and tensile stresses in 

the intact concrete are ignored" An inclined failure hinge of undetermined 

length q (see Figure 2.3) is assumed. Moments about this hinge are cal

culated for the tensile forces in the longitudinal reinforcement and in the 

bottom horizontal parts of the transverse steel. These moments are then 

equated to the components of the external moments about this axis. The 

critical length of the failure hinge which makes the moment a minimum is 

then determined. The depth of the compression zone is then found by 

equating the compressive forces perpendicular to the failure surface to the 

components of the tensile forces in the steel. 
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The depth of compression computed on this basis·is usually quite 

small. It is difficult to see how this shallow compresslon zone can resist 

the longitudinal forces required for equilibrium with tlrn tfmsil e forces 

in the main longitudinal steel. Indeed it would appear .that this step 

in Lessig's analysis is a cause of some inaccuracle;:; in the final equations, 

The analysis equations were presented in various forms in pape·rs 

by Lessig and subsequent Russian investigators" The following expressions 

are in the form given in the more recent papers and in the Russian code" 

= 
(h - a2 .. x1/2) 

(ql _ _!) 
b + tjJ 

b ;;-;-~Llf~-l s (2h + b) 
= -;,- + (-, ) + 0.8A f 

'I' I/) w w 

but q1 t 2h + b 

and 

= 
b 

2 2 
0,85 f~ (ql + b) 

By employing similar methods the following expres5ions are 

obtained for Mode 2. 

= 

= 

but q2 } 2b + h, 

l<\L f L 2 s (2b + h) 

A f w w 

(2. 18) 

(2,19) 

(2.20) 

(2v21) 



and 

= 
h 

2 
0.85 f~ (q2 

2.21 

(2.22) 

The predicted failure torque of the member is then taken as the 

lesser of the two values T1 and T2. 

The complete derivations are given in Lessig's work (2.17). 

Lessig's test and a series of tests by Lyalin (2.18) have shown 

that for cases where yield of steel occurs at failure the theory presented 

by.Lessig is reasonably accurate. 

Chinenkov (2.19) who conducted a series of tests on reinforced 

concrete beams subject to combined actions concluded that Lessig's formulae 

predict failure loads agreeing substantially with test values. Experimental 

values slightly higher than the predicted values could be accounted for by 

the concrete tensions ignored in the theory. In connection with Lessig's 

assumption regarding the constant inclination of the tension crack 

Chinenkov stated that this assumption did not agree with the observed facts. 

It is to be noted that the formulae given above have been based 

on the assumption that both longitudinal and transverse steel yield. This 

condition imposes several limitations on the amount and distribution of the 

reinforcement which may be used. 

In the first instance the amount of reinforcement must be limited 

so that the concrete in the compression zone wiil not crush before the 

steel yields. 

Lessig conducted a series of tests in 1957-58 to attempt to 

define this limit empirically. 
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She observed that even with high percentages of steel this mode of 

failure rarely occurred for values of~ in excess of 0,2.- From those tests 

in which compression failure occurred she obtained the following relation 

between the depth of the compression zone and 

X 
C 

= 0.55 - 0.7 fi (0 < ~ < 0. 2) (2. 23) 

For cases where X, from the above, was greater than or equal 
C 

to 2a2 the relation between steel areas and Xc would be 

(2.24) 

whereas if the indicated value of Xc were less than 2a2 the steel area would 

then be given by 

(2.25) 

The empirical equation (2.23) was based on a rather small number 

of tests, Lessig suggested that there is need for further work on this 

aspect of the problem. 

A much more common case of concrete compression failure occurs 

when the ratio of twisting moment to bending moment is higher than for the 

case mentioned above. 

A number of beams tested by Lessig failed in this manner. She 

assumed that the ultimate twisting moment in such a case could be expressed 

by a relation of the form 

T = K b2 h" f' 
C 

.... (2.26) 

As K would appear dependent upon the relative values of twisting 

moment and direct shear force, she examined the effect of a ratio involving 
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these two actions. For the type of failure being considered she 

concluded that there was no correlation between this ratio and the value 

of K. As K varies between 0.07 and 0.12 she suggested that a failure 

would not occur if 

T 
< 0.07 ............... (2.27) 

To test the effectiveness of this limitation, i.e. its ability. 

to exclude unconservative results, Figure 2.5 has been prepared. In this 

figure the ratio T /Tth has been plotted against the value of 
2 exp eor 

Tth /b h f'. The general trend of the results shown in this figure eor c 
suggest that the criterion is satisfactory. 

Various investigators have noted that complete stress 

redistribution can take place between transverse and longitudinal steel -

allowing both to yield point - for wide range of ratios of these steel 

quantities. 

Lessig and Lyalin attempted to establish empirically the limits 

of the ratio of transverse to longitudinal steel for which yielding of both 

steels could be guaranteed. 

They fixed limits as follows; 

for mode 1, 

A f b r-7"--

0. 5 ~ Aw wf ( 1 + : / 2! + b ) ~ 1. 5 
Ll Ll 6 "' 

and for mode 2, 

(2.29) 
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Lessig further suggested that beams which do not satisfy these 

restrictions could be analysed by ignoring the excess quantity of 

transverse or longitudinal steel. 

In all of the tests in which these limits were based the 

transverse steel was spot-welded to the longitudinal steel. 

These restrictions are both cumbersome and severe. To 

investigate the necessity for such restrictions Figure 2.6 has been 

prepared. In Figure 2.6 the accuracy of the theory (i.e. T /Tth ) exp eor 
is compared with values of the parameter, R1, where 

b -s 
2 

(1 + -
lj, ~) 

An examination of this figure shows that while the theory gives 

less accurate results for values of this parameter of less than 0.5,this 

restriction could safely be liberalized. Unfortunately, not enough 

experimental results are available for mode 2 failures to enable a 

similar check to be made on the restriction emposed by equation (2.29). 

However it would seem likely that this restriction could also be relaxed. 

The effect of the variation of the bending and twisting moments 

within the failure zone was made the subject of a theoretical investigation 

by Lessig. Amended design equations taking such variations into account 

are extremely complex. Considering that the theory ignores factors such 

as tension in the concrete etc., this refinement seems unwarranted. 
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The mode 2 failure which has been described earlier occurs in 

the presence of moderate shear force with yielding of the steel. Lessig 

found that a more norma1;fe-J-a1-UF08rcicpi11~8ii'Ml~fo,; with torsion and 

bending. Based on an empirical analysis of test results Lessig gave the 

following equation for the strength of a member failing in this manner. 

where 

V 
0 V = -,---

1+1.S/cS 

Vb 
c5 = 2T 

......... (2.30) 

andV is the shear capacity of the beam in the absence of torsion. given in 
0 

the Russian code by 

A f c:w w --s n) - A f n w w 

where n - number of "legs" of the stirrups. 

...... (2.31) 

Chinenkov performed two series of tests· on reinforced concrete 

beams subject to combined bending and torsion. In one series he examined 

the behaviour of beams subject to combined bending and torsion. In one 

series he examined the behaviour of beams in which the web reinforcement 

consisted of only vertical bars near the side faces. For such beams he 
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concluded that the maximum torque is given by 

b2 
T = 2 (h - b/3) f~ ....... (2.32) 

In the other series. the beams were reinforced with hoops and 

longitudinal steel. the main aim being to check the theories proposed by 

Lessig. He found that her theories gave results in substantial agreement 

with experiments although on the conservative side. 

To evaluate the accuracy of Lessig's theory and the ultimate 

strength theories proposed by other invest_igators • an analysis of all the 

available test data has been carried out. The results of this work are 

presented in Table 2.2. To eliminate abnormally reinforced sections, only 

those beams which satisfy the restrictions set out in equations (2.25) 

and (2.27). were considered. It can be seen from this table that the 

theory of Lessigs is only moderately accurate. The mean of the values 

of T /Tth for the tests is 1.62 with a standard deviation of 48%. exp eor 

In analysing this test data the excess quantity of longitudinal 

or transverse steel outside the limits set out in equations (2.28 and 

2.29) was ignored in accordance with Lessig's recononendation. If 

attention is further restricted to beams satisfying these limits and the 

beam failing in Modes 1 or 2 1 the theory can only be applied to 18 tests 

out of the total of 151 available test results. For this group, marked 

with an asterisk in Table 2.2 1 T /Tth has a mean of 0.98 + 14%. exp eor 

It should be noted that to determine the strength of a 

section and to check all the limitations quite a considerable amount of 

calculation is involved. Furthermore the method is an analysis approach 

and design must be carried by assuming all dimensions and reinforcement. 



TABLE 2.2 

A COMPARISON OF EXPERIMENTAL RESULTS AND THE PUBLISHED THEORIES FOR WEB 

REINFORCED BEAMS 

Part 1. Pure Torsion 

T /T exp theor 

Investigator Beam Torque Lessig Yudin Evans 
kip. in. 

Ernst 3TR3 34.3 2.18 2.01 0.31 

3TR1 49.7 1.58 1.45 0.52 

3TR15 61.7 1.12 1.03 0.82 

3TR30 76.0 0.82* 1.04 2.98 

4TR3 35.0 2.24 2.05 0.23 

4TR7 54.8 1. 76 1.60 0.40 

4TR15 74.0 1.36 1. 24 0.63 

4TR30 85.0 0.79* 0.89 1. 27 

5TR3 43.0 2.75 2.52 0.15 

5TR7 59.7 1.91 1.75 0.22 

5TR15 76.5 1.40 1.28 0.30 

5TR30 92.6 0.85 0. 77 0.46 

Cowan R3 71.8 4.05 3.30 0.33 

Mean 1.49 1.62 0.66 

Standard Deviation 40% 40% 80% 

Number of Tests 13 13 13 



Part 2. Bending and Torsion 
-- T /T, exp tneor 

Investigator Beam Torque Moment Lessig Yuclin Evans Gesund 
kip.in. kip.in. 

R5 75.4 75.4 3.86 3.47 0.67 0.88 

K:owan and R2 79.0 158.0 3.84 3.64 1.04 1.27 

V..rmstrong Rl 43.0 258.0 1.95 1.98 1. 32 1.51 

Sl 82.6 206.5 2.95 2.85 1. 26 1.52 

S4 64.6 258.4 2.23 2.23 1.41 1.63 

1 79.0 79.0 0.90* 1.07 0.79 1.02 

2 102 .o 102.0 0.91 1.26 0.93 1.32 

3 61. 0 122.0 0.93* 1.09 0.90 1.13 

4 67.0 134.0 0.95 1. 20 0.89 1.25 

5 49.0 147.0 0.97* 1.16 0.97 1.19 

Gesund and 6 56.0 168.0 1.10 1.33 1.00 1.37 

Boston 7 43.0 173.0 1.07 1. 25 1.07 1. 29 

8 44.0 176.0 1.08 1.27 0.97 1.31 

9 60.0 120.0 1.00 1.46 0.64 1.04 

10 44.0 176.0 0.84* 1.07 0. 77 1.21 

11 68.0 138.0 0.78* 1.12 0.76 1.18 

12 53.0 213.0 0.90* 1. 26 0.94 1.46 

828 0.1 48.6 486.0 1.04* 1.14 1.08 1. 23 

828 0.la 46.9 469.0 1.00 1.11 1.05 1.20 

828 0.4 146.0 365.0 1.40 1.99 0.94 1.49 

828 0.4a 139.0 347 .o 1. 33 1.90 0.90 1.42 

8hinenkov 828 0.4b 146.0 365.0 1.40 1.99 0.93 1.25 

828 0.4c 153.0 382.0 1.44 2 .12 0.89 1.36 

828 0.4d 125.0 313.0 1.19 1.67 0.85 1.49 

828 0.4e 132.0 330.0 1. 28 1. 77 0.86 1.54 

Mean 1.51 1. 70 0.95 1.29 

Standard Deviation 56% 40% 19% 15% 

Number of Tests 25 25 25 25 



Part 3. Bending, Torsion and Shear 

T /T exp theor 

Investigator Beam Torque Moment Shear Lessig Yudin 
kip.in. kip. 1.IL kips 

BIII2 146.0 243.0 9.24 1.51 1. 21 

BIII2A 151.0 261.0 10. 21 1. 54 1. 31 

BIIIS 156.0 416,0 15,56 1.56 1. 38 

BIIISA 151.0 416.0 15.52 1.47 1. 36 

BIII6 92.0 156.0 4.07 1.14* 1.62 

BIII6A 83.4 156.0 4.16 1.11* 1. 56 

BIII7A 90.4 313.0 8.06 1.20* 1.55 

BIII7 83.4 278.0 7.16 1.09* 1.41 

Lessig BIII8 114.5 191.0 4.99 1.87 2.07 

BIIISA 111.0 191.0 4.99 1.80 1.85 

BIII9 78.0 313.0 4.63 1. 33 1.45 

BIII9A 79.0 313,0 4.99 1.80 1.85 

BIII9 78.0 313,0 4.63 1.33 1.45 

BIII9A 79.0 313.0 4.71 1. 39 1. 55 

WB 53.0 132.0 6.64 2.73 3.35 

WBA 57.3 143.0 7.16 2,85 3.45 

B8 0.1 52.0 520.0 12.52 1.04 1.18 

B8 0.lA 55.5 555.0 13.36 1.04 1.17 

B7 0.2 93.8 468.0 11.30 1.69 1. 28 

B2 139.0 694.0 16.65 1.14* 1.33 

Lyalin B2A 139.0 694,0 16 .65 1.06* 1.24 

B2A 139.0 694.0 16.65 1.06* 1. 24 

B3 194.0 486.0 17.48 1. 30 1. 21 

B3A 194.0 486.0 17.48 1.30 1. 21 

BS 194.0 972 .o 23.24 1.07* 1.25 

BSA 194.0 972.0 23.24 1.16* 1.36 

B6 167.0 833.0 20.19 1.14 1.34 

B6A 181.0 903.0 21.88 1. 24 1.46 



Part 3 (contd.) 
T /T. eJQ taeor 

Investigator Beam Torque Moment Shear Lessig Yudin 
kip.in. kip.in. kips 

7 9.9 49.3 2.51 3.95 1.49 

18 7.9 39.4 2.00 2. 77 1.59 

Yudin 19 7.9 39.4 2.00 2. 77 1.59 

21 7.9 39.4 2.00 2. 77 1.59 

Mean 1.66 1.57 

Standard Deviation 44% 34% 

Number of Tests 29 
l 
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then checking the capacity, and if necessary modifying the section 

and repeating the process. 

Yudin (2.20) observed that the mechanism employed by Lessig 

only satisfied two equations of equilibrium. This criticism was also 

mentioned by Hsu when discussing Gesund's work. To satisfy equilibrium 

completely it is necessary to consider shear and other forces in the 

compression zone. The existence of these forces render Lessig's formula 

for the depth of compression rather dubious. Yudin, however, ignored the 

distribution of stresses in the compression zone and his mode also fails to 

completely satisfy equilibrium. Instead of taking the moment of the 

internal forces about the axis of the failure hinge and equating to the 

components· of the external moments about this axis, he contends that the 

moments of both internal and external actions should be taken about the 

longitudinal axis of the beam and an axix perpendicular to it. Using the 

same failure modes as Lessig and assuming that the failure crack always 

spirals around three sides of the beam at 45° to the beam axis, his method 

gives the following results. 

For mode 1 the ultimate twisting moment is 

A f 
T = ~ b'd' 

s 
........ (2.33) 

(Note: This is the same as Rausch's formula). 

Equating the moments of the internal forces about a transverse axis 

to the external bending moment, and noting that the forces in the vertical 

legs of the stirrups contribute to the internal moment, the following 
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expressions are obtained, 

1 T(b'+d')) 
= (h-a -x ) ( M + 2b' ...... (2. 34) 

2 1 
2 

or 

or 

where c1 
= (b '+d') 

2b' ... (2.35) 

. . . . • . . . • . • (2. 36) 

To guard against a mode 2 failure the twisting moment T is 

replaced by an effective twisting moment T'. 

T' . .....•... (2. 37) 

and the corresponding area of hoop reinforcement is 

A w = 
T' s 
2f b'd' 

w 
............ (2.38) 

Additional longitudinal steel in a side face is required to 

balance the moment about a vertical axis of the forces in the horizontal 

legs of the hoops. This quantity is 

T' (b I + d' 
2d' fL 2 (b-a2-x2 ) 

2 

.............. (2.39) 

Yudin in a subsequent paper (2.20) presented experimental 

vertification of his theory. A comparison of this theory with the 

results from Yudin's tests and other reported tests is given in Table 

2.2. It can be seen that the method is conservative and moderately 

accurate. It should be noted that for design purposes Yudin's 

formulae are very much simpler than those of Lessig. 

Gesund, Shuette, Buchanan and Gray (2.21) tested a number 
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of reinforced beams subject to combined torsion and bending. In 

their analysis they have considered mode 1 failures only, although they 

mention the possibility of mode 2 failures. Their approach is 

essentially the same as that proposed by Yudin, in that they consider 

moments about longitudinal and transverse axes, however the inclinations 

of the failure cracks to the longitudinal axis are taken as 45° on the 

sides and Q on the bottom. The value of Q is taken as Cot- 10.5 for 

~ > 0.25 and 90° for 1" < 0.25. 

The resulting expression for the maximum bending moment in 

the pres·ence of torsion is 

M u 
M = (1 + C 1") 

2 
.... (2.40) 

where M is the ordinary ultimate moment for an under-reinforced beam u 
and 

d' (h+b cot Q) 
b'd' + (h-a2)b' cot Q 

..... (2.41) 

The torsional capacity of the member is considered to be the 

greater of the two moments; one based on a consideration of dowel forces 

and the other based on the premise that the hoop steel yields before 

failure. 

The general form of the equation which predicts the torsional 
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resistance by considering the effect of dowel forces is 

.•••• (2.16) 

where rt is the average distance from the failure hinge to the stirrups 

and the other terms have the meanings given earlier in the discussion of 

beams without transverse steel. 

The general fom of the other equation which predicts the 

torsional resistance and which is obtained by taking moments about the 

failure hinge of the forces in the vertical and bottom legs of the 

transverse steel - assumed to be yielding - is 

A f 
T=~ 

s 
.... (2.17) 

where 9 is the angle between the failure crack on the bottom of the beam 

and the beam axis. 

For the case of pure torsion it might be expected that 

·cot 9 would be approximately unity. With cot 9 = 1 the above 

expression is essentially the same as Rausch' s formula. 

The theory of Gesund shows reasonable agreement with the 

reported test results. The results of an analysis of test data is 

shown in Tab le 2. 2, where T /Tth has a mean of 1. 29 ,,.. 15\. exp eor -



As trial and error calculations are required to apply Gesund's 

dowel force equations, the method is far too tedious for design. 

The method is restricted to bending and torsion and does not account 

for shear. 

Further, no limitations have been placed on the application 

of the theory although it is certain that unconservative results would 

be obtained for over-reinforced beams. 

Evans and Sarkar (2.22) in a recent publication developed 

another ultimate strength theory for bending and torsion. Again the basic 

mechanism of a spiral tension crack on three sides and a compression 

hinge near the fourth side is assumed. The shape of the tension spiral 

is computed from the direction of the principal tensile stresses prior to 

cracking and an empirical crack trajectory on the side of the beam. This 

approach would appear to be more accurate although more complex than other 

simpler assumptions. An attempt is made to compute the direction of the 

compression hinge from the uncracked principal compressive stresses. This 

direction is found to vary frcm normal to the longitudinal axis to an 

inclination of about 1s0 • For the purpose of simplicity the direction 

is assumed to be a constant 45°. Other theories and experimental 

observation indicate that although the inclination of the compression 

hinge may vary, for predominantly torsion it is inclined at a smaller 

angle to the longitudinal axis than 45°. This assumption may lead to 

undue emphasis being placed on the contribution of the longitudinal 

reinforcement to the torsional resistance. 

The comparison with experiments given in Table 2.2 shows that 

Evan's theory has serious faults. The overemphasis on the longitudinal 

steel leads to unconservative results for pure torsion and for some 

bending and torsion test results. It is suggested that tbe method should 

not be used in the design of structural members. 
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The ultimate strength theories proposed by Lessig, 

Yudin, Gesund et al., and Evans and Sarkar show many similarities. 

Each theory is based on a failure mechanism which consists of a 

spiral tensile crack on three sides and a compression hinge on the 

fourth side. The reinforcement crossed by the tensile spiral is 

assumed to yield at failure. At this stage each investigator makes 

various assumptions to enable the relationships between the internal 

and external moments to be developed. Lessig's method, with some 

modifications would seem to offer the most accurate estimate of the 

failure load of a given section. In particular ·the formula for the 

depth of compression (Eq. 2. 20 and 2. 22) would appear to b.e inaccurate 

and leads to the severe restrictions on the amounts of reinforcement 

that can be considered in analysis. The method proposed by Yudin gives 

reasonable accuracy and is quite suitable for designing a section when 

the loads are given. 

It must however be concluded that none of the exis.ting 

ultimate strength theories satisfy the dual criterion of accuracy and 

simplicity. 

2.3 DEFORMATION OF BEAMS 

A large amount of research has been carried out on the 

deflection of reinforced concrete beams under bending. A brief 

summary of some of this work will be given in this section, as bending 

constitutes a limiting case of bending and torsion. Much less work 

is available in the fields of deformations in pure torsion and bending 

and torsion. 

2.3(a) Deflections of Beams in Simple Flexure. 

It is convenient to discuss the deflections of a 

reinforced concrete beam in the same terms as used in the 



deflections of an elastic homogeneous beams. 

simpler case the curvature,~, is given by, 

M 
= Ef 

2.38 

In this 

where Eis the stiffness of the material and I is the moment of 

inertia of the section. The product EI is called the flexural 

rigidity. If the curvature is known along the beam the simple 

integration technique will lead to the deflection. 

In most of the theories of deflection in reinforced 

concrete an attempt is made to evaluate an equivalent flexural 

rigidity, EI, under varying conditions of loading. The 

flexural rigidity of a concrete beam may be considered to vary 

between two limiting states; (i) the gross transformed 

section, and (ii) the cracked transformed section. 

The gross transformed section corresponds to the initial, 

uncracked state of the beam. This value can be used to compute 

the deflection in the uncracked state. A simpler, though less 

exact, approach is to use the gross section without taking into 

account the reinforcement. In this case the section modulus, 

lg, is given by, 

The use of the gross section to compute the deflection 

at service loads has been reconunended by the Portland Cement 

Association (2.23); and the A.C.I. code (2.24). The A.C.I. 

code restricted this method to lightly reinforced beams. 
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The cracked transformed section represents a state 

where tensile cracking and bond slip are so extensive that 

the concrete in tension can be ignored. The use of the 

cracked trsnformed section has been advanced by Maney (2.25), 

Myrlea (2.26), Yu and Winter (Method A) (2.27), and A.C.I. 

code (for heavily reinforced beams), Blakey (2.28) and others. 

The value of the section moment of inertia le for the cracked 

section is: 

le = AL jd2 (1-k). 

The faults of these two simple methods are demonstrated by 

a comparison of their predictions with an actual load 

deflection curve in Figure 2.7. It can be seen that the use 

of lg underestimates the deflection by not considering the 

effect of cracking. On the other hand the cracked stiffness, 

le, overestimates the deflection by ignoring the concrete 

between tensile cracks and the stiffer uncracked areas in low 

moment regions. 

Many investigators have derived expressions which give 

values of the rigidity that lie somewhere between the above 

extremes. Empirical formulas have been proposed by 

Murashev (2.29), Yu and Winter (Method B), Branson (2.30) 

and C.E.B. (2.31). The rigidity of the section is given by 

by Branson as, 

I 
Mc 4 Mc 4 

= (-) lg+ (1 - (-) ) M M l . 
C 

where M is the cracking moment. 
C 

The A.C.I. committee (2.32) 

found that methods of this type can be expected to give 
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predicted results within+ 20% of experimental 

deflection. 

2.41 

Brettle (2.33) devised a rational theory which allows 

for the stiffening effect of the tensile concrete between 

cracks. He assumed a linear bond stress distribution and 

from this assumption found the crack spacing and.steel stresses. 

From the steel and concrete stresses the curvature :and thence 

the deflection could be obtained. Although the method does 

provide a rational approach, it is extremely complex. 

2.3 (b) Rotation of Beams Loaded in Pure Tension 

Only limited information is available in the literature 

on the rotation of beams loaded in pure torsion. 

Various investigators have discussed the elastic 

behaviour of specimens. It was found ( 2 .1, 2 ·.10, 2. 11, 

2.12) that up to the cracking torque, the torque-twist 

curves were very nearly linear. They further found that the 

amount of reinforcement had no apparent effect on the slope of 

the torque-twist line. 

Only one detailed treatment of post cracking behaviour 

appears to have been made. In 1957 Ernst (2.14) reported 

the results of an investigation into web reinforcement specimens, 

in which considerable attention was given to their rotation 

behaviour. 

Tests were carried out in which the percentage of 

longitudinal and web reinforcement were varied. One set of 

the torque-twist curves obtained is reproduced in Figure 2.9. 

Ernst described the effect of reinforcement on the ductility 

of the test beam but coult not draw any quantitative.conclusions. 
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2.3 (c) The Rotation and Deflection of Beams Loaded in 

Combined Bending and Torsion. 

Nylander, who carried out extensive work on the strength 

of beams containing only longitudinal reinforcement, gave 

some attention to the rotational behaviour of concrete 

members. His tests on longitudinally reinforced beams 

showed that the presence of bending substantially reduces the 

torsional stiffness, although it should be noted that in these 

tests the full bending moment was applied prior to loading with 

torsion. Nylander tested two simple grid frames to justify the 

use of ultimate strength analysis methods for grids in which 

some members are subjected to torsional loading. The edge 

beams, which sustained torsional loading, were provided with 

web reinforcement. The results of these tests indicated that 

the members were sufficiently ductile to allow redistribution 

of forces in the frames. 

In the work of Ramakrishnan and Vijarangan, a stated aim 

was to investigate "the relationship between torque and the 

angle of twist and how each factor influences this relationship". 

They reached the following conclusions for the post cracking 

behaviour of beams with only longitudinal· reinforcement loaded 

in bending and torsion. 

(i) 

(ii) 

(iii) 

(iv) 

The angle of twist increased as the concrete 

strength was reduced. 

An increase in.the percentage of tensile reinforcement 

reduced the angle of twist. 

Compression· reinforcement reduced the angle of twist. 

The addition of bending moment reduced the angle of 

of twist. 
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The last conclusion contradicts the results obtained 

by Nylander. As the experimental evidence on which 

Ramakrishnan and Vijarangan based this conclusion was rather 

limited, it would be reasonable to place more confidence 

in the extensive work of Nylander. 

Chinenkov, who carried out tests on web reinforced 

beams, gave the following qualitative conclusions on the 

subject of deformations. 

1. Deflections in similar beams increase with increasing 

values of the ratio of torsion to flexure. 

2. Transverse reinforcement affects the deflection when 

torsion is present. 

3. Deflections decrease with increasing percentages of 

longitudinal reinforcement in the same manner as in 

pure flexure. 

4. The effect of the concrete properties on 

deflection is greater than in the case of pure 

flexure. 

5. For equal flexural moments the deflections under 

combined bending and torsion are higher than those 

calculated for pure flexure. 

6. The rate of increase of the angle of twist increases 

with increasing loads. 

7. For equal torsional moments the angle of twist is 

smaller for smaller flexural moments, for higher 

percentages of reinforcement and for higher strength 

of concrete. 
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CilAPTER 3 

EXPERIMENTAL WORK 

This chapter sets out details of the experimental work conduct

ed in this investigation. For the purpose of discussion it is convenient 

to divide the tests into four groups, viz., plain concrete beams, beams 

containing only longitudinal steel, beams reinforced with both longitu

dinal and transverse steel tested primarily for ultimate strength, and 

web reinforced beams tested primarily for deformations. 

Twenty-two plain concrete specimens were tested in torsion and 

combined flexure and torsion. As well as beams of rectangular section 

some cylindrical specimens were also tested. The main purpose of these 

tests was to determine whether the cracking load of a concrete section 

in bending and torsion could be satisfactorily predicted by employing a 

maximum stress criterion for concrete strength together with either . 
"elastic" or the "plastic" distribution of stress across the section. 

Thirty beams were cast and tested to investigate the 

behaviour and strength of beams containing only longitudinal steel subject 

to combined bending and torsion and combined shear and torsion. 

Three series, totalling twenty-five beams, were cast with 

both transverse and longitudinal steel. These beams were then tested 

under combined loading mainly to check the accuracy of the proposed 

ultimate strength theory (Chapter 5). The first two series were 

designed to examine the effect of the ratio of top to bottom longitudinal 

steel on the torsion-flexure interaction curve. The third series was 

primarily designed to investigate the effect on the failure behaviour 

of varying the ratio of transverse to longitudinal steel, Tests of this 

series also compared tied and welded reinforcement, and open and closed 

stirrups. 

Twelve beams containing web reinforcement were cast to 

investigate the deflections and rotations of beams designed in accordance 
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with the proposed theory. (Chapter 7). These beams were more fully in

strumented than those of ti1e previous series. 

3.1 TESTING METHODS 

For the manufacture of the test specimens steel moulds and 

internal vibration were employed. Where desirable, a series of test beams 

was made from commercial transit mixed concrete. Such test series had 

the advantage that all beams had virtually the same concrete strength. 

Curing was provided continuously up to testing. Most beams 

were cured under water, although some were cured by damp sand and 

hessian covered with plastic sheets. Comparative cylinder tests showed 

that the latter method was equally efficient. 

Most of the beams were tested in a three-dimensional reaction 

frame. Figure 3.1 indicates diagrammatically how the loads were applied. 

Each beam was tested over an eight-foot span, one end being clamped 

against torsion and the other end being free to twist. The bending 

load was applied at the third points by means of a hydraulic jack and 

a spreader beam. The.torsion was applied by another jack at the end 

of an outrigger arm. The jacks were hydraulically interconnected so 

that during the test.the ratio of torsion to bending remained constant. 

The ratio of torsion to bending could be varied by changing either 

the jack size or the length of the outrigger. Special bearings under 

the spreader beam and under the ends of the specimen, ensured that the 

test beam was simply supported in bending and was restrained against 

twisting only at the fixed end. 

For tests in which only a single point load was required the 

test rig shown in Figure 3.2 was used. The beams were loaded simul

taneously in bending, torsion and shear by a single eccentric load. 

Again special bearings were employed to ensure that the member was 

simply supported in bending and was restrained against twisting only 

at the fixed end. Only the shear span near the fixed end was subjected 
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to torsion and the torque sustained was measured by a proving ring at the 

end of the outrigger arm on the fixed end. 

The load was applied in about ten increments up to failure. 

Larger increments were applied in the initial stages of a test, and smaller 

increments as the loads approached the ultimate. The increments varied 

between 14% and 5% of the total load. After each increment, the load was 

held constant while crack development, deflections and rotations were 

recorded. 

Rotation measurements were obtained by recording the deflections 

at the ends of rigid transverse arms. 

To obtain continuous rotation measurements for the final test 

series a special rotation gauge was used. The design of this instrument 

was adapted from details of gauge reported by the Portland Cement Associa

tion. Essentially the gauge consists of a shaft which is fixed at one 

end to the beam, and a device for measuring the rotation of the other 

end of the shaft relative to the beam. A photograph of the gauge is given 

in Figure 3.3. An interesting feature is the use of bellows as couplings 

at each end of the shaft. These bellows act as universal joints and 

eliminate the effect of all displacements except rotation. The relative 

rotation between the shaft and the beam is translated into vertical 

movement which is detected by a modified inductance strain gauge. The 

impulses from the inductance are amplified and continuously recorded 

against the load. 
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3.2 PLAIN CONCRETE BEAMS 

3.2 (a) Background 

If it is assumed that the concrete member subjected to pure 

torsion fails when the maximum principal tensile stress reaches the tensile 

strength of the concrete, then one of the following expressions for the 

torsional strength of a beam of rectangular section is obtained:-

(a) T 
b2 I 

= - (h - b/3) f 
0 2 t (3.1) 

or 

(b) T 
2 I 

= K1b hft 
0 

(3. 2) 

where K1 
1 

= ----.,..--,---
3 + 2.6 

0.45 + h/b 

(approximately). 

The first of the above expressions is obtained if it is assumed 

that the section is "fully plastic" prior to failure, whereas the second 

expression is based on the "elastic" stress distribution. It is there

fore apparent that different estimates of the tensile strength of the 

concrete in a given beam will be obtained from a torsion test by assuming 

"plastic" distribution on the one hand and "elastic" distribution on the 

other. 

It has been found, however, that for a wide range of ratios of 

depth to breadth of a rectangular section the indicated tensile strength 

of the concrete, calculated on the basis of the failure torque with a 

"plastic" stress distribution is 0.6 ± 0.02 times the tensile strength 

calculated on the basis of an "elastic" stress distribution. Results 

of pure torsion tests on beams of rectangular cross section only, there

fore, cannot provide sufficient evidence to support a theory of "elastic" 

stress distribution. Further, such tests cannot verify fully the maxi

mum principal stress failure criterion. 

A series of tests was therefore planned. 
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(a) to investigate the use of a maximum principal stress 

failure criterion, 

(b) to test the suitability of the "elastic" and the "plastic" 

theories for calculating the cracking torque of any section. 

(c) to collect additional information on the relationship 

between cylinder compressive strength and the torsional 

"tensile" strength. 

3.2(b) Description of Specimens 

Several relatively small test specimens were cast for testing 

in a conventibnal torsion machine (Tinius Olsen 300 kip-inches capacity). 

To attach the test specimens to the grips of the machine, steel end 

plates were glued to the specimens with a mixture of Epikote 818 and 

Polymid 65. Beams tested in this manner were HC, Rl, SC, SCL and SCR. 

Details of these beams are given in Table 3. 

To enable bending and torsion tests to be carried out, larger 

rectangular beams were cast. These beams were tested in the special 

rig described in the previous section. Details of these test beams are 

also given in Table 3.1. 

The four specimens HC, Rl, SC, and CRPl were cast using a 

concrete mix containing 5/16" maximum size aggregate. The more usual 

3/4" aggregate was used in the manufacture of beams P 1-6 and SCL. 

Commercial "ready mixed" concrete was employed in the casting of the series 

of beams containing web reinforcement and during the casting several plain 

concrete beams were also made. Thus beams REP2, REP4 and SCR were cast 

with the same concrete as beams of the RE series which will be discussed 

in a later section. Similarly, beams RUP2, RUP4 and ELL were cast with 

the RU series, Wl and W2 with two different mixes of the R series, W3 with 

the pour used for beams containing longitudinal steel. RP2 and W5 were 

cast as companion specimens with the deformation series and Q series 

respectively. 
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I-IC 

Rl 
SC 

CRPl 

Pl 
P2 
P3 
P4: 
PS 
P6 
SCL 

REP2 

REP4 
SCR 

TABLE 3. 1 - DETAILS OF PLAIN CONCRETE BEAMS 

Size and Shape · Failure Loads {kip-in.) Concrete Details 

Torque Moment f'{p.s.i.) f_t{p.s.i.) Type 
C 

Brazil 

Hollow Cylinder 13. 6 0.0 7,200 640 3/8" aggregate 
O.D. =6"I.D. =4" 
611 x4 11 Rectangle 13.4 0.0 II II II 

611 dia. Solid 20.0 0.0 II II II 

Cylinder 
9 11 x6 11 Rectangle 23.3 36.6 6,300 600 " 

9 11 x6 11 Rectangle 37.4 24.7 7,100 - 3 / 4 11 aggregatE 
II 25. 2 39.6 6,350 - II 

II 47.6 5.5 6,550 970 II 

II 43.0 5.5 6,363 945 II 

II 0.0 51. 3 7,450 880 II 

II 11. 1 51.4 7,400 - II 

611 dia. Solid 20.8 0.0 6,660 - II 

Cylinder 

9 11 x6 11 Rectangle 29.6 20.3 4,600 575 Ready Mixed 
Concrete 
RE Pour 

1011 x 6½'' Rectangle 50.5 0.0 II II II 

6 11 dia. S0lid 18.8 0.0 II " " 
Cylinder 

·- ·-
w 

'° 



Table 3. l Contd. 

Beam Size and Shape Failure Loads (kip-in.) 

Torque Moment 

RUP2 911x611 Rectangle 19.0 35.7 

RUP4 l011 x6½'' Rectangle 66.3 0.0 
ELL 9"x611 L-Shape 19.8 0.0 

311 Thick 

Wl 10. 411 x6. 811 Rectangle 73.2 o.o 

W2 10" x 6½'' Rectangle 74.5 0.0 
W3 10.211 x 6.911 Rect. 77.4 0.0 

W5 10. 2" x 5" Rectangle 31. 9 0.0 

RP2 10. 311 x 5. 2" Rect. 35.6 0.0 

Concrete Details 

f'(p.s.i.) 
C 

f'(p.s.i.) 
cBrazil 

Type 

3,680 516 Ready 
Mixed 
Conrete 
RU Pour 

II II II 

II II II 

4,630 - Ready 
Mixed 
Concrete 
R Pour 

4,320 - II 

4,050 - Longitudinal 
Pour 

3,560 665 Q Series 
Pour 

3,460 700 Def ormatior 
Pour 

vJ 

-0 
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The beams were poured in steel moulds and cured under water for 

at least four weeks prior to testing. 

3.2(c) Description of the Test Behaviour 

All plain concrete beams failed immediately on the formation 

of a tensile crack approximately normal to the direction of the principal 

stress. Thus in pure torsion a spiral crack at 45° to the longitudinal 

axis caused failure, whilst under bending and torsion the tensile crack 

formed at a steeper angle. The appearance of a typical failure surface 

is shown in Figure 3.4. Of course in all cases, the tension crack crossed 

only three sides of the beam, and a straight crack then joined the ends 

of this spiral across the fourth side. 

3,2(d) Torque-Twist Curves 

The torque-twist curves show very nearly linear elastic behaviour 

almost up to failure. However a certain amount of inelastic behaviour 

seems evident just before failure (see Figure 3.5). As the elastic 

deformations of a reinforced section are approximately the same as those 

of a plain section, the stiffness of plain sections is of particular 

interest. 

The results obtained for the shear modulus are given in Table 3.2. 



TABLE 3. 2 

EXPERIMENTAL SHEAR MODULUS OF ELASTICITY 
FOR PLAIN BEAMS 

Beam f' 
G 

C Experimentc,l 
p.s.i. p.s.i. xl0 

Pl 6,400 2.10 

P2 6,350 2.16 

P3 6,550 2.08 

PS 7,400 2.04 

REP4 4,600 l. 71 

RUP4 3,680 1. 50 
< 

Wl 4,630 1. 86 

3.12 
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FIG. 3.4 . FAILURE VIEW OF PURE TORSIONAL 

PLAIN CONCRETE SPECIMEN. 
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3.3 BEAMS CONTAINING ONLY LONGITUDINAL REINFORCEMENT 

3.3(a) Background 

In the review of the published works on torsion the following 

conclusions were arrived at:-

1. It is reasonable to ignore the reinforcement in calculating 

the pure torsional strength of beams containing only 

longitudinal steel. 

2. The effect of shear can be accounted for approximately 

by the following formula -

T/T = 1 - V/V 
0 0 

where 

T = the pure torsional strength. 
0 

(3.3) 

V = the calculated shear strength of the member in simple 
0 

flexure. Unless a more detailed analysis is made this 

can be taken as 

2.0 /ft: bd. 
C 

3. No satisfactory method has been proposed for calculating 

the ultimate strength of beams of this type under combined 

bending and torsion. 

A series of tests was carried out to investigate the behaviour 

and strength of the beams under combined bending and torsion and twenty one 

beams were tested to confirm the safety of the shear recommendations. 

3.3(b) Description of Specimens 

All test beams were rectangular in section and were ten feet 

long. Full details of the beams are given in Figure 3.6 and Table 3.3. 

Curing was provided for at least 28 days prior to testing. Where bending 

and torsion failures were required (beams Ll, L2, L3, L4, L7, LB, LBl 

and LB3) the shear spans were reinforced with 3/8" ties at 3" centres. 



TABLE 3. 3 DETAILS OF LONGITUDINALLY REINFORCED BEAMS 
PART 1 BEAMS SUBJECTED TO TWO POINT LOADING 

Geometry of Beam (inches)f Steel Concrete 

Beam b h d ALl fLl AL3 fL3 f' 
C 

kips/ kips/ p. s. i. 
sq. in. sq. in. sq.in. sq. in, 

Ll 6 9 7.9 0.88 45.0 - - 6360 
L2 6 9 7.9 0.88 45.0 - - 6580 
L3 6 9 7.9 0.88 45.0 - - 7225 
L4 6 9 7.9 0.88 45.0 - - 7260 
L7 6 9 7.9 0,88 45.0 - - 6190 
L8 6 9 7.9 0.88 45.0 - - 6470 

LS 6 9 7.9 0.88 45.0 - - 6400 
L6 6 9 7.9 0,88 45.0 - - 6780 

SLl 6 9 7.9 0,88 45.0 - - 3300 

LSl 6 9 7.6 0.88 45.0 - - 4050 
LS 2 6 9 7.6 0.88 45.0 - - 4050 
LS 3 6 9 7.6 0.88 45,0 - - 4050 
LS4 6 9 7.6 0,88 45.0 - - 4050 
LS 6 6 9 7.6 0.88 45.0 - - 4050 

Sl 6.5 10.0 9.2 0.91 41. 0 - - 4050 
S2 6.5 10.0 9.2 0.91 41. 0 - - 4050 
S3 6.5 10.0 9.2 0.91 41,. 0 - - 4050 
S4 6.8 10.2 9.3 0.91 41. 0 - - 4050 
SS 6.5 10.0 9.2 0.91 41. 0 - - 4050 

LBl 6.5 10.0 8.9 0.91 41. O 0.61 41. 0 4050 
LB2 6.5 10,0 9. 1 0.91 41. 0 0.61 41. 0 4050 
LB3 6.5 10.0 8.9 0.91 41. 0 - - 4050 

Failure Loads 

Torque Moment 
kip. in. kip. in. 

57.0 32.3 
60.1 205.7 
61. l 5.5 
o.o 276.0 

47.8 80.5 
49.6 263.5 

43.4 144.4 
52.5 29.7 
46.2 77.3 

- 252.0 
52.5 5.2 
39.6 53.4 
25.7 117. 8 
37.6 101. 7 

41. 8 181. 0 
- 310.0 

64.2 6.3 
47.0 126.9 
47.7 69.3 

54.l 141. 6 
55.4 6.3 
60.7 161. 5 

Shear 
kips. 

-
-
-
-
-
-

4.05 
0.75 
2.20 

8.98 

l.88 
4.18 
3.56 

6.40 
11. 05 

4.50 
2.43 

-
-
-

'-'> 

....... 
0--
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TABLE 3. 3 

PART 2 BEAMS SUBJECTED TO ONE POINT LOADING 

Beam f' Nominal Nominal Failure Loads 
C 

a/d e/b T M V 
p.s.i. kip. in. kip. in kips. 

Ql 3,560 5.5 0.3 13. 9 263 5.60 

Q2 II 5.5 0.6 24. 1 193 4.20 

Q3 II 5.5 0.0 0.0 306 6.45 

Q4 II 5.5 1. 8 27.8 72 1. 58 

Q4a II - ~ 33.8 0 0.0 

Q5 II 4. 1 0.3 16.5 205 5.75 

Q6 II 3.0 0.3 19.4 162 6.05 

Q6a II 3.0 0.6 24.4 114 4.27 

Q7 II 4. 1 1.8 28.8 60 1. 71 

Q7a II 4. 1 0.6 27. 3,, 154 4.32 

Q8 II 3.0 o.o o.o 226 8.40 

Q8a II 3.0 LS 33.0 47 1. ~o 
Q9 II 5.5 0.3 18.3 237 5. '.~. ' 

Ql0 II 2.0 1. 8 36.4 39 2.20 

Qll II 2.0 0,0 0.0 225 12.55 

Qlla II 2.0 0.3 26.5 72 4.05 

Qllb II 2.0 0.6 27.2 180 10.05 

Ql2 II 4. 1 0.0 0,0 271 7.55 
•. 
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The concrete mix proportions for beams Ll - L8 were the same 

as used in the beams of the plain concrete series Pl - P6. All other 

beams were poured from ready mixed concrete. The one batch was used 

for beams of the LS, LB and S groups. 

3.3(c) Description of Tests 

The behaviour of all beams up to cracking was essentially 

elastic. Consideration of the torsional stiffness of the beams at this 

stage suggests that the stiffness is unaffected by the reinforcement, 

and may be taken as that of a plain concrete section. For instance the 

shear modulus of elasticity for beams Ll and L2, if the reinforcement 

is ignored, is 1.93 x 106 p.s.i. and 2.46 x 106 p.s.i. 

For beams loaded in combined bending and torsion, two distinct 

types of behaviour were observed. Under predominantly torsional loading 

(~ > 0.5 approximately) a brittle failure occurred. This type of 

failure took place in beams Ll, L3, L6, L7, LBl, LB2 and LB3. Cracks 

were visible only just before failure. The cracks were inclined to the 

longitudinal axis of the beam, being approximately normal to the direct

ion of the principal tensile stress. Initially cracks occurred in the 

lower portion of the cross section but were prevented from opening by 

the bottom longitudinal steel. With increasing load the torsional 

stresses probably increased more rapidly than the bending compressive 

stresses following the reduction of the effective cross-section by 

cracking. A stage was eventually reached when an inclined tensile crack 

extended to the upper surface of the beam resulting in a sudden drop 

in the torsional resistance. The torque on the section was then 

resisted by dowel forces and further rotation took place at greatly 

reduced loads. Figure 3.7 shows the torque-twist behaviour of a beam (Ll) 

failing in this manner, and Figure 3.8 the appearance of such a beam at 

failure. 

If the test beam was loaded at lower ratios of torsion to 
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FIG. 3 .8 . FAILURE OF BEAM CONTAINING ONLY 
LONGITUDINAL STEEL LOADED IN 

PREDOMINANTLY TORSION . 
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bending (1/J < 0.5) a more gradual failure ensued which was similar to a 

flexural failure. Beams L2 and LB.failed in this manner. As before, a 

cracked zone developed in the lower portion of the cross section. In this 

case, however, the higher bending moment prevented the cracks from spread

ing to the top surface of the beam. With increased loading the tension 

cracks widened until the steel yielded, whereupon the cracks opened 

further and extended upwards. Finally the concrete in the compression 

zone crushed and precipitated failure. As there were torsional stresses 

present, the compression zone was not normal to the longitudinal axis of 

the beam. Rotation then took place about this compression "hinge", with the 

two portions of the beam rotating relative to each other. This rotation 

brought into play dowel forces between the steel and the concrete until large 

segments of the concrete spalled off. In Figure 3.10 the torque-twist curve 

of a beam {L2) which failed in this manner is given. Comparison .with 

Figure 3.7 shows that beam L2 was considerably more ductile than beam Ll. 

The appearance of beam L2 at failure is shown in Figure 3.9. 

The tests on beams loaded in torsion and shear were of two 

types. The first group of beams, the LS, S, SL series were tested using 

third point loading. These specimens had a span to depth ratio.(a/d) of 

approximately 3 and were tested at high ratios of torsion to shear. To 

investigate the effect of varying a/d and to consider lower ratios of 

torsion to shear the Q series of beams were tested. One point loading was 

used for this series. As the test span for some specimens was as low as 

18" it was possible to obtain multiple tests on some of the 10 ft. beams. 

Under predominantly torsional loading failure occurred .. upon 

the formation of a diagonal tension crack. Th.is tension crack.spread to 

the top and the bottom of the beam forming a spiral. A well.defined 

compression zone then developed on the fourth side. The appearance of 

a beam failing in this manner is shown in Figure 3.11. 

As the proportion of shear in the loading increases a. more 

gradual failure ensues, and the ability of the beam to sustain diagonal 



FIG 3 9 FA:LURE OF BEAM CONTAINING ONLY LONGITUDINAL 
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cracking increases. In Figure 3.12 the sides, on which torsional and shear 

stresses are additive, of four beams are shown. It can be seen that the 

resistance of the beams after cracking and the number of cracks at failure 

is increased with increasing ratios of .torsion to shear. 
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3.4 BEAMS CONTAINING BOTH LONGITUDINAL AND TRANSVERSE STEEL 

An ultimate strength method for the analysis and design of this 

type of beam is presented in a later chapter. In this method several 

possible modes of failure are considered. When failure is caus.ed. by 

yielding of the reinforcement, it is assumed that the beam will fail in 

one of three idealized modes. 

In each of the modes a cracked tensile zone intersects three 

exterior faces of the beam in a rectangular helix while a compression 

zone near the fourth face joins the two ends of this helix. The beam is 

assumed to fail when the steel intersected by the tensile crack yields, 

allowing the beam to rotate about an axis in the compression zone. Failure 

with this axis near the top surface of the beams is referred to as a mode 

1 failure, near the side face as a mode 2 failure, whilst a mode 3 

failure indicates that the axis forms near the bottom surface. The 

appearance of these failure modes is shown in Figure 3.13. 

3.4(a) Description of Test Specimens 

The first series (RE) comprised five beams having equal top and 

bottom longitudinal steel. The specimens were similar and details are 

given in Figure 3 .14 and Table 3. 4. The second series (RU) comp.rised 

nine beams with unequal top and bottom steel. Again these specimens 

were all similar and details of these are shown in Figure 3.14 and 

Table 3.4. The eleven beams of the third series (R) were not all similar 

and their details are given in Figure 3.14 and Table 3.5. 

The reinforcement cages were prefabricated from plain round 

bars. For beams of the first two series the transverse steel was spot

welded to the longitudinal steel while for beams of the third s.eries it 

was tied. The yield strengths of the bars used in the first two series 

were as follows:- 49 kips/sq.in. for No. 3 bars; 44.5 kips/s~.in. for 

No. 4 bars; 46.8 kips/sq.in. for No. 6 bars. The yield strengths of the 

bars used in the third series are given in Table 3.4. 
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TABLE 3.4 

DETAILS OF BEAMS OF RE AND RU SERIES 

(See also Figure 3. 14) 

Beam 
Experimental failure loads Observed 

fJ/ T M V Failure 
(kip-ins.) (kip-ins. ) (kips) Mode 

REl 12.90 81. 4 6.3 0,3 2 

RE2 2.61 83.4 32.0 0.9 1 

RE3 1. 80 81. 5 45.3 1. 3 .. 1 

RE4 0.88 74.6 84.4 2.4 1 

RES 0.61 66.0 108.2 3. 1 1 

RE4* 0.28 38.0 134.0 3.8 1 

RE2>:c o.oo 0.0 160.0 4.6 -

RUl 11.60 73,3 6.3 0,3 3 

RU3A* 12.08 76.0 6.3 0,3 3 

RU2** 1. 66 84.9 51. 1 - 3 

RU3*•l< 1.25 105.0 84.0 - 3 

RU3A** 0.63 89.4 141. 3 - 1 

RU4 0,59 85.5 145.0 4.1 Indefinite 

RUS 0,30 75.4 249.7 7.1 1 

RUSA 0.25 68.3 266.8 7.6 1 

RU6 0.21 59. 1 281. 2 8.0 1 

RU7 0.00 o.o 304.0 8.7 -

* Retest 
*'l< Shear Spans Clamped 

3.31 

f' 
C 

p. s. i. 

4,600 
II 

II 

II 

" 
II 

" 

3,680 

4,630 

3,680 

3,610 

4,630 

3,680 

3,680 

4,400 

3,610 

3,680 



Beam al a2 

36T4 1. 6 1. 3 

36T4c 1. 6 1. 4 

36T5. 5 1. 6 1. 4 

77T5 1.7 1. 4 

7705 LS 1. 3 

77T4 1. 7 1. 4 

7704 1. 7 1. 4 

7703 1. 7 1. 6 

24T3 L3 1. 4 

38T5 1. 7 1. 6 

I 3304 1. 4 1. 4 

TABLE 3. 5 DETAILS OF R SERIES 
PART 1 BEAM PROPERTIES 

Longitudinal Steel Transverse Steel 

a.3 a. .t-. ALI fLl AL3. fL3 s f 
sq. m. kips/ sq. sq.m. kips/sq. ins. kip~/sq. 

in. in. in. 

0.8 0.6 0.88 37.7 0.22 43.4 4 43.0 

0.8 0.7 0.88 37.7 0.22 46.7 4 43.0 

0.9 0.7 0.88 37.7 0.22 43.4 51. 
2 43.0 

0.9 0.6 1. 20 38.8 1. 20 38.8 5 4:3. 0 

o., 0,5 1. 20 38.8 1. 20 38.8 5 43.0 

0. ~ 0.6 1. 20 38.8 1. 20 38.8 4 43.0 

O.~ 0.6 1. 20 38.8 1. 20 ·. 38. 8 4 43.0 

0 • C 0.8 1.20 38.8 1. 20 38.8 3 4,3. 0 

OA 0.9 0.39 47.1 0. 10 68.7 3 43.0 

o.~ 0.8 1. 57 38. 7 . ·o. 22 45.2 5 43.0 

0 • C 0.9 0.22 43.0 0.22 43.0 4 43.0 

Type 

Closed 

Closed 

Closed 

Closed 

Open 

Closed 

Open 

Open 

Closed 

Closed 

Open 

w 

w 
N 
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TABLE 3.5 

PART 2. FAILURE LOADS 

.. 

Experimental Failure Loads Observed f' 
Failure 

C 

Beam 4). T M V Mode 
p. s. i. 

(kip-ins.) (kip-ins.) (kips) 

36T4 0.26 62.6 240.4 7.5 l 4:, 4:00 

36T4c** 1. 54 94.1 61. I - 3 4,340 
** 36T5. 5 0.50 85.9 173.4 - 1 4,630 

77T5· 0.35 91. 6 · 262.4 8.2 Indefinite 4,630 

7705 0.35 96.4 278.4 8.7 Indefinite 4,630 

77T4 0.48 107.6 223.4 7.0 1 4,630 

7704** 0.49 99.2 201.4 - Indefinite 4,630 

7703 0.34 74.6 218.9 6.8 Indefinite 3,830 

Z4T3** l. 52 70.8 46.6 - 3' · 4,340 

38T5 0.37 80.1 216.4 6.7 2 3,830 

3304 0.32 30.3 94.4 3.0 l 3,830 

** . Shear Spans Clamped 
·;;, . 

) 
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Commercial transit mixed concrete with a nominal strength of 

3,000 p.s.i. and a slump of 3 inches was used. The aggregate consisted 

of 3/4 inch round river gravel, a river sand and a fine beach sand. 

The cylinder crushing strength of the concrete at the time of testing is 

recorded in Tables 3.4 and 3.5. 

3.4(b) Test Behaviour 

In each of the test series RE and RU the first specimen was 

tested with a high ratio of torsion to bending and this ratio was reduced 

for each successive member of the series. The ratio (1/J) of torsion to 

flexure is shown in Table 3.4. 

In all beams with high ratios of torsion to bending (i.e. 

specimens REl, 2, 3 and RUl, 2, 3, 3A), cracks were first visible on the 

side surfaces. The cracks formed at about 45° to the axis and they 

gradually extended, at almost constant inclination, to the top and bottom 

of the member. Upon increasing the load the tensile cracks spread across 

the bottom surface of the beam, and at still higher loads appeared on 

the top surface. Failure of the beam ensued when the longitudinal 

steel yielded, permitting opening of the tensile cracks on three sides 

of the beam and rotation of the member about an axis near the fourth 

side. 

Beams RE2 and RE3 (with equal top and bottom steel).,. failed 

by yielding of ·the bottom longitudinal steel and opening of the.tensile 

cracks on the sides and bottom of the beams. That is to say, these beams 

failed in mode 1. The beams with more steel in the bottom (RUl, 2, 3, 

3A), on the other hand, failed by yielding of the top steel and open-

ing of tensile cracks on the sides and top of the beams. This has been 

defined as a mode 3 failure. 

This behaviour would be anticipated for beams sustaini~g nearly 

pure torsion. For a symmetrically reinforced beam (RE), even a small 

amount of bending will cause the final failure to take the form of 
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mode 1. If the area of the top steel is much less than-that of the bottom 

steel, the top steel is more likely to yield and a mode 3 ·failm:e'.;:·wili 

result, with a compression hinge at the bottom, unless counteracted by 

the presence of quite high bending moments. 

The specimens with lower ratios of torsion· to- bending .. (i ... .e. ... RE4, -

5, and RUS, SA, 6, 7) were clearly influenced primarily by:"flexure. Cracks 

were observed first in the bottom faces of the beams" At higher.-.loads 

the~e cracks extended to the side surfaces where their angle. changed 

from almost vertical at the bottom. to approximately 60° to the ... v.ert.ical 

near the top. For beams of both series,· the predominance of bending forced 

the. compression hinge to occur on the top (mode 1) .. 

Beam REl, whose initial cracking was described preyiously, 

failed with the compression hinge near a side face (mode 2) .•. Us:ually 

this type of failure is associated with the presence of shear. fo.r.c.e. In 

this beam, the side cover to the main reinforcement was greater.than for 

the other beams of the series (1.7 in. instead of 1,3 in.), and the 

specimen was subjected to almost pure torsion. 

Beam RU4 failed in the shear span and its mode of fail.ure .was 

not clearly defined. Subsequent calculation showed that the three failure 

modes were nearly evenly balanced at this point. Because of this., . speci

mens RU2, 3 and 3A (tested later than RU4) were provided with addi.tional 

external clamps in the shear spans to ensure their failure in the central 

region. 

Beams RE4, RE2 and RU3A were unloaded immediately upon their 

reaching failure load. The ratio of torsion to flexure in each case 

was then changed and, in the case of RU3A, the external clamps w.ere 

shifted from the shear spans to the central region. The specimens were 

then reloaded. All three beams developed 'new' cracks during. the .. re

loading and developed 'new' fracture surfaces at failure. The results 

of these re-tests along with the earlier beams are given in Table 3.4. 
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In the third test series,· three beams (36T4, 36TS .5 .and ... 3304) 

.which were tested at lc-w ratios of twisting to bending moment, exhibited 

failure modes definitely of the mode 1 form described earlier.. F.or.each 

of these beams, cracks were first observed on the bottom surface.:at about 

70% of the failure load. These cracks then appeared on the sides., and 

as the load was increased, they gradually spread up the· sides.changing 

their inclinations from about 10° to the vertical near the-bottom.to 

about 45° in the middle and to about 60° to the vertical near the.top. 

At still higher loads, one or more of the tension cracks began .. to... open. 

As the beam rotated, shattered compression zone became plainly visible 

on the top face. The load then began to drop off gradually, showing that 

failure had occurred. With additional rotation, the main.cr.a:.cks .. w.idened 

and horizontal cracks probably due to dowel. forces appeared about.two 

inches below the top face. The appearance of the failure surface at 

this stage is shown in Figure 3.15. 

The fact that the transverse steel was tied to the longitu

dinal steel in this series and not welded as in the earlier series, . 
made no appreciable difference to the behaviour· of the beams •.... Thus 

beam 36T4, which was similar to beam RUSA and was loaded under..,similar 

conditions, exhibited a.failure crack pattern closely resembling that 

of beam RUSA (compare Figures 3.15 and 3.16). 

Those beams which contained large size longitudinal . har.s .... 

(beams 77TS, 77T4, 7704 and 7703) failed in a _relatively ·brittle.manner. 

That is to say, once the failure torque was reached, the· load.,.dropp~~ 

off suddenly with very little 'plastic' rotation occurring. F'ur:the;r

more, the modes of failure of these beams could not.easily be classified. 

Beams 77TS and 7705 were identical except that the fo.rme.r was 

reinforced with closed ties while the latter had open stirrups. .. In both 

beams the spacing of the stirrups was 5 in. in the centre zone and 2½ in. 

in the shear spans. In both beams the first cracks .appeared (at.about 

50% of the ultimate load) simultaneously in the centre of the sides in 

the shear spans and across the bottom surface in the centre zone. I~ 
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both beams, at increased loads, a crack appeared across the top surface. 

In the case of beam 7705 this crack occurred in the shear span and immediate

ly opened, precipitating failure. For beam 77TS the crack on the .top face, 

from all appearances a cleavage crack and not associated with crushing, 

appeared in the central region -0£ the total span. On the addition of 

further load, the crack widened and the beam rot.ated. Large dowel cracks 

then appeared and the load dropped off suddenly. 

The initial behaviour of beams ·77T4 and 7704 was similar to 

that of 77T5 and 7705. However, in the case of beam 7704, the shear 

spans were externally clamped forcing the failure to occur in the centre 

region. The two beams behaved identically up to the point when a cleavage 

crack crossed the top surface. At this point, the beam with the open 

stirrups (7704-) failed with the opening of the top crack and the appear

ance of dowel cracks on the side surfaces. On the addition of load, the 

beam with the closed ties (77T4) failed with the appearance of a compression 

zone on the top accompanied by opening of the tensile cracks on the other 

faces and the appearance of dowel cracks. 

Beam 7703, which was not clamped, failed in the shear span in 

a similar way to beam 7705. That is to say, once a cleavage crack crossed 

the top sur.face,. it opened, precipitating failure. 

The beams of the third series, which contained less top longi

tudinal steel than bottom steel, and were loaded predominantly in torsion, 

(beams 36T4c and 24T3) failed with the opening of tension cracks on the 

top and sides of the beams in a manner of a mode 3 failure. The tension 

cracks.extended around the beams at an almost constant inclination~ while 

compression cracks were evident on the bottom surfaces (see Figure 3.17). 

The beam which had the higher ratio of transverse to longitudinal steel 

(24T3) exhibited the more gradual failure of the two. 
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Beam 38TS failed in the shear span in a typical mode. 2 failure. 

The first crack was observed in the centre of the side at about. 65% of 

the ultimate load. This crack spread as the load was increased until at 

85% of the ultimate load it extended across the top, bottom and one side 

surface. On increasing the load, crus?ing became apparent on the fourth 

face and then the load dropped off fairly_ suddenly. The failure crack 

pattern of this beam is shown in Figure 3.18. 

3.4(c) Torque-Twist Curves 

For some of the specimens, twist measurements were taken. 

Figures 3.19 and 3.20 show torque~twist curves for these beams. 



,. 

0, ...5,,, Q"e 

FIG. 3.18. DEVELOPED FAILURE SURFACE OF BEAM 38T5 

MODE 2 SURFACE . 

·e 

w 
J). 
N 



II) ., 
.c 
u 
C 

I 

100 

80 

60 

,... 

RE 2 l '11 • 2.60 l ,_x- -"-

/
~,..- _'b'b~x--x-

x . Jl•<y-
¥ I. ot ~x _:.;....----

- -x----• 

.Q- 40 

/ 

~~~ . .1o"'I ~x---" 

/ i /./ ~~"x-' 
J r /.,,, ::L. 

., ... 
::::J 
tT 
L. 

~ 

., X X 

20~, I I 
J i 

X 

°l~1 x;;10-~·JJ _J~2~_i_---L.-
Twist, Radians per inch 

· FIG. 3.19 TORQUE-TWIST CURVES FOR BEAMS CONTAINING WEB 
REINFORCEMENT. 

w 
~ 
w 



II) ., 
.c. 
u 
C 

I 
a. 
.:ii! 

' ., 
::, 
CT 
L 

~ 

100 

80 

60i 

4, 

C r = o. 138, 'f' = 1. 54 l 

24 T 3 l r • 0- 4441 ,p = 1. 52 l - _x -x- -x- -"' 

~"' x,--• o "'\ 
o·,,,;<,,,,, o-~ 
/ ~~ 

?~ 'fx ,...~~, 
f) O· I. <:, 1._{~ ~x----•36T4C 

~~;\~X-· 
0- x'/ 

1/, j</ 

~ Ix ,-
x xl I i /-
I X / 

I I I 
20 ·x 

X [ l 
- X 

Q..,_----tl'--________________ ._ __ ......_ ____________ _ 

~x19.i' Twist, Radians per inch 

FIG. 3. 20.TOROUE-TWIST CURVES FOR BEAMS - CONTAINING WEB REINFORCEMENT. 

w 
~ 
.r::,.. 



3.45 

3.5 BEAMS CONTAINING LONGITUDINAL AND TRANSVERSE REINFORCEMENT -

DEFORMATION SERIES 

This series of tests had two aims, (i) · to confirm the ultimate 

strength theory of design, (ii) to investigate the deformation characteristics 

of web reinforced beams loaded in bending and torsion~ Secondary tests were 

carried out to verify the design method for shear··and torsion. 

3.5.1 Description of Specimens 

The deformation series comprised twelve 10 ft. beams of 10" x 5" 

section. Three were tested in bending and the remainder ·were tested in 

bending and torsion. The principal variables considered were; (i) the 

ratio of torque to moment, and (ii) the quantity of longitudinal steel. 

The values of these parameters are set out in Figure 3.21. 

The amount of transverse steel was computed in accordance with the 

design method set out in chapter 7" Thus no hoop steel was provided for 

pure bending and the amount of reinforcement increased with the ratio of 

torsion to moment. Transverse reinforcement was fabricated from¼" 

diameter mild steel,flash butt· welded to form closed hoops, 

The main bars of the longitudinal steel were structural grade 

deformed bars. To obtain the required area additional small plain 

structural grade bars were used. The apparent values of the modulus of 

elasticity for both steel and concrete, were obtained from the stress strain 

curves given in Figure 3.22. The arrangement of the longitudinal steel is 

shown in Figure 3.23. 

All test beams were cast from the one batch of transit mixed 

concrete. The strength of concrete at the time of test is given in 

Figure 3.24 and also in Table 3.6. Auxilliary plain concrete specimens 

were manufactured from the same concrete batch and were tested in pure 

torsion and pure bending. The results of these tests are listed in 

Table 3.6. 
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TABLE 3.6 

DETAILS OF BEAMS OF THE DEFORMATION SERIES (See also Fig. 3. 23) 

Geometry (inches) Web Steel Longitudinal Steel 

Beam AL3fL3 
No. h b A f ALl fLl ALlfLl al a2 s 

w w 

R4. 20 10.0 5.0 1.5 1. 2 0.049 58.6 2.59 1.420 40.6 0.155 

R4. 24 10.0 5.0 1.5 1. 2 0.049 58.6 2.25 1.420 40.6 0.155 

R3. 20 10.0 5.0 1.5 1. l 0.049 58.6 3.12 1. 220 40.6 0.180 

R3. 24 10.0 5.0 1.5 1. l 0.049 58.6 2.72 1.220 40.6 0.180 

R3,30 10.0 5.0 1.5 1. 1 0.049 58.6 2.38 1.220 40.6 0.180 

R2.24 10.0 5.0 1.7 1. 2 0.049 58.6 3.80 0.830 42.4 0.265 

RZ.30· 10.0 5.0 1. 7 1. 2 0.049 58.6 3.32 0.830 42.4 0.265 

R2. 38 10.0 5.0 1. 7 1.2 0.049 58.6 2.84 0.830 42.4 0.265 

Rl.30 10.0 5.0 1.2 1. 2 0.049 58.6 3.95 0.710 41.3 0.310 

RPl 10.3 5.2 
(Plain Concrete Control Testie) 

RP2 10.0 5.0 

f' 
C 

p.s.i. 

3474 

3034 

3444 

3157 

3~14 

3239 

3314 

3474 

3279 

3460 

3076 

Failure 
Loads 

T M 
kip. kip. 
in. in. 

59.9 331. 0 

56.5 264.0 

50.7 252.0 

53.7 230.0 

6L6 207.0 

44.2 205.0 

49.7 176.0 

53.4 138.0 

41. 8 146.0 

35.6 0 

0 43.1 

t,,:I . 
V'I 
~ 
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The main bending and torsion tests were carried out using the 

two point loading rig described in a previous section (3,1). In 

addition to the main tests on the centre sections of the beam secondary 

tests were carried out on the shear spans. For the secondary tests the 

one point loading system (see 3.1) was used, Details of the secondary 

tests are contained in Table 3,7. For some beams semi bright¼" 

diameter steel was used in the stirrups. This steel had a "yield 

point" of 73.6 kips/in2. 

3.5.1 Test Behaviour 

Beam R4 which was tested in simple flexure failed by crushing 

of the concrete prior to yield of the longitudinal steel, Tensile 

cracks did not open at failure and the depth of crushing of the concrete 

was 511 to 611 • Beams R2 and R3, which were more lightly reinforced, failed 

in the more usual manner with gradual opening of the tension cracks before 

compression failure of the concrete. 

The specimens subjected to bending and torsion all behaved in a 

similar manner. Cracks spread from the bottom of the beam gradually 

becoming more inclined to the vertical. The height of the cracks for the 

bending and torsion specimens was considerably greater than it was for the 

corresponding pure bending specimen at the same moment. The ultimate load 

was reached when a tensile crack opened and the concrete on the top surface 

failed. For the beams of this series, the compression zone failed with 

splitting of the top surface. The general appearance-at failure of 

typical beams of this series is shown in th~ photographs of Figure 3.25. 

In beam R4.24 a premature failure in the shear span prevented 

the full ultimate load in the centre test length from being reached. 

Examination of the beam and comparison with subsequent tests indicated 

that a bending and torsion failure was imminent at the maximum load 
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TABLE 3.7 

DETAILS OF SECONDARY TESTS ON BEAMS OF THE DEFORMATION SERIES 

Geometry (inches) Web Steel Longitudinal Steel 

AL31L3 r• 
Beam 

C 

h b al a2 A f s ALl fLl ALlLl p.s.i 
No. w w 

R4A 10.0 5.0 1.5 1. 2 0.049 58.6 3.22 1.420 40.6 0. 155 2954 
R4B 10.0 5.0 1.5 1. 2 0.049 58.6 3.22 1.420 40.6 0.155 2954 
R4. 20A 10.0 5.0 1.5 1. 2 0.049 73.6 2.·00 1.420 40.6 o. 155 3474 
R4. 20B 10.0 5.0 1.5 1. 2 0.049 73.6 2.00 1.420 40.6 0. 155 3474 
R4. 24A 10.0 5.0 1.5 1. 2 0.049 58.6 2.00 1.420 40.6 0.155 3034 
R3A 10.0 5.0 1.5 1.1 0.049 73.6 3.00 1. 220 40.6 0. 180 2919 
R3B 10.0 5.0 1.5 1. l 0.049 73.6 3.00 1. 220 40.6 0. 180 2919 
R3. 20A 10.0 5.0 1.5 1.1 0.049 58.6 2.50 1. 220 40.6 0.180 3444 
R3. 20B 10.0 5.0 1.5 1. 1 0.049 58.6 2.50 J. 220 40.6 0.180 3444 
R3. 24A 10.0 5,0 1.5 Ll 0.049 73.6 2.50 1. 220 4,0. 6 0.180 3157 
R3. 24B 10.0 5.0 l. 5 1. l 0.049 73.6 2.50 L 220 40.6 0.180 3157 
R3. 30A 10.0 5.0 1.5 1. l 0.049 73.6 2.00 l.220 40.6 0. 180 3414 
R3. 30B 10.0 5.0 l.5 1. 1 0.049 73.6 2.00 1. 220 40.6 0.180 3414 
R2A 10.0 5.0 1. 7 l. 2 0.049 58.6 3. 00, 0.830 42.4 0.265 3)99 
R2B 10.0 5.0 l. 7 l. 2 0.049 58.6 3.00 0.830 42.4 0,. 265 3199 
R2~ 24A 10.0 5.0 l. 7 1.2 0.049 58.6 3.30 0,830 42.4 0.265 3239 
R2. 30A lU.O 5.0 1. 7 l. 2 o. 04·1 73.6 3.00 0.830 42.4 0.265 3314 
R2. 30B 10.0 5.0 1. 7 1.2 0.049 73.6 3.0G 0.830 42.4 0.265 3314 
R2. 38A 10.0 5.0 1. 7 l. 2 0.049 73.6 2.50 0.830 42.4 0.265 3474 
R2. 38B 10.0 5.0 l. 7 1. 2 0.049 73.6 2.50 0.830 42.4 0.265 3474 
Rl. 30A 10.0 5.0 1. 2 l. 2 0.049 58.6 3.14 0.710 41. 3 0.310 327'9 
Iil. 30B 10.0 s.o L 2 1. 2 0.049 58.6 3.14 0.710 41.3 0.310 3279 

Failure Loads 
). lVl V kip. kip. kips. 

in. in. 

50.5 92.1 3.94 
51. 6 166.0 6.92 
72.0 220.0 9,08 
70.8 151. 0 6.30 
62.l 255.0 8. 21 
57.6 92.1 3.94 
51. 5 166.0 6.92 
6l.7 183.0 7.60 
59.0 .78.9 3.41 
56.5 92.9 3_q7 
54.9 158.0 6.57 
62.2 203,0 8.39 
63.4 86,8 3, 73 
55.7 11 l. 0 4.71 
50.9 78.7 3.42 
62.3 140,0 5.85 
50.3 104,0 4.43 
50.6 71, 8 3. 13 
54.6 J20.0 5.08 
48.8 70.7 3.08 
42.6 97.l 4. 13 
40.9 61. 8 2.73 

(,,-1 

V, 
V, 
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applied. To avert shear span failures, clamps were placed on the shear 

span during subsequent tests. 

After the primary tests were completed the shear spans of each 

beam were reloaded in bending, torsion and shear. Although the shear 

spans were slightly cracked prior to retesting, tests on other beams 

(see 3.4.3) and tests by Collins indicated that the ultimate strength would 

not be appreciably affected .by these cracks. Extensive cracking in the 

shear span during the main tests was of course prevented by the external 

clamps. 

A general aim of the secondary tests was to test one end at a 

ratio of loads that should produce a mode 3 failure (see 3.4), and the 

other end at a somewhath_ighe:r ratio of shear to torsion, to induce a 

mode 2 failure. Beams for which mode 2 failures were predicted did in 

fact behave in a manner similar to the idealized mode. This type of 

behaviour is illustrated in Figure 3.26. Specimens for which mode 3 failures 

were predicted definitely failed with opening of cracks on the sides and top 

of the beam. A photograph of a beam that has failed in this mode is given 

in Figure 3.27. 

3.5.3 Deformation Measurements 

For the deformation series of beams the following measurements 

were taken: 

(i)- Deflections 

(ii) Rotations 

and (iii) Strain in the longitudinal and transverse steel. 

In this section only the experimental phenomena will be reported. 

The theoretical treatment of deformations will be given in Chapter 8. 
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(i) Deflections 

Both deflections and rotations were recorded by means of rigid 

outstanding anns and dial gauges. This arrangement is shown diagrammatically 

in Figure 3.28. The sensitivity of the measurements was l0-5in., although 

the accuracy was somewhat less. 

Complete sets of the moment - central deflection curves are given in 

Figure 3.29. It can be seen from these figures that for beams with the same 

longitudinal steel (the R4, R3, and R2 groups) the deflections increase with 

increasing proportions of torsion. It may also be noted that while in pure 

bending there is a distinct kink in the curve associated with cracking, the 

curves for bending and torsion show a gradual change of slope. The stages 

at which clamps were applied to the shear spans are marked on the curves. 

the presence of clamps does not seem to have affected the test results. 

(ii) Rotations 

The main part of the torque-rotation relationships was obtained 

from dial gauge readings using the arrangement in Figure 3.28. The 

accuracy of this method was of the order of 10-S radians. Rotations were 

also recorded by the special inductance gauge described previously. Reading 

from this gauge confinned the results given by the dial gauge method and 

provided a continuous recording of rotations near ultimate load. 

The torque-twist curves are given in Figure 3.30 for the beams of 

the defonnation series. In general it appears that the flexural stiffness 

is decreased by increasing the ratio of torque to bending and by decreasing 

the amount of longitudinal steel. 

(iii) Strain in the longitudinal and transverse steel. 

Electric resistance strain gauges were attached to the reinforcing 
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steel prior to casting. The position of the gauges is shown in Figure 

3.31. Waterproofing of the gauges was achieved by layers of P.V.C. 

insulating tape, epoxy resin and P.V.C. insulating tape. 

The relationships between the applied bending moment and the 

longitudinal steel strain are shown in Figure 3.32. This figure 

demonstrates that torsion appreciably increases the strain in the 

longitudinal steel. 

Restrictions on space prevented efficient waterproofing of 

gauges attached to the transverse legs of the hoops. The results of strains 

in the vertical legs of the hoops are presented in Figure 3.33, The torque

steel strains relationships follow the same trends as the torque-twist curves. 

The maximum strains recorded were frequently below yield strains. 

In part this must be attributed to the fact that the failure crack did not 

cross the steel at the position of the gauges. 
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CHAPTER 4 

ULTIMATE STRENGTH OF BEAMS WITHOUT WEB REINFORCEMENT 

In this chapter it will be shown that the pure torsional strength 

of a beam without web reinforcement may· be satisfactorily computed from the 

plastic theory of stress distribution and an empirical tensile stress 

criterion of failure. The interaction of bending and torsion and shear 

and torsion will be discussed. Finally a simplified method, which transforms 

the torsional loading into an effective shear force, will be presented. 

4.1 Pure Torsion 

As the ultimate strength, in pure torsion, of beams containing 

only longitudinal steel is related to the torsional strength of plain 

concrete beams, it is appropriate to discuss the simpler plain specimens 

first. 

Tests show that plain concrete specimens fail.immediately on the 

formation of a cleavage crack normal to the principal tensile stress. 

The stress situation at any point in a specimen, irrespective of the stress

strain relationship or the shape of the specimen, is that of pure shear. 

Thus all the stress parameters commonly used in concrete failure theories 

bear a constant relationship to each other. For convenience, and in view 

of the failure behaviour, the failure criterion of plain torsion specimens 

may be designated as a maximum principal tensile stress criterion. It 

should be appreciated that the values of this limiting tensile stress for 

the particular stress situation of pure torsion may not correspond to values 

obtained for other stress situations. For a particular concrete, if scale 

effects can be ignored, this limiting tensile stress should be constant 

for all torsion specimens. Advantage may be taken of this fact in the 

investigation of the elastic and plastic stress distribution theories. 

Tests on plain concrete sections of varying shapes but the 

same concrete are tabulated in Table 4.1. It can be seen from this table 

that the stress at failure calculated on a plastic basis is evidently 
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TABLE 4.1 

A COMPARISON OF THE FAILURE STRESSES COMPUTED 
FROM THE ELASTIC AND PLASTIC THEORIES FOR BEAMS 
OF DIFFERENT SHAPES. 

Beam Shape Failure Stresses f' 
(p.s.i.) C 

(p. s. i.) 
Elastic Plastic 

HC Hollow Cylinder 399 341 7,200 

R Rectangle 600 358 II 

SC Solid Cylinder 472 354 II 

REP4 Rectangle 513 304 4,600 

SCR Solid Cylinder 442 332 II 

RUP4 Rectangle 675 400 3,680 

ELL L-:-Shape 675 430 II 
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independent of the shape of the cross section, on the other hand the shape 

of the cross section has a marked effect on the indicated failure stress 

calculated on an elastic basis. The evidence of these few tests clearly 

supports the plastic theory. 

To examine the use of the plastic theory and the maximum principal 

stress criterion for predicting first cracking, several plain concrete 

beams were tested in bending and.torsion. For these tests the maximum 

principal stress was calculated from the following formula. 

(4 .1) 

Where fb is the direct stress and 1 is the shear stress. 

If it is assumed that full plasticity provides a reasonable 

estimate of the stresses produced by bending and torsion, the equations below 

are obtained. 

fb 
. 4M 
'i' 

bh2 
(4. 2) 

= 2T 
b2 (h - b) 

3 
(4.3) 

The results of the bending and torsion tests are presented in 

Table 4.2 in three groups. Each group corresponds to beams made from the 

one concrete mix. If the above formulae are valid the computed principal 

tensile stress should be a constant for any one concrete mix. This is 

reasonably confirmed by examination of the results in this table. 

It may be concluded that a satisfactory approach for torsion in 

plain concrete is a plastic stress distribution and a maximum tensile 

stress criterion. 

Thus for rectangular sections, 

T = !. b 2 (h - b) f' 
. 2 3 t 

(4 .4) 



Beam 

Pl 
PZ 
P3 
P4 
PS 
P6 

TABLE 4. 2 COMPUTED FAILURE STRESSES FOR PLAIN CONCRETE RECTANGULAR 
BEAMS SUBJECTED TO BENDING AND TCRSION 

Failure Stress Failure Stress Failure Stress 

inp.s.i. 
(corrected to 
f' = 6. 720 o. s. i.) 

in p, s. i, 
Beam 

·r• - 4 600 · · r- - , p.s.1. 

inp.s.i. 
Beam c.,"""_,_..,.~~..-;:. 

f' ,_ . 
c - 4,-bUU 

(; 

416 
423 
412 

REP2 340 RUP2 366 

378 REP4 30_4 RUP4 398 

403 
420 

,, 

mean = 409 p. s. i. mean = 322 p. s. i. m~an = 382 p. 8. i. 

mean devn. = 12p.s.i. mean devn. = 18p.s.i. mean devn.-= 16p.s.i. 
i 

~ 

~ 
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The question of a suitable value for f~, the failure strength, 

still remains. It is the practice at present to specify the mechanical 

properties of concrete used for a structure solely by the compressive strength. 

Although it is recognised that no exact relationship exists.between the 

tensile and compressive strengths of concrete a frequently employed approxi

mation is, 

f' = C /E t C 
(4. 5) 

As the stress situation in torsion is the biaxial stress pattern 

of pure shear, it is most satisfactory to evaluate the parameter C from 

torsion tests. The results of all the available tests on plain torsional 

specimens are analysed iµ Table 4.3 using the plastic theory. The results 

indicate that this constant has a value of 5.0 ± 20%. A safe but not 

unduly conservative criterion can be taken as,· 

f' = 3.5 ff 
t C 

(4.6) 

The failure torque may be obtained from the above criterion and 

the formula for the plastic theory, ie., 

T = 
0 IP: 

C 
(4. 7) 

If the results in Table 4.3 are expressed in. a slightly different 

form the value of the ratio T . t 1/Tth t· 1 could be obtained experimen a eore ica 

c3: 5). This ratio has a mean value of 1.48 ± 20% for the results of tests 

on rectangular specimens and an overall mean of 1.44 ± 20% for all tests. 

The reported· results for torsion tests on rectangular beams with 

only longitudinal steel are set out in Table 4.4. These beams have been 

analysed by means of the formula for plain concrete given above. In this 

case the values of the ratio of T /Tth have a mean. of 1.55 and a exp eor 
coefficient ~f variation of 18%. If this figure is compared with the 

result·obtained for plain concrete it can be seen that the asswnption that 

the longitudinal steel can be ignored is justified for members tested 

in pure torsion. 
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TABLE 4. 3 

ANALYSIS OF PURE TORSION TESTS ON PLAIN CONCRETE SPECIMENS 
.i?.ARlf .l ... :RECTANGULAR SPECIMENS 

Investigator IBeam Torque f' Plastic T 
kip. in. 

c. 
Failure C ex:e. p.s.1. 

T 
Stress theor. 

Rl 13.40 7200 358 4.23 L21 
This· REP4 50.50 4600 305 4.50 1. 29 

Investigation RUP4 66.30 3680 400 6.60 1. 89 
Wl 73.20 4630 389 5.72 1. 63 

. W2 74.50 4320 450 6.85 l.96 

Bach and Graf 150.50 2830 274 5.15 1.47 
128.90 2830 274 5.16 1.47 

Young, Sagar and Al 13.90 1700 333 8.09 2.31 
Hughes 2 20.20 1700 287 6.97 l. 99 

3 37.40 1700 448 10.88 3.11 

Turner and Davies Sl 11.00 2400 263 5.39 1. 54 
2 11. 75 2400 281 5.76 1. 64 

Rl 17.00 2400 318 6.51 1. 86 
2 12.00 2400 224 4.59 1. 31 

Andersen 3A 55.00 4100 322 5.03 1.44 
B ?3.00 4100 311 4.86 l. 39 
C 120.00 4100 401 6.27 l. 79 

4A 67.00 6900 392 4.73 1. 35 
B 88.00 6900 374 4.51 1. 29 
C 117. 00 6900 391 4.72 1. 35 

Marshall and 'Fembe Ol 7.59 1430 182 4.82 1. 38 
2 7.28 1430 174 4.62 1. 32 
3 6.91 1430 165 4.39 1. 25 
4 7.69 1430 184 4.88 l. 39 
5 8.70 2560 208 4. 13 1.18 
5 10.56 2560 253 5.01 1. 43 
5 9. 24 3000 221 4.05 1. 16 
8 8.70 3000 208 3.81 1.09 
8 9.22 3120 221 3.96 1. 13 

10 9.22 3120 '221 3.96 1. 13 
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Table 4. 3 Contd. 

Investigator Beam Torque f' Plastic T 
C • ex:e. kip. in. p. S. 1. Failure C 

T 
Stress theor 

Marshall and Tembe 
{contd.) Al 10.25 2560 274 5.43 1. 55 

2 9,74 2560 260 5.16 1.47 
3 l0.25 2560 274 5.43 1. 55 
4 10,30 2560 275 5.45 1. 56 
7 6.15 2560 288 5.70 l.63 
8 7.18 2560 336 6.65 l. 90 

·9 9.52 2560 446 8.82 2.52 
10 9.22 2560 432 8.54 2.44 
ll 6.86 2560 321 6.36 1. 82 
12 7.06 2560 330 6.54 l.87 

Nylander I l 46.80 3580 288 4.81 1.38 
2 52.61 3580 323 5.41 1. 55 

II 5 41. 60 3580 256 4.28 1.22 
6 36,40 3580 224 3.74 1.07 

Cowan X 38,50 3390 267 4.59 l. 31 
Tl 58.10 6200 461 5.86 1.67 

Humphreys POA 20.20 7000 484 5.79 1.66 
B 19.40 7000 465 5.56 1.59 
C 20.10 7000 482 5.77 1. 65 
D 19.70 7000 472 5.65 1. 61 
E 19.90 7000 477 5.71 1. 63 

PROA 48.10 7000 :461 5.52 1.58 
B 41. 80 7000 401 4.80 1.37 
C 42.40 7000 407 4.87 1. 39 

PRHA 42.10 7000 404 4.83 1.38 
B 44.50 7000 427 5. 11 1.46 
C 44.00 7000 422 5.05 1.44 

PS.OA 69.00 7000 413 4.95 1.41 
B 68.40 7000 410 4.91 1.40 
C 69.00 7000 413 4.95 1.41 
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Table 4. 3 Contd. 

Investigator Beam Torque f' Plastic T 
c. exp. 

kip. in. p.s.1. Failure C 
Th Stress t eor 

Humphreys PTOA 16.60 7000 461 5.51 1. 57 
B 15.90 7000 441 5.28 1.51 
C 14.70 7000 408 4.88 1. 39 

PUOA 22.20 7000 448 5.36 1. 53 
B 21. 70 7000 438 5.24 1. 50 

C 22.60 7000 456 5.46 1. 56 
RPl 28,55 6000 334 4.32 1. 23 

2 26.36 6200 308 3.92 1. 12 
3 24.24 6350 284 3.56 1.02 
4 27.44 6350 321 4.04 1. 15 
5 28.04 6400 328 4. 11 1. 17 
6 32.04 6400 375 4.69 1. 34 
7 28.24 7180 330 3.91 1. 12 
8 29.76 6500 348 4.33 1. 24 
9 31.24 6950 366 4.39 1. 25 

Mean 5.20 1.48 
Standard Deviation 20°/o 20°/o 

No. of Tests 75 75 
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PART 2. CIRCULAR SPECIMENS 

Investigator Beam Torque f' Plastic T 
C ex:e kip. in. p.s.i. Failure C 

T Comment 
Stress theor 

This HC 13.6 7200 341 4.03 1. 15 Hollow 
Investiga- SC 20,0 7200 353 4.17 1. 18 Solid 
tion SCL 20.8 6660 367 4.51 1. 29 II 

SCR 18.8 4600 332 4.90 1.40 II 

lA 130,0 1780 167 3.97 1. 13 Hollow 
lB 140, 3 II 180 4.28 1. 22 II 

Graf and lC 108.2 II 139 3,30 0.95 II 

Morsch 2A 216.5 II 211 5.02 1.43 Solid 
2B 216.5 " 211 5.02 1.43 II 

2C 173,2 II 169 4.01 1. 14 II 

Miyamoto GRPl 11. 3 1821 277 6.49 1.85 Solid 

Rl 25.2 2000 188 4.20 1.20 Solid 
R2 30,8 2100 229 5.01 1.43 II 

R3 35.2 2980 262 4,81 1. 37 II 

Andersen R4 29,8 3200 222 3.93 1. 12 II 

R5 32.2 3590 240 4.01 1.14 II 

R6 42.2 5200 314 4.37 1. 25 II 

. 
Mean 4.52 l.~9 

Standard Deviation 15° /o 15 /o 
No. of Tests 17 17 

Analysis of All Results T 
ex:e C T theor 

Mean 1.44 5.0 

Standard Deviation 20°/o 20°/o 

No. of Tests 92 92 
:· 
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TABLE 4.4 

A COMPARISON OF THEORY AND EXPERIMENT FOR BEAMS CONTAIN
ING ONLY LONGITUDINAL REINFORCEMENT LOADED IN PURE TORSION 

T /T 
exp theor 

Investigator Beam Torque f' Plastic Eff. Shear 
C 

kip. in. p.s.i. Eq. (4. 7 see 
Sect. 4.4 

156.0 2820 1. 52 1. 58 
173.4 II 1. 70 1. 76 
160.2 II 1. 58 1. 62 
160.2 II 1. 58 1. 62 
180.8 II 1. 76 1. 84 

Bach and 173.4 II 1. 70 1. 76 
Graf 130.0 II 1. 49 1. 93 

136.8 II 1. 57 2.02 
136.8 II 1.57 2.02 
141.0 II 1. 61 2.09 
130,0 II 1. 49 1. 93 
141.0 II 1. 61 2.09 

Young Bl 14.0 1700 2.33 2.40 
Sagar and B2 22.7 II 2.15 2.61 
Hughes B3 36.7 II 2.40 3.14 

Turner and S3 12.5 2400 1. 76 1. 81 
Davies S7 12.0 II 1. 32 1. 70 

B, l 69.8 2100 1. 30 1. 36 
2 77.l 2250 1. 39 1.45 
3 80.l 2250 1.44 1. 50 
4 84.5 3600 1. 21 1. 25 

Andersen 5 88.5 3600 1. 27 1. 31 
6 97.6 3680 1. 37 1. 43 
7 105.l 5000, 1. 27 1. 33 
8 109.2 5000 1. 32 1.38 
9 119.9 5200 1. 42 1. 48 
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Table 4. 4 Contd. 

T /T exp theor 

Investigator Beam Torque f' Plastic Eff. Shear 
C kip. in. p.s.i. Eq. (4. 7) see 

Sect. 4.4 

lA 50.0 3900 1. 34 1. 39 
lB 73.0 3900 l. 43 l. 62 
lC 90,0 3900 l. 23 1. 28 

Andersen 2A 62.0 7000 l. 24 1. 29 
2B 98.0 7000 l. 43 1. 63 
2C 122.0 7000 l. 25 l. 30 

Bl ll. 8 2560 l. 79 2.15 
B2 l l. 3 2560 l. 71 2.06 

Marshall B3 l l. 8 2560 l. 79 2.15 
and Tembe Cl l l. 3 2560 l. 71 2.06 

C2 l l. 9 2560 l. 80 2.16 
C3 10,8 2560 1. 65 1. 99 

III lA 13.0 2859 l.50 1. 99 
III lB 13.0 2859 l. 50 l. 99 

Nylander IV 5A 15.6 3079 1. 73 2.30 
IV 5B 14.7 3079 1. 64 2.17 

Cowan A 36.0 3380 1. 22 1. 52 

3TRO 37.6 3923 0.95 l. 23 
Ernst 4TRO 34.4 II 0.88 1.13 

5TRO 33,8 II 0.86 1. 11 
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Table 4. 4 Contd. 

T /T 
exp theor 

Investigator Beam Torque f' Plastic Eff. Shear 
C 

kip. in. p.s.i. Eq. (4. 7) see 
Sect. 4.4 

Pl A 19.7 7000 l. 62 1. 68 
B 21. 5 II l. 76 1.82 
C 22.2 II l. 82 1. 89 
D 21. l II l. 73 1.80 
E 19.3 II l. 57 1. 65 

Humphreys PRI A 44.8 II l. 47 1. 90 
B 46.l II l. 52 1. 96 
C 45.8 II l. 52 1. 95 

PSI A 74.0 II 1.52 2.10 
B 73.5 II 1.50 2.08 
C 72.0 II l. 47 2.04 

PTI A 16.5 II l. 56 2.16 
B 15.5 II l. 47 2.03 
C 14.9 II 1.42 1. 95 

PUI A 24.7 II l. 71 2.42 
B 21. 2 II 1.47 2.08 
C 22.2 II 1. 53 2.18 

Gesund l 36;0 4379 0.91 0.95 
and Boston 2 39,0 437 9 0.99 l. 03 

Ramakris- 28.8 3119 l. 86 2.30 
nan and 28.8 3099 l. 87 2.30 
Vijarangan 26.l 2639 1. 83 2.28 

23.2 2179 l. 79 2.23 
20.l 1969 l. 63 2.03 
21. 7 2000 l. 75 2.15 

Mean l. 55 1. 84 

Standard Deviation 18°/o 22°/o 

No. of Tests 71 71 
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4.2 Combined Bending and Torsion of Beams Containing only 
Longitudinal Steel 

Beams containing only longitudinal steel and loaded in combined 

flexure and torsion have been observed to fail in several modes. (Chapter 3). 

Consideration of these observed failure patterns suggests that the ultimate 

strength of these beams would depend on factors such as;: .the ratio of 

bending moment to twisting moment, the amount and distribution:of· longitudinal 

steel, the dowel forces between the steel and the concrete, the streng~h 

of the concrete under combined stresses and the magni tud.e .. o.f. the aggregate 

interlock forces. Attempts have been made by Gesund and Boston, and Nylander 

to analyse possible failure mechanisms. Howe1Ter because.of the assumptions 

necessary in their analyses, neither method gives a satisfactory estimate 

of the failure load . 

.If web reinforcement is not used in the design of a beam to 

resist torsion combined with other loadings, invariably the capacity of 

the section under torsion and shear will govern the size of the member, It 

was considered, therefore, that a simple empirical approach would be adequate 

for the case of bending and torsion. 

To investigate the interaction behaviour of this type of beam 

Figure 4.1 was prepared. In this figure, the ratio of the observed failure 

moment to the ultimate pure flexural strength is plotted against the ratio 

of the observed failure torque to the pure torsional st.reng:th for available 

test results. A considerable range of section prJperties is encompassed in 

these tests, the ratio of height to width varying from 1.5 to 2,1, the 
to 2h4% . percentage of steel from 1.1%fe.nd t e concrete cylinder strength from 

2000 p.s.i .. to 7200.p.s.i. For these beams the pure torsional strength was 

determined from tests on companion specimens, 

It can be observed from this figure that the presence of bending 

moment has little effect on the magnitude of the torsion strength, From 

this it follows that the torsional strength of a beam loaded in flexure 

and torsion may be found by calculating the pure torsional strength 
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i.e. IE 
C 

(4. 7) 

The accuracy of this assumption is demonstrated in Table 4 ":," 

The mean value of T /Tth for the 43 available results is L49 with. exp eor 
a standard deviation of 18%. 

It may be recalled that the mean value of T /Tth fo:c· exp eor 
rectangular beams with only longitudinal re:::.nforcement loaded in pure torsion 

was 1.55 ± 18%. Comparison of these values also Sllpports. the· assumption 

that the effect of bending on the torsional strength can be ignored .. 

4.3 Shear and Torsion in Beams with only Longitudinal Reinforcement 

As a result of Nylander's work (Chapter 2) it has generaHy been 

assumed that a maximum principal stress approach sa.tisfactorily accour-.ts for 

the strength of beams loaded in shear and torsion. Thus a be~m is asswned 

to fail when the sum of torsional shearing stress and the direct shear 

stress equals the tensile strength of the concrete. A typical example of thi.s 

method, in working stress form, is given in the SAA code "ConcTet·e in 

Buildings" (CA2). The Sand LS series of tests described in Chapter 3 may 

be used to investigate this method. 

The results of these tests are presented in Figure 4., 2, :rn whic.h 

the failure stress obtained from the equations given in SAA code due to 

both torsion and shear are plotted against V/V ... It should be noted that all 
\j 

beams of this series were cast from the one batch of concrete, so the tensile 

strength should be sensibly constant. In fact the indicated failure 

stress is seen to vary markedly with the proportion of shear in the com

bined loading. For these beams the factor of safety varied .. from 2, 37 for 

pure shear to 9.03 for pure torsi~n. It must be concluded that ~he maxi-

mum principal stress approach on which the SAA code rules are based js 

unsatisfactory for combined shear and torsion. 

A more satisfactory procedure can be developed if.an empirical 

interaction relationship between shear and torsion is employed. The observed 

shear-torsion interaction behaviour is shown in Figure 4.3, where the ratio 
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TABLE 4. 5 

A COMPARISON OF THE THEORY WITH EXPERIMENTAL RESULTS FOR 
BEAMS CONTAINING ONLY LONGITUDINAL STEEL LOADED IN BENDING 

AND TORSION 

' T /T 
exp theor. 

Investigator Beam Torque Moment Plastic Eff. Shear 
Eq. (4. 7) see 

Sect. (4. 4) 

Ll 57.0 32.3 1. 62 2.12 
L2 60. 1 205.7 1. 68 2. 19 
L3 61. 1 5.5 1. 63 2.13 
L7 47.8 80.5 1. 38 1. 80 

This LB 49.6 263.5 1.40 1. 83 
investiga- LS2 52.5 5.2 1.87 2.54 
tion S3 64.2 6.3 1. 74 2. 19 

LBl 54.1 141. 6 1. 47 1. 90 
LB2 55.4 6.3 1. 50 1. 91 
LB3 60.7 161. 5 1. 65 2. 14 

B4 17. 1 99.0 1. 36 1. 52 
BS 24.8 45.4 1.85 2.56 
B6 10.7 108.0 1. 39 1. 39 
C3 21. 7 111. O 1. 69 2.34 

Ramakrishnan C4 20.1 90.7 1. 63 2.26 
and CS 23.2 105.0 1. 79 2.47 
Vijarangan B6 ,:, 

B 
23.2 108.0 1. 70 2.35 

Cl * B 
23.2 108.0 1. 79 '2.48 

C6 •:< 
B 

21. 7 90.7 1. 75 2.42 
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Table 4. 5 Cont. 

T /T exp theor. 

Investigator Beam Torque Moment Plastic Eff. Shear 
Eq. (4. 7) see 

Sect. (4. 4' 

III 2A 13.0 9.2 1. 46 2.03 
2B 13.0 9.2 1. 46 2.03 
3A 14.3 48.4 1. 65 2.28 
3B 13.9 48.4 1. 60 2.22 
4A 16.5 72.6 l. 94 2.69 
4B 15.6 72.6 l. 84 2.54 

VII l 39.0 52.l l. 19 1. 30 
2 31. 2 52.l 0.95 1.04 

Nylander 3 39.l 58.0 1. 19 1. 30 
4 35.2 58.0 1.07 l. 17 
5 54.7 75.5 l. 70 l. 86 
6 50.7 75.5 l. 58 l. 73 
7 50.7 10.0 1.51 l. 65 
8 54,7 10.0 1. 63 l. 78 

·9 31. 3 58.0 0.94 1.03 
10 19.5 58.0 0.96 0.96 

3 58,0 58.0 1.47 l. 70 
4 64.0 64.0 1. 62 1. 89 

Gesund and 5 43.0 86.0 1.49 1.74 
Boston 6 36.0 108,0 1. 25 1. 46 

7 59,0 177,0 1. 32 l. 54 
8 49.0 195.0 1. 10 1. 28 
9 42.0 83,0 0.97 1. 47 

10 39.0 156.0 l. 17 1. 77 

Mean 1. 49 l. 86 
Standard Deviation 18°/o 24°/o 
No. of Tests 43 43 
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of the failure torque to the pure torsional strength, is plotted against the 

ratio of the failure snear to the pure shear strength. For the results 

plotted both pure torsional and shear strengths were detennined from tests 

on companion specimens, 

It is evident that the assumption of linear interaction between 

shear and torsion closely follows the trend of the experimental data, hence 

(4.8) 

4.4 Effective Shear Method 

Although the equations developed in the previous sections are 

relatively simple, there are certain advantages to be gained from recasting 

the equations into a simpler fonn. The main purpose of this is to make the 

equations for beams without web reinforcement consistent with the design 

procedure that will be derived for beams with web reinforcement. 

The A.C.I. code (316-63) gives the following simplified fonnula 

for the shear capacity of an unreinforced section, 

is, 

V = 2bd ff 
0 C 

(4.9) 

The expression for the torsional strength as given in section 4.1 

This equation may be rearranged to give, 

T = 
0 

(2bcl/1I)b 
C 

2d 
1.75( h - b) 

·3, 

A reasonable approximation to this fonnula will be given by, 

V b 
0 

T0 = 1.6 (4.10) 
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The above relationship will give values for T comparable with 
h O h 

equation ( 4. 7) when b = 1 and more conservative values when b > 1. 

To use this equation to analyse pure torsion results it is 

suggested that d be taken as 0.9h. The accuracy of this method for the case 

of pure torsion is indicated in Table 4.4. The mean of the values of 

T /Tth for the 75 available tests is 1.84 ± 22%. For bending and exp eor 
torsion tests the results shown in Table 4.5 yield a mean of 1.86 ± 24%. The 

modified method is somewhat more conservative than the plastic equation (4.7), 

although it is sufficiently accurate for design use. 

For the case of shear and torsion, the linear interaction proposed 

in section 4.3 is expressed in the form, 

T V 
T + - = 

o Vo 
1 

When the value for T from equation (4.10) is substituted in the 
0 

above expression we obtain, 

= V 
0 

Use of this equation in analysing the results contained in 

Table 4.6 gives a mean of 2.22 ± 16% for the values of T /Tth . exp eor 

(4 .11) 

Equation (4.11) in effect means that the torque on a member 

loaded in combined torsion, bending and shear, can be replaced:by an equi

valent shear of 1.6 T/b. Design is then carried out for the applied 

bending moment and an effective shear by the usual methods. 
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TABLE 4. 6 

A COMPARISON OF THE THEORY WITH EXPERIMENTAL RESULTS FOR 
BEAMS CONTAINING ONLY LONGITUDINAL REINFORCEMENT LOADED 

IN SHEAR AND TENSION 

T /T exp theor 

Investigator Beam Torque Shear M Plastic Eff. Shear 
kip. in. kips. Vd eq. (4. 8) see 

Sect. 4.4 

L5 43.4 4.0 4.52 1. 75 2.01 
L6 52.5 0.8 5.01 1.54 1. 86 . 
SLl 46.2 2.2 4.45 2.21 2.53 
LS3 39.6 1. 9 3.74 1. 71 2.00 
LS4 25.7 4.2 3.71 1. 59 1. 77 

This LS6 37.6 -- 3.6 3.76 1. 91 2.19 
investiga- Sl 41. 8 6.4 3.07 1. 93 2.08 
tion S4 47.0 4.5 2.97 1. 67 1.80 

SS 47.7 2.4 3.10 1. 60 1. 77 
Ql 13. 9 5.6 5.37 1. 68 1. 87 
Q2 24. 1 4.2 5.25 1. 89 2.21 
Q4 27.8 1. 6 5.21 1. 57 1. 94 
Q4A 27,3 4.3 4.07 2.04 2.37 
Q5 16.5 5.7 4.07 1.80 2.00 
Q6 19.4 6.0 3.06 1. 95 2.15 
Q6A 24.4 4.3 3.05 1. 87 2.12 
Q7 28.8 l. 7 4.01 1. 63 1. 98 
Q7A 27.3 4,3 4.07 2.04 2.37 
Q8A 33.0 1.8 2.98 1. 83 2. 16 
Q9 18.3 5.0 5.42 1. 77 2.02 
Ql0 36.4 2.2 2.03 2.04 2.28 
QllA 26.5 4.0 2.03 1.88 2.06 
QllB 27.2 10.0 2.05 2.91 3.09 
IV2A 6.9 4.3 4.4 2.34 2.66 

2B 6.8 4.1 4.4 2.25 2.56 
Nylander 3A 10.3 2.5 4.4 2.07 2.55 

3B 12. 7 2. 1 4.4 2.15 2.74 
4A 13.4 1. 6 4.4 2.01 2.60 
4B 13.6 1. 6 4.4 2.00 2.61 

Mean 1. 93 2.22 
Standard Deviation 15°/o 16°/o 
No. of Tests 29 29 
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CHAPTER 5 

ULTIMATE STRENGTH THEORY FOR BEAMS CONTAINING BOTH 

LONGITUDINAL AND TRANSVERSE STEEL 

There is universal agreement among workers in the field that 

combinations of longitudinal and transverse steel increase the torsional 

capacity of beams. Advantage may be taken of this fact to reduce the over

all dimensions of beams subjected to torsion in combination with other 

actions. 

In recent years several investigators have proposed theories to 

calculate the ultimate strength of beams of this type. It is generally 

agreed that failure of the ,beams takes place in the manner suggested in 

Figure 5.1. The beam fails when tension cracks on three of the sides 

open allowing the segments.of the beam to rotate about an axis located 

near the fourth side. In analyzing this mechanism various investigators 

have made differing assumption~. For example the direction of the axis 

about which the beam rotates has been taken as parallel to the longitu

dinal axis of the beam, Gesund, joining the ends of the tension spiral, 

Lessig and Yudin, or at 45° to the longitudinal axis of the beam, Evans. 

Each investigator has made further assumptions as to the shape of the 

tension spiral and the depth of the compression zone. From observations 

of the failure of beams (Chapter 3) the author has adopted a mechanism 

similar in shape to that of L~ssig's and Yudin's. 

The various forces acting in the mechanism at failure are 

shown in Figure 5.2. Shearing stresses in the plane of the compression 

zone produce a torque T and a shear V as shown in the figure. If all 
C C 

six equations of equilibrium are considered these secondary forces could 

be evaluated. 

In the author's analysis of this mechanism the only equilibrium 

equation employed in obtaining the design formulae is that relating 
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moments of external and internal forces about an axis parallel to the neutral 

axis. This axis is designated XX' in Figure 5,2,' The secondary forces 

T and V have no moment about this axis, 
C C 

To compute the depth of compression allowing for the effect of 

shearing stresses on the compressive strength of concrete would require 

the values of T and.V. and the pattern of stresses produced by them. . . C C 

However it is considered that it is not necessary that the de.pth. of the 

compression zone should. be .known exactly, as even considerab.l.e :variation 

in this depth will have 1i ttle effect upon the value of the mome.nt. 

Equally the actual distribution of the stresses in·the compression zone 

is not important. When the compression zone . occurs near. th:e .. top face 

of the beam it has been assumed that the depth to the compression 

resultant may be taken as the same as· it would be in pure flexure, 

It has· been.assumed that the angle of the tension crack on 

the surface· opposite the compression zone could be defined by a spiral 

joining the ends of· th,e,.compression .z.one at .a constant angle to the 

longitudinal axis of the beam. 

Three principal modes of failure have been observed for beams 

in- whi·ch· the steel yields,.. Failure with the neutral axis occurring near 

the top face is referred. to as a mode 1 failure, near th.e. side face as 

a mode 2 failure, whilst a mode 3 failure indica-tes that the axis 

forms near the bottom surfac.e (see Figure 5. 3). A full description of 

the failure behavious of such beams is given in Chapter 3, 

Dowel forces are ignored in this analysis, and the contribution 

of the tensile stresses in the concrete is also omitted. These approxi

mations lead to satisfactory results except for beams in which the 

amount of transverse steel is very small. For such beams the theory will 

frequently lead to a low estimate of the torsional capacity. This 

deficiency in the theory will be referred to again in- a later section. 

Under certain ratios of load and certain arrangements of 

reinforcement failure may occur before the longitudinal and the trans

verse steel have yielded. For such beams an attempt has been made 
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either to estimate the failure load by some other means or to limit the 

applicability of the theory to exclude these cases" A particular example 

of this type of failure, is a premature failure of the beam in shear 

prior to the full development of a mode 2 mechanism. 

It is convenient to divide the presentation of the ultimate 

strength theory into two sections; bending and torsion, and shear and 

torsion. In the section on bending and torsion, mode 1 and mode 3 

failures will be discussed, while in the section on shear and torsion, 

the mode 2 mechanism and premature shear failures will be dealt with. 

5.1 BENDING AND TORSION 

Under normal circumstances the strength of a web-reinforced 

beam in bending and torsion will depend upon its resistance to. a.mode 1 

failure. This type of failure mechanism is perhaps more easily visuali

sed as a distortion of the usual pure bending failure surface. The 

idealized form of this failure surface is shown in Figure 5,3. On.the 

basis of the assumptions discussed.above, it is possible to analyse 

this mechanism to obtain an expression for the fai'lure load. 

5.l(a) ·Mode 1 

The total moment of the internal forces about the "compression 

hinge" is equated to the moment of the external forces. For a mode 1 

failure, the only internal forces which have a significant moment about 

this axis are: 

(a) the forces in the bottom:longitudinal steel, and 

(b) the forces in the bottom branches of the transverse steel. 

The forces in the vertical legs of the transverse steel have 

been ignored in the failure mode because their contribution to moment 

about the failure axis is small. This simplifies the equations and 

leads to conservative errors of less than 10% for most beams, 
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For simplicity it is also assumed that the bottom branches of the stirTups 

are at the same level as the main longitudinal steel. 

If the angle between the "compression hinge" and the normal cross

section is a1, (see Figure 5.3), the total moment of the external forces 

about the compression hinge is 

M ext = 

= 

M cos a1 + T sin a1 
cos a1 

T ( 1/J + sin a1) 

where 1jJ = T/M 

The area of the bottom branches of stirrups, intercepted by 

the failure surface is 

Aw (b - 2a3) b tan a1 -s b + 2h 

(5 .1) 

(5. 2) 

The total moment of the internal forces about the compression 

hinge is then 

A f w w 
s 

b tan a1 (b-2a3) (h-a1-x1/2)sin a1 

b + 2h 

If the relationship between transverse steel and longitudinal 

steel is expressed by a parameter r, where 

A f w w 
r = 

s 

then equilibrium can be expressed in the form 

cos a1 b tan a1 
T( 1/J + sin a1) = ALl fLl (h-a1 -x1/2) (cos a1 + r b + 2h sin a1). 

If a = h/b, this equation can be arranged to give 

r 2 
1 + 1 + 2 0 tan a1 

1 
1 + tan a1 

(5. 3) 

(5.4) 

The inclination, a 1, of the hinge will be such as to make the 

failure torque a minimwn. If dT/da1 , is equated to zero, it is found that 



Tisa minimum when, 

1 
= - - + 

11> 

1 + 2 a 
r 

5.8 

(5.5) 

When this value is substituted into equation (5.4) the failure 

torque for a mode 1 failure is obtained as, 

If M is the ultimate capacity of the member in simple flexure, i.e., u 

equation (5.6) reduces to 

2r (/c!._)2 
1 + 2a ij, 

5.l(b) Mode 3 

1 + 2a 
+ r 

(5 .6) 

(5.7) 

When the beam contains less longitudinal steel in the top than 

in the bottom, and is loaded predominantly in torsion, a mode 3 failure 

is possible. 

In a mode 3 failure the compression zone forms along the 

bottom face of the beam (Figure 5.3) i.e. the face on which bending moment 

alone would cause tension. The analysis is very similar to that for mode 

1, except that the bending moment now opposes the rotation occurring 

during failure, in this mode. Assuming that the cover to the top and 

bottom longitudinal steel is the same, equilibrium of. forces about the 

failure axis yields the following equation 

= 

cos 93 
T (sin e3 - 11> ) 

b tan e3 
AL3fL3(h-a1-x3/2) (cos e3 + r b + Zh sin e3) (5.8) 
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If this expression is minimised with respect to g3 the equation 

for the failure torque is obtained. 

= 2r / f 1 2 + ( 1 + 2 a ) R + !_ ~ 
R(l + 2 a) ~ (~) r ljJ i (5.9) 

where, 

R = 

For this mode to be critical AL3 must be less than ALl then, x3 will be 

smaller than x1 (which has been taken equal to the depth of the compression 

in pure flexure). Thus it is conservative to assume that 

h-a -x 1 3 = 

Equation (5.9) then becomes 

(5.10) 

For a given ljJ and known beam dimensions the torques T1 and T3 

can be computed from equations (5,8) and (5,10). The smaller of these 

values will be the twisting moment at failure in bending and torsion. 

5.l(c) Bending-Torsion Interaction 

Although the equations given above can be used for the prediction 

of the failure load of a beam, the physical significance of these formulae 

is more apparent if they are recast in the form of interaction curves. 

Now, 

( fJ )2 + 1 + 2a 
1+2a.J'iji r 

2r 

Then, after rearrangement, 

2r 
= 1 + 2 a 

!.... ) . 
ljJ J 

1 + 2 a 
r 
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and squaring 
ii·· 

( :1) 
2 2T1 1 2r 4r 

+ -- T ' 1 + 2 a - 1 + 2a M 
u u 

If(~) = 0 (i.e. pure torsion) is substituted into this 

equation, an expression for T, the pure torsional strength (mode 1) is 
0 

derived. 

T 
0 

2Mu /.,,.1_+_r.,,.2_a (5, 11) 

Hence the following equation for the bending and torsion inter

action is obtained. 

T ) 2 M (r + M = 
0 U 

1 (5 .1?;} 

It can thus be seen that, ~rovided the beam fails in mode 1, 

the effect of torsion is to reduce the flexural capacity of a beam, and 

vice versa. 

The formula for the strength in mode 3 can also be expressed 

in a similar form 

M 
= - + M u 

R 

In this case it can be seen that flexure tends to increase 

the torsional capacity. The above equations have been plotted in 

Figure 5.4 for v~rious values of R. 

(5 .13) 

From this figure it is evident that when R is unity, that is, 

for beams with equal areas of top and bottom reinforcement, the mode 1 , 

equation will always be more critical than mode 3. In this case bendink 

will decrease the torsional strength. When R is less than unity, in the 

region of high torsion a mode 3 failure will occur. In this case the 

effect of bending is to increase the torsional capacity up to a certain 

point, then to decrease the torsional strength. 
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5.2 SHEAR AND TORSION 

In the presence of torsion combined with moderate shear force 

failure may take the form of a mode 2 mechanism or in certain cases a mode 

3 mechanism. As both of these modes of.failure require yielding of the 

longitudinal steel and take no account of the contribution to the failure 

load of the uncracked concrete, the resulting equations can not be 

satisfactorily applied to the case of high shear. Indeed it has been 

found that under predominately shear loading the failure behaviour 

resembles that of simple shear (Ref. t.1). This type of failure has 

been designated as an "effective shear failure". In the following 

chapter an empirical formula for the strength of the beam in this mode 

of failure will be given. A more exact analysis has been made by Collins 

(Ref. t-1), 

5.2(a) Mode 2 · 

In a mode 2 failure, the compression zone is located along 

one side of the beam (Figure 5.3) and the compression hinge is at a 

distance x2/2 from the side face. The external bending moment has no 

component about this hinge axis, but the shear force does exert a moment 

about this axis . 

The total moment of the external forces is 

M b 
xz!2) sin + T sin = V(- - 02 0 2 ext. 2 

T 
x2 

sin sin 02} (5.14) = { cS( 1 - b) 02 + 

where o = Vb/2T. 

The internal moment is mainly provided by the longitudinal steel 

near the side face remote from the hinge and by the vertical legs of the 

stirrups on that face. If the same assumptions are made as in mode 1, 

this moment may be written as 



M. int. = 

5.13 

(5.15) 

By a procedure similar to that used for mode 1, the expression for the 

failure torque for a mode 2 failure is found to be 

X 

T2 {1 + ~c1 - b 2) } 2A f (b ;·2) u = L2 L2 -a2-x2 

For most beams we may take 

We then have 

= 
1 + R 

2 

A f (h-2a4) w w (5.16) 

Now, it is found that x2 is small compared with x1 . Hence it is conser

vative to put 

h - a1 - x1/2 

b - a2 - x/2 
= = a 

On the grounds of simplicity we may make the conservative 

assumption that, 

h 
= b = Cl 

For the same reason it is safe, but not unduly conservative, to ignore 

the term x2/b on the left hand side of equation (10). The expression for 

the failure torque in the second mode now takes the form 

(5.17) 



5.14 

S.2(b) Mode 3 

It was found in the previous section that a Mode 3 failure could 

occur if the beam contained less top than bottom longitudinal steel. The 

torsional strength of a beam failing in this mode was shown to increase 

rapidly with the ratio of moment to torque. However when shear is 

present the moment varies along the section and some difficulty may arise 

in estimating the effective moment on the failure mechanism. As all the 

specimens tested in bending torsion and shear were simply supported in 

bending and subjected to constant torque along the member an explicit 

formula for this situation will be derived. 

The loading under consideration is shown in Figure S.S. The 

effective moment M' can be seen from this figure to be, 

M' M 
b tan a 3 = 

0 2a 

Now 1jJ T = M 

T 2a 
=- . 

M b tan a 3 0 

But M 
0 V -a 

Therefore the expression for -,P reduces to, 

111 1 - tan 6 83 

This value of lji can be substituted in the equation for 

equilibriwn of moments about the failure axis given. for a normal mode 3 

mechanism (equation 5.8), Following the same steps as before the 

equation for the failure torque is obtained 

2 f r.R 
1 - o Ji + 2 ex 

(5 .18) 
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CHAPTER 6 

EXPERIMENTAL VERIFICATION OF THE ULTIMATE STRENGTH 

THEORY FOR WEB REINFORCED BEAMS. 

6.1 

In this chapter the expressions derived in the .previous section 

(Chapter 5) will be verified by comparison with experimental results. Test 

data which is used in this analysis includes both the author's test beams and 

the reported experimental results. Details of the author's tests are given 

in Chapter 3, and a summary of the available reported.experiments is given in 

Appendix Band D. As several assumptions are made in the derivation of the 

ultimate strength equations, consideration will firstly.. be given to the effect 

of these assumptions on the range of validity of the theory. The ability 

of the theory to predict the interaction behaviour of beams will .be tested 

and the overall accuracy assessed. 

6.1 LIMITATIONS ON BEAM PROPORTIONS 

A principal assumption in the derivation of the analysis equations 

was that all reinforcement crossed by the,failure surface-yielded. Under 

certain ratios of loads and certain arrangements of reinforcement failure 

may occur before both the longitudinal and transverse.steel have yielded. 

For such beams it is necessary either to estimate the failure load by some 

other means or to limit the applicability of the theory. to exclude these 

cases. Failure before yield of the longitudinal steel is possible if, 

(i) The loading is such that a premature shear failure occurs, 

(ii) The amount of longitudinal steel is out of proportion to the 

amount of transverse reinforcement. 
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(iii) The percentage of longitudinal reinforcement is excessive. 

Additionally, failure may occur before yielding of the transverse 

reinforcement if the overall amount of steel is enough to cause general 

crushing of the concrete. 

6.l(a) Effective Shear Failure 

Under predominantly shear loading it was found by Collins that the 

failure behaviour of a reinforced member closely resembled · the behaviour of 

similar specimens in pure shear. It would seem more satisfactory,.in this 

case, to relate the ultimate strength to the shear capacity·of the beam in 

simple flexure. 

An examination has been made of the available experimental results 

for those beams which might be expected to fail in shear and torsion. ·From 

these results it was concluded that the simple equation given· in section 4.5 

for the case of longitudinally reinforced beams could also be applied to 

web reinforced members. 

i.e. V + 1.6T/b = veff = V 
0 

bV 
0 

or Teff = 1.6+ 20 (6.1) 

Equation (6.1), in conjunction with the·equations given in 

Chapter 5, can be used to predict the ultimate strength· o·f a-- member loaded 

in combined torsion bending and· shear. A comparison of the predictions of these 

equations with the experimental results will be given later in this chapter. 
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6.l(b) Ratio of Transverse to Longitudinal Steel. 

As tests in which the strains of the steel have been measured 

(6.1,6.2) show that for low values of the parameter r the longitudinal 

steel may not yield, an investigation has been made of therange for r 

for which the theory set out above would hold. As this range would 

depend on the factors ijJ and O a parameter r O incorporating these 

factors was introduced. The value of the parameter r 0 corresponds to a 

design value of the ratio r for given values of ijJ __ and O The value 

of r may be calculated from the equation below: 
0 

r = 
0 

4 

1 

4 
... (6.2) 

ijJV 1+20 

The derivation of this equation is given in Appendix C. 

In Figure 6.1 the parameter T /Th which is.a measure of the exp t eor 
accuracy of the theory, is plotted against r/r where r is the actual value of 

0 

r for the test beam and r is the optimum value of r as given by equation 
0 

(6 .1) above. 

In constructing this figure use has been made of test results 

published in the literature. Figure 6.1 does not include results of tests 

where failure may have been initiated by crushing of the concrete (see below), 

or where a shear failure (see equation (6.1)) may have occured .. 

It will be noticed that for low values of r/r there is a wide 
0 

scatter of experimental points, but the theory is stilL.generally conservative. 

In this range, corresponding to beams with relatively small .amounts of 

transverse steel, the idealised modes of failure are no longer applicable. 

Factors ignored in the observations above, such as tensile stresses in the 

concrete and dowel forces exerted by the steel, are now of considerable 
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importance. As the error thus introduced offset the usually smaller 

error involved in the assumptions that the longitudinal steel yields, 

the analysis equations still give usable, if not complete.ly reliable, 

results. For values of r/r greater than 0.9, the theory is both 
0 

consistent and accurate, that is, 

r ..J. 0 9 ... (6.3) 
r l · 

0 

6.l(c) Excessive Longitudinal Steel 

6.5 

Lessig (6.4) reported that test specimens containing excessive 

amounts of longitudinal reinforcement failed prior to yield of the 

reinforcement, with crushing of the concrete near the top surface. 

Consideration of the equilibrium of forces in the longitudinal direction 

suggests that an appropriate criterion to eliminate this type of failure 

would be the normal flexural criterion. 

, .. (6.4) 

6.l(d) General Crushing Failure 

If the overall amount of reinforcement is increased a stage is 

eventually reached where crushing of the concrete on the sides of the beam 

precedes yielding of the reinforcement. Under flexural shear this limit is 

expressed in terms of the nominal shear stress 

The limit for the case of combined shear and torsion was found to 



be 

veff V 
bd=· 

+ 1.6 T/b 
bd 

6.6 

8 /7f ... (6.5) 

The effect of this limit is shown in Figure 6.2 where 

Texp/Ttheor has been plotted against Veff. 
bd f' 

C 

It can be seen that for high 

values of the nominal "shear" stress, that is for excessively reinforced 

beams, the theory becomes unconservative. For such beams the assumption that 

the reinforcement yields, leads to an overestimate of the failure load. 

Within the limit the theory is accurate. If it is required to calculate the 

strength of a specimen in which the above limit is exceeded, it is suggested 

that the excess reinforcement be ignored in the analysis. 

6.2 INTERACTION OF BENDING AND TORSION, 

A good test of the accuracy of any theory is its ability to explain 

the bending and torsion interaction behaviour. In the previous chapter the 

following expressions were obtained for the theoretical interaction behaviour 

implicit in the analysis equations. 

Mode 1 : 

(T) 2 M 
1 (6.6) + 

Mu = ... 
To 

Mode 3 

(T ) 2 M R (6.7) = M + ... T 
0 u 

It was found that equation (6.7) only applies to beams which contain 

less top longitudinal steel than bottom steel, (i.e. R .£ 1 ) and even then only 
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to beams loaded with high ratios of torsion to bending. Moreover this 

equation predicted that the torsional capacity would be increased by the 

addition of bending moment. To test the above equation a series of test 

beams which contained more tension than compression steel were tested. 

The results of these tests are compared with the theoretical expression 

in Figure 6.3. It can be seen that the expressions agree well with the 

experimental trends. The majority of tests are governed by the mode 1 

equation. The results of these tests are shown in Figure 6.4. In this 

case the beams that were tested predominantly in torsion were all 

reinforced with equal areas of top and bottom reinforcement, hence the 

equation for mode 3 was never critical. The results shown in Figure 6. 4 

show a marked interaction between torsion and bending, substantial 

reductions in the flexural capacity being produced by the effect of torsion. 

Again the theoretical interaction curve closely follows the experimental data. 

6.3 ACCURACY OF ANALYSIS EQUATIONS 

Full advantage has been taken of the large number of test results 

that have been reported in the literature. A summary of this data is 

presented in Appendix Band D. Frequently in reinforced concrete research 

theories that give good agreement with the investigators own tests, subsequently 

show discrepancies when other test data are analysed. In the author's 

analysis of the experimental results no distinction will be made between the 

results of the tests of this investigation and the results which have been 

reported in the literature. The range of section parameters encompassed in 

the available test data is 

Parameter 

h/b 

f' 
C 

(p-p' )f 
f' y 

C 

0 

given below: 

Minimum 

1.00 

680 p.s.i. 

0 

0.025 

0.0 

Maximum 

2.36 

8,500 p.s.i. 

1.00 

a: 

4.11 
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6.3(a) Analysis Method 

In Chapter 5 and in section 6.l(a) the following equations for 

the failure loads of a web reinforced beams were given, 

2r f/c!/ + 1 + 2a _ ½) 
1+2a\ ip r "' 

(6 .8) 

= 

or 

= 

1: a/M: 

1 + o 
1 £./2(1 + R)r 

8 2 + a 

bV 
0 

1. 6 ± 20 

Earlier in this chapter graphs were presented for the effect of 

various parameters on the accuracy of the theory. Examination of these 

figures shows that within the restrictions imposed on the theory the 

(6. 9) 

(6 .10) 

(6 .11) 

(6 .1) 

following parameters have no appreciable effect on the accuracy of the proposed 

method; (i) the ratio of longitudinal to transverse steel, (Figure 6.1) and 

(ii) the proportion of shear and torsional loading to the size of the section 

(Figure 6. 2) 

Table 6.1 has been prepared to investigate the accuracy of the 

theory for beams satisfying the restrictions set out in equations 6.3,6.4 
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TABLE 6. l 

A COMPARISON OF EXPERIMENTAL RESULTS WITH THE 
PROPOSED THEORY FOR WEB REINFORCED BEAMS 

PART 1 - PURE TORSION 

Investigator Beam Torque Moment Shear 
T 

e!E 
kip. in. kip. in. kips T 

theor 

3TRlS 61. 7 0.0 . (). () l. 12 

Ernst 3TR30 76.0 0.0 0.0 0.97 

4TR30 85.0 0.0 0.0 0.95 

Evans HBl 44.l 0.0 0.0 1. 15 

BKl 121. 0 0.0 0.0 0.98 
Lessig BKlA 104.0 0.0 0.0 0.87 

Mean 1.01 

Standard Deviation 10°/o 

No. of Tests 6 

Mode 

l 

1 

1 

3 

2 
2 
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PART 2. BENDING AND TORSION 

Investigator Beam Torque Moment Shear 
T Mode ~ 

kip. in. kip. in. kips. T theor 

R4. 20 59.9 331..0 0.0 1. 15 l 
R4, 24 56.5 264.0 0.0 0.96 l 
R3. 20 50.7 252.0 0.0 1.08 1 
R3. 24 53.7 230,0 0.0 1.03 1 
R3. 30 61. 6 207.0 0.0 1.02 1 

This R2. 24 44.2 205.0 0.0 1. 24 1 
R2.30 49.7 176.0 o.o 1. 18 1 

Investigation R2.38 53.4 138. O 0.0 1.06 1 
Rl. 30 41. 8 146.0 0.0 1.07 1 
REI 81. 4 6.3 0.0 0,88 2 
RE2 83.5 32.0 0.0 1. 01 1 
RE3 81. 5 45.0 o.o 1. 01 1 
RE4 74.6 84.4 0,0 1. 12 1 
RE5 66.0 108.2 0.0 1. 16 1 
RE4* 38.0 134. 0 o.o 1. 10 1 
RU3 105.0 84.0 0.0 1. 26 3 
RU3A 89.4 149.3 o.o 1.00 1 
RU2 84.9 51. l 0.0 1.11 3 
RU5 75.4 249.7 0.0 1. 17 1 
RU5A 68.3 266.8 o .. 0 1. 14 1 
RU6 59.1 281.2 0.0 1. 15 1 
36T4 62.6 240.4 o.o 1. 21 1 
36T4C 94.1 61. 1 0.0 1. 23 3 
36T5. 5 85.9 173.4 0.0 1. 32 1 
77T5 91. 6 262.4 o.o 1. 31 1 
77T4 107.6 223.4 0,0 1. 26 1 
24T3 70.8 46.6 0.0 0.92 2 

1 79.0 79.0 0.0 1. 07 1 
2 102.0 102.0 0.0 1. 01 1 
3 61. O 122.0 o.o 1. 06 1 

Gesund 4 67.0 134.0 0.0 0.96 1 
Schuette 5 49.0 147.0 0.0 1. 08 1 
Buchanan 6 56.0 168.0 0.0 1.08 1 

and 7 43.0 173.0 o.o 1. 14 1 
Gray 8 44.0 176.0 o.o 1.05 1 

11 68.0 138. 0 o.o 0.98 1 
12 53.0 213.0 0.0 1. 06 1 
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PART 2. BENDING AND TORSION (contd.) 

Investigator Beam Torque Moment Shear 
T 

Mode _.£!P 
kip. in. kip. in. kips. T 

theor 

HB2 33.9 66.8 o.o 1. 25 1 
HB3 20.4 75.3 o.o 1. 10 1 
,HB4 15.7 81.6 o.o 1.05 1 
HB5 13.2 81. 5 o.o 1. 06 1 

Evans HB8 21. 4 79.6 o.o 1.05 1 
and HB9 18.3 85.1 0.0 0.98 1 

Sarkar HBl0 17.3 91. 3 o.o 0.99 1 
HBll 14. 1 94.0 o.o 0.99 1 
HB14 41. 7 82.1 0.0 1.03 1 
HB15 29.9 111. 0 o.o 1.11 1 
HB16 23.5 129.0 o.o 1.05 1 
HB17 19.4 137.0 o.o 1. 06 1 

B28 0. 1 48.6 486.0 o.o 1. 12 l 
B28 0. lA 46.9 469.0 o.o 1.09 1 

Chin,enkov B28 0. 2 83.4 417.0 o.o 1.14 1 
B28 0. 2A 83.4 417.0 o.o 1. 23 1 
B28 0.4F 139.0 347.0 o.o 1. 15 1 

Lessig BU6 69.5 173.6 0.0 0.87 l 

Mean 1. 10 

Standard Deviation 9°/o 

No. of Tests 55 
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PART 3. SHEAR AND TORSION 

Investigator Beam Torque Moment Shear T Mode ex:e 
kip. in. kip. in. kips T theor 

This RU4 85.5 145.0 4. 13 1. 21 3V 
Investigation Rl. 30A 42.6 97.1 4.13 0.89 VEF 

R3. 20B 59.0 78.9 3.41 1. 19 3V 

V3 16.9 685.0 27.80 1. 65 VEF 
V6 24.8 668.0 27.20 1. 72 VEF 
U2 43.9 689.0 28.00 1. 53 VEF 

Collins U3* 66.2 720.0 29.30 1. 80 VEF 
T4 53.0 523.0 21. 40 1.54 2 
T5 63.4 432.0 17.70 1.52 2 
T6* 29.4 584.0 23.90 1.36 VEF 

6 4.6 45.7 2.32 1.01 1 
10 5.9 59.0 3.00 1. 31 1 

Yudin 11 14.3 71. 7 3.65 1.66 1 
12 11. 1 55.7 2.83 1.29 1 
13 11. 1 55.7 2.83 1.29 1 
22 6.5 32.6 1. 66 1. 28 1 

BITI5 156.0 416.0 15.56 1.40 2 
BITI5A 151. 0 416.0 15.52 1. 33 1 
BITI6 92.0 156.0 4.07 1. 31 1 
BITI6A 83.4 156.0 4.16 1. 27 1 

Lessig BITI7A 90.4 313.0 8.06 1. 37 1 
B1117 83.4 278.0 7.16 1. 24 1 
B1119 78.0 313.0 4.63 1. 50 1 
BIT 19A 79.0 313.0 . 4.71 1.59 1 

' 



PART 3. SHEAR AND TORSION (contd.) 

Investigator Beam 

B8 0.1 
B8 0. lA 
B8 0. 2A 
B8 0.4A 
B7 0. 2 
B7 0. 2A 
Bl0 0. 2 
Bl0 0. 2A 
Bl 

Lyalin BlA 
B2 
B2A 
B3 
B3A 
B5 
BSA 
B6 
B6A 

Torque Moment Shear 
kip. in. kip. in. kips 

52.0 520.0 12.52 
55.5 555.0 13.36 
97.0 486.0 11. 69 

139.0 347.0 8.38 
93.8 468.0 11. 30 
90.2 451.0 10.87 

104.0 521.0 12.53 
104.0 521. 0 12.53 
90.3 452.0 10.82 
90.3 452.0 12.75 

139.0 694.0 16.65 
139.0 6~4.0 16.65 
194.0 486.0 17.48 
194.0 486.0 17.48 
194.0 972.0 23.24 
194.0 972.0 23.24 
167.0 833.0 20.19 
181. 0 903,0 21. 88 

Mean 

Standard Deviation 

No. of Tests 

Summary of All Tests 

Mean 

Standard Deviation 

No. of Tests 

1. 18 

15°/o 

103 

6.16 

T ModE ~ 
T 

theor 

1.11 1 
1. 11 1 
1. 20 1 
1.16 VEF 
1. 31 VEF 
1. 22 VEF 
1. 26 1 
1. 23 l 
1. 33 1 
1.29 1 
1.29 l 
1. 22 l 
1. 25 VEF 
1. 24 VEF 
1. 22 1 
1. 31 l 

. 1. 31 1 
1.43 1 

1. 33 

13°/o 

42 
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and 6.5. It should be noted that.these restrictions.are not very onerous. 

The limits given in equations 6.4 and 6.5 are merely the·. usual restrictions 

encountered in flexure and shear design. The limit on.the ratio·of transverse 

to longitudinal steel al tho_ugh of some importance · in analysing test results 

does not represent any difficulty in design as will be shown·in·a later chapter. 

In this analysis when the failure loads is_ gov.erned_ by equation 

6.8 the mode has been designated as 1, similarly modes 3, '5V, 2 and VEF 

refer to equations 6. 9, 6 .10, 6 .11 and 6 .1. "fable 6 ~1 has been subdivided 

into three sections; pure torsion, bending and torsion, and bending, 

torsion and shear. 

For the pure torsion test results contained in. Table 6.1 

good agreement between the experimental results andpxedic:ted capacities 

is obtained. The values of T /Tth have a mean of LOl and a standard exp eor 
deviation of 10%. 

Examination of Table 6.1 shows that the proposed theory 

accurately predicts the ultimate strength of members loaded in combined 

bending and torsion. For this case T /Tth. has a mean of 1.foand exp eor 
a standard deviation of 9%. 

The accuracy of the proposed theory for shear .and torsion is to 

a large extent dependant on the accuracy of the A. C~.I,. equations for pure 

shear. An anlysis of 166 beam tests reported in re£e·renc.e 6 .5 yielded a 

mean V /VACI of 1. 44 + 24% for beams with web reinforcement loaded 
exp -

in shear and flexure. The· comparison between the theory. and the 

experimental results for beams loaded in combined torsion., bending and 

shear is given in Table 6.1. It can be seen from this. table that the 

theory is somewhat conservative for this case, the value of T /Tth . exp eor 

having a mean ofl,,33 and a standard deviation of 13%. When a more 



accurate shear des_ign method becomes accepted, the accuracy of the 

theory for shear combined with torsion and flexure could be improved. 

6.18 

The overall accuracy of the theory for all the results in 

Table 6.1 is demonstrated in Figure 6.5. It may be concluded from this 

frequency distribution that the proposed theory is· sufficiently accurate 

for safe and efficient des_ign of structural members to···resist combined 

torsion, bending and shear loads. 

As occasions will probably arise when it is· necessary to estimate 

the failure load of a member which has proportions outside the limitations 

on the theory, an investigation was made .into ··the accuJ::ac..y of the theory 

when no restrictions are imposed.· F-uU details·· of this analysis is given 

in Appendix D. The results of this comparison of the theoretical and 

experimental failure loads is summarised in the frequency distribution 

shown in Figure 6.6. It can be seen from·this·figure that the theory 

is still reasonably accurate over a wide range of section proportions. 

6,3(b) Simplified Analysis Procedure 

In Chapter 7 the analysis equations will be rephrased into a 

form more suitable for rapid design. Considerable s:implification of 

the design procedure results if the two·equations relating to shear 

and torsion can be replaced by only· one equation •. In fact the effective 

shear formula was developed with this possibility in mind. With very 

little loss of accuracy the equation for the strength in mode 2 can be 

ignored in the analysis ~f the strength of a· member. In Table 6.2 the 

results shown in Table 6.1 have been analysed using only equations 6.8, 

6.10, 6.9.and 6,1. 

A study of this table shows that the correlation between 

theoretical and experimental results is still very good. The mean 



a. 
::, 

15 

e 10 
{!) 

C 

5 

0 

-

I-

-
-

...-

-
I 

0.8 1.0 

6.19 

Mean 1.18 
Standard Devn. 150/o 

- N° of Tests 103 

- -

-

-
...-

n n n n 
1.2 1.4 1.6 1.8 

T IT exp. theor. 

FIG. 6. 5 FREQUENCY HISTOGRAM FOR THE ACCURACY OF 

THE THEORY FOR WEB REINFORCED BEAMS 

WITHIN RESTRICTIONS 



6.20 

50 

Mean 1.20 
Stand Devn. 220/o 

N° of Tests 249 

4 0 I-

3 C -
Q. 
~ 
0 
L. 

(!) 

.£ 2 0 -
II) .... 
II) 
a, 
I-

~ 

0 

0 1 01-
z 

0 
0.8 1.0 1.2 1.4 1.6 1.8 

Texp./ T theor. 

FIG. 6.6 FREQUENCY HISTOGRAM FOR THE ACCURACY OF THE' 

THEORY FOR WEB REINFORCED BEAMS. 

NO RESTRICTIONS. 

-

2.0 



6.21 

TABLE 6. 2 

A COMPARISON OF THE DESIGN THEORY WITH TEST RESULTS FOR 
WEB REINFORCED BEAMS LOAD IN TORSION, BENDING AND SHEAR 

Invest-
T 

Beam ex:e Mode 
igator T 

theor 

Invest-
T 

Beam €!)2 
igator T 

the.or 

R4.20 1. 15 1 V3 1. 65 
R4.24 0.97 VEF V6 1. 72 
R3.20 1.08 1 

tll 
1. 53 = U2 ..... 

R3.24 1. 02 1 ..--1 U3* 1.80 ..--1 
0 

R3. 30 1. 02 1 u T4 1.50 
R2.24 1. 24 1 TS 1. 45 
R2.30 1. 18 1 T6* 1.36 
R2.38 1. 06 l 
Rl. 30 1.07 1 +> 3TR15 1. 12 
Rl. 30A 0.89 VEF 

tll 
3TR30 0.97 = 

R3. 20B l. 19 3V 
~ 

4TR30 0.95 ~ 
REl 0. 8"5 1 
RE2 1. 01 1 l 1.07 
RE3 1. 01 1 2 1. 01 
RE4 1. 12 l 3 1. 06 

= RES 1. 16 1 0 4 0.96 
•.-l 

RE4•l< 1. 10 l 1il 
b.O RUZ 1.11 3 ..... 

'O 5 1.08 
= 6 1.08 ;:; 

+' 
RU3 1. 26 3 tll 

CU 
> RU3A 1.00 l = 1-1 RU4 1. 21 3V 

tll 
7 l. 14 Q) 

C, 8 1.05 
10 1.04 

tll 
RUS 1. 17 l ..... 

..c:: 
E-; RUSA 1. 14 l 

11 0.98 
12 1.06 

4U6 1. 15 l 
36T4 1. 21 l BKl 0.97 
36T4C l. 23 3 BKlA 0.84 
36T5. 5 1. 32 l BU6 0.87 
77T5 1. 31 l B1115 1. 35 
77T4 1. 26 l BIIISA 1. 33 
24T3 0.90 l 

b.O BIII6 l. 31 •.-l 
tll 
tl.l BIII6A l. 27 
CU 

> B28 O. l 1. 12 l ...::1 BIII7A 1. 37 
0 

B28 O. lA 1.09 l .!:I:: = B28 0. 2 1. 14 l Q) 

= B28 O. 2A l. 23 l ..... 
..c:: 

B1117 1. 24 
BIII9 1.50 
BIII9A 1. 59 

u B28 0.4F 1. 15 l 

Mode 

VEF 
VEF 
VEF 
VEF 
VEF 
VEF 
VEF 

l 
1 
1 

l 
l 
l 
1 
1 
1 
l 
1 
1 
1 
1 

l 
l 
l 
1 
1 
1 
1 
1 
1 
1 
1 
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TABLE 6. 2 (contd.) 

Invest-
T 

Beam exe Mode 
igator T 

theor 

Invest-
T 

Beam e!E Mode 
igator T 

theor 

B8 O. 2A 1. 20 1 H.Bl 1. 15 3 
B8 O. 1 1.11 1 HB2 1. 25 1 
B8 O. lA 1.11 1 HB3 1. 10 1 
B8 O. 4A 1. 16 VEF HB4 1.05 1 
B7 O. 2 1. 31 VEF HB5 1. 06 l 
B7 0. 2A 1. 22 VEF tll HB8 1.05 1 
BIO O. 2 1. 26 1 i:::: HB9 0.98 1 al 

BlO O. 2A 1. 23 1 > HBlO 0.99 1 ~ 
d Bl 1. 33 l HBll 0.99 l 

•r-1 
BlA 1. 29 1 ..-l 

ctl HB14 1.03 l 
~ B2 1. 29 l 
~ 

B2A 1. 22 l 
HB15 1.11 l 
HB16 1.05 1 

B3 1. 25 VEF HB17 1.06 l 
B3A l. 24 VEF 
BS l. 22 l 
BSA l. 31 1 

Mean 1. 18 

B6 l. 31 1 Standard Deviation l 5 ° / o 
B6A 1.43 1 

No. of Tests 103 

6 1. 01 1 
d 10 1. 31 1 

•r-1 
11 1. 66 "O 1 ::s 
12 1. 29 1 ~ 
13 1. 29 1 
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T /Tth is 1. 18 -r 15%. In view of this result the mode 2 mechanism 
exp eor -

will not be considered in the developement of the design equations. 



7.1 

CHAPTER 7 

DESIGN OF BEAMS TO RESIST TORSION COMBINED WITH 

BENDING AND SHEAR, 

The ultimate strength theories presented in Chapters 4 and 5 

can·. be used to design members sustaini_ng torsion combined with bending 

and s·he·ar. ·· For beams with web . reinforcement· it is first necessary to 

· rearrange the equations into a suitable form. The des·ign method will 

th·en be outlined and illustrated with a design ·example. 

7 .1· DESIGN EQUATIONS FOR BEAMS WITH WEB,·RE'INFORCEMENT. 

The given bending moment and torque can: be res:is·ted by many 

different beams. As usual in design, a choice is firs·t ·made of some 

parameters, and the remaining dimensions are then determined to satisfy the 

basic equations. The design is commencedby·an arbit-ary choice of 
h 

( a = b). 

The parameter r may still be chosen: fro:m·within- a wide range of 

values. This means, physically, that there is a. good·deai' of choice as to 

how the load is shared between the longitudinal:and·transverse steel. The 

choice of r is limited only by the -fact that both steels ·must yield at 

failure. The design· can be considerably simplified if r ·is chosen as an 

"optium valuen r, which gives something approaching· a minimum volume of 
0 

steel (see Appendix C). This value is given'by 

obtain 

r 
0 

= 1 

4 + 4/ tP (! 1 + 2a) 

If this expression is substituted forr in Equa:tion5.7 we 

(7.1) 



7.2 

Tl 2 1 + 2a _ .!. ) 
M = c.!.) + 

u tjJ ro 1/J 

2r0 (j1 2 Tl 
+ (1 + 2a) (4 

4 
+ 2J- !) M = 

I+ 2a;p) 
+ 

u tjJ /1 

2ro ~ I )2 .!.) = 2 /1 + 1 + 2a( t-~ + 
2a. -

tjJ 

4r 
= 0 

{1 + 
(7. 2) 

2a.,: 

The beam is designed primarily against failure in mode 1, and 

then checked for other modes of failure. We require ·firs·t, therefore, 

t,.hat T l = T. 

4r 
i.e. M 0 T = u /1 2a + 

M 
T/1 + 2a. = u 4r 

0 



When the expression for r as given in equation 7.1·is 
0 . 

substituted in. the above formula we obtain 

M T(/1 + 2a)(l + 
1 

) = u 
1P /1 + 2 a 

= M + T/1 + 2 a 

= M + T' 

where T' = T I 1+2 a 

7.3 

(7. 3) 

Thus, from the given.values of Mand T and the chosen value of a 

we find the equivalent ultimate moment Mu. The beam dimensions and ALI are 

now designed for this Mu from the usual flexural equation . 

M u . .. (7 .4) 

with the proviso that pfLl/f~ ~ 0.4 to avoid a compres·sion failure in 

flexure. 

If required compression steel can be used, and in this case the 

corresponding equation for doubly reinforced beams····shOtiid··be employed. 



The transverse steel is now des_igned to -resist the torsion. 

From equation (7.3) 

T' r 0 = 4M , and from the definition of r, 

but 

A w 
s 

Therefore 

= 

A 
w 

s 

u 

r 
0 

= 
T'A Ll 
3.2M b u 

0.8b 

(7.5) 

Top steel must be provided. It may be required to resist a mode 

3 failure and if not a certain amount must, in any case-, be provided to 

support the hoops. From the expressions for the interaction curves it can 

be shown that T3 will be equal to T1 if 

2:T' 
R = M - 1. 

u 

It is suggested that the minimum amount of top longitudinal 

steel should be given by, 

R = 

Hence, 

= 

0.1 . 

(2T' _ l) 
M u •..•..... (7.6) 
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To prevent a shear and torsion failure it is necessary to 

design the reinforcement .in accordance with the A.C.I. code to resist 

a shear of Veff, where 

= V 1.6T 
+ -b-

Thus in the design of a web reinforced beam it is necessary to 

proportion the beam to resist a moment of Mu and a shear of Veff with the 

additional provisos that top longitudinal steel·may be necessary (see 

7.6) and the web steel should not be .. less than the amwnt given by 

equation (7.5). 

The corresponding procedure for·beams·with on1y longitudinal 

steel (see Chapter 4) is to design for an effective shear Veff and for the 

actual moment M. 

7.2 DESIGN PROCEDURE 

The design of a beam either with or without web reinforcement and 

loaded in torsion combined with bending·and shear may be carried out by the 

following procedure. 

(i) The beam must be proportioned to resist an effective shear 

Veff where, 

veff = V + 1.6T -b-

(ii) If web reinforcement is not required to satisfy rule (i) 

it is only necessary to provide sufficient flexural capacity to resist 

the desired ultimate flexural moment. If web steel is used the 



made: 
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beam is to be designed for a moment M, where . u 

Mu = M + T' 

T' = T / 1 + 2 a 

(iii) If web reinforcement is provided in accordance with rule 

(i), then 

A T' fLl w 
ALl - = f s 3.2M b w u 

and AL3 = cZt'' - 1) ALl M u 

= 40.1 ALl 

The use of these rules will be illustrated in a design example. 

The required ultimate capacity is, 

2000 kip. in. flexure 

700 kip. in. torsion 

24 kips shear 

For the purpose of this example the following choices have been 

f' ~ 3000 lb./sq. in. 
C 

fLl=fL3=fw = 40,000 lb./sq. in. 

al = 2.0 



(a) Des_ign Without Web Reinforcement. 

Assume b = 20" 

Rule 1. 

veff V 
1.6T = +--b 

24 + 1.6 X 700 = 20 

= 80 kips 

V = 2bd K 
0 

d 80 = 2x20x3000 

= 36.4 

Adopt h = 40" 

Rule 2, 

Flexural design for 

moment = 2000 kip. in. 

ALl = 1.34 

= 3 X 3/411 0 bars 

Design 20" x 40" section with 3 x 31411 0 bars. 

(b) Design With Web Reinforcement 

Assume b = 16" 

Rule 1. 

veff = V 1.6T +-b-

24 + 1.6 X 700 = 16 

= 94 kips 



Try 1611 X 2411 section. 

V = 2 X 16 X 22 X 3000 
0 

= 38.6 kips 
2A f d 

V 94 - 38.6 55.4 w w 
= = = s s 

A w 0.03.6 -= s 

Rule 2. 

M = M + T' u 

T' = T .; 1 + 2 a. 

700 1 2h 
= +-b 

= 1400 kip. in. 

M = 2000 + 1400' 
u 

= 3400 kip. in. 

From flexural design 

ALI = 4.27 in. 

= 3 x l" {b bars. and 

2 X 1 
1/ II 

8 fZI bars. 

Rule 3. 

A T' fLl w - = 3.2M b '\1.r s u w 

1400 40 
= 3.2x3400xl6 x 4 · 27 x 40 

= 0.0343. 



This criterion is critical. 

Web Steel 

AL3 
2T' 

- 1) ALI = (-M u 

(2 xl400 - 1) 4.27 = 3400· 

= 0 

Nominal top steel only required hence 2 x ½N 0 

Design 

Top steel 

Bottom steel 

16" X 2411 

2 X ½" 0 
3 x 1" 0 and 2 x l½" 0 bars. 

Web Reinforcement ½" at S½c. c. 
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CHAPTER 8 

DEFORMATIONS IN COMBINED BENDING AND TORSION 

Apart from a few qualitative statements there is little to 

guide the designer when calculating deflections or rotations caused by 

combined bending and torsion. In this chapter an attempt is made to 

derive equations for both deflections and rotations. 

This work was based on only twelve test beams, which were 

designed in accordance with the rules set out in Chapter 7, However 

the tests cover quite a wide range of possible 

can be produced by the proposed design method. 

range of values of (AL 1~AL3)fLl/f~bd was 0.13 

torque to moment varied from 0.18 to 0.39. 

practical designs that 

In particular the 

to 0.37 and the ratio of 

At this stage only short term loads can be considered. - The 

method is further restricted to the working load range, say up to two 

thirds of the ultimate load. 

8.1 TORSIONAL DEFORMATIONS 

The rotation of a beam loaded in·combined torsion and flexure 

may be divided into two parts, the rotation ari§ing from displacements 

across cracks and rotation caused by stresses-in the intact concrete 

between cracks. In the analysis of forces acting in- a section of a 

beam sustaining torsion and bending at service loads a difficulty is 

encountered because the torque is distributed between the concrete (Tc) 

and the steel acting in tension (T ). 
s 

i.e. T = T + T 
C S 

. . . . . . . . . . . . . . (8 .1) 



An attempt will firstly be made to estimate the component 

T of the torsional loading. 
C 

8.2 

Prior to cracking the effect of the reinforcement on the 

behaviour of the beam in torsion is negHg;i.ble. If desired some 

allowance could be made for the increased sh'ear modulus of rigidity of 

steel compared· -with concrete, but in this· ·treatment ·this · effect will be 

ignored. Hence for torques.below the cracking torque ·of the section, 

T = T 
C 

and T = 0 s 

It was 

concrete section 

shown in. Chapter 4 that the cra:cki_ng load of a plain 

could be.computed from a maximum principal tensile stress 

criterion of failure. · This criterion; for the ·cracking load of 

reinforced beams in combined bending and ··torsion, has been employed in the 

following analysis. 

The limiting tensile stress is, 



Where fb is the direct stress in bending and 1 is the 

shear stress. If the expressions for the stresses are substituted 

in the above formula the more convenient equation below results. 

+ 
M er 

Mo 
= 1 

8,3 

Where T and M are the desired cracking loads and T and er er · o 
M are the cracking loads of plain concrete specimens in pure torsion and 

0 

pure moment respectively. 

If the above quadratic is solved for T • then er 

T er 
T -

0 

T 
0 

- . 21j,M0 

T 
M er = er 

1/J 

+ 1 

After cracking the system of forces that are sustaining the 

(8. 2) 

torque (T ) independently of steel tensile stresses are shown in Figure 8 .1. 
C 

In fact these forces are the same as those which resist the applied torque 

in beams without web reinforcement. It would therefore seem reasonable to 

take the ultimate capacity of a beam containing only longitudinal reinforcement 



FIG. 8.1. FORCES IN SECTION RESISTING 
Te, AFTER CRACKING. 

8.4 
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as the upper limit to the torque Tc that can be resisted by the 

mechanism in Figure 8,1, Furthermore it was found in Chapter 4 that 

the torsional capacity of an equivalent plain concrete specimen was a 

good estimate of the failure torque of a beam containing only longitudinal 

steel loaded in bendi_ng and torsion. It has been somewhat arbi tarily 

assumed that the maximum resistance of T would be mobilised at an applied 
C 

torque of 90% of the ultimate capacity of the section. 

Thus T = T 

when 

C 0 

T--0.9T u 

where T is the ultimate torsional capacity of the section. u . 

For torques intermediate between T and 0.9 T it has been er u 
assumed that the component of the torque resisted by the concrete would 

vary linearly. 

It is not of course possible to measure the actual values of 

T in a test beam. However some verification of the above method is 
C 

possible if the web steel strain results are used, 

Various formulae have been proposed expressing the loads in 

terms of longitudinal and transverse steel stresses. The relationship 

between the torque and the web steel stress for the theories of Cowan, 



Rausch, Andersen, Gesund and Yudin may be expressed as, 

employed. 

f 
w 

= 
T s s 

A >..b'd' 
w 

In this section the widely used method of Rausch will be 

f = 
w 

T s s 
A 2b'd' w 

or in terms of strain, 

T 
s 

A 
= w 

s 
2b'd'e E w w 

8.6 

(8.3) 

(8.4) 

(8 .-5) 

As this relationship may be taken as fairly reliable, it can be 

employed to compute the values of T from the measured steel strains. The 
s 

value of T may then be deduced from the values of T and the applied torque. 
C S 

i.e. T = T - T 
C S 
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In Figure 8.2, Tc is compared with the total torque 

(expressed as a fraction of the failure torque). It can be seen from 

this figure that the above method represents a reasonable approximation 

to the actual variation of T. 
C 

As T is negl_igible prior to cracking, the torsional stiffness 
s 

in this range may be computed from the elastic theory. After cracking 

expressions relating the stiffness to the web steel strains must be 

employed. 

(a) Elastic 

The rotation per unit le_ngth of an elastic homogeneous beam is 

given by 

g = 
T 

GJ 

J is.based simply on the geometry of the section, and may be 

calculated from the relationship 

J = K2 b3 h 

h/b K2 

1.0 .141 

1. 2 .166 

1.4 .187 

1.6 .204 

1.8 .217 

2.0 .229 

2.5 .249 

3.0 .264 
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The shear modulus of elasticity (G) is a property of the material. 

For design purposes its value may be taken as, 

G = 
E 

C 

2 

(b) Cracked Stiffness 

After cracking the stiffness is reduced. In Figure 8.3 a side 

elevation of the beam is given showing the displacements associated with 

cracking. If a parabolic distribution of stress, as suggested by Cowan 

(reference 8.1), is assumed then the vertical displacement which occurs 

at each stirrup is, 

2 
= - e d' 

3 w 

The vertical displacement per unit length of beam may be written as, 

= 

= 

65 

s 
e d' 

2 w 
3-s-
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in sense, 

As the displacement on the other side is equal but opposite 

the rotation per unit length (9) is, 
s 

t:. 
e- = ET s 

2 

4 
e d' 

w 
= 

3 s b' 
(8.6) 

In addition to rotation due to displacements across the cracks, 

rotation is possible due to deformations in the intact concrete between 

cracks. An approximate estimate of this rotation is, 

e
c 

= 
T 

C 

GJ 

The total rotation in the cracked state is then, 

9-=9-+9-c s 

It is of interest to evaluate this method before the errors 

involved in calculating the steel stresses are included. Figure 8.4 

(8.7) 

(8.8) 

has been prepared to compare the measured torque rotation results with the 

theoretical predictions. In preparing this figure the values of the web 

steel strains required in equation 8.6 were obtained from actual strain 

gauge readings. The correlation between the experimental results and 

the theoretical predictions based on this method is excellent. 
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It can therefore be concluded that if an accurate method for 

predicting steel strains was available a good estimate of the rotation 

could be made. Many formulae similar to equation 8.3 have been proposed. 

Any of these would probably give a sufficiently accurate relationship 

between the steel stress and T the torque resisted by the steel. 
s 

Unfortunately the far more significant problem of determining what 

proportion of the applied torsional loading is resisted by the steel, 

has been ignored. 

If the empirical estimate of T and hence T given earlier 
C S 

is used, the following method can be derived. 

When equation 8.6 is expressed in terms of stress, 

g = 
s 

4 f d' 
w 

3 sb'E 
w 

(8.9) 

Now if the equation for f (eq 8.4) is substituted in equation 
w 

8.9, then, 

4 d' s T 
g s 

= s 3 sb'E A .2b'd' w w 

2 T 
g = 3 

s (8. 10) s A E (b') 2 
w w 
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Thus from equations 8.7 and 8.8, 

Q = 
2 
3• 

T 
s 

A E (b ') 2 
w w 

+ 
T 

C 

GJ (8 .11) 

The accuracy of this formula is illustrated in F_igure 8. 5. In 

this case due to innaccuracies.in T resulting·from innaccuracies in the s . 
empirical estimate of Tc correlation between the experimental and 

theoretical results is only fair. It should be appreciated that beams 

R4.20 and R4.24 were extremely heavily reinforced and are not likely to 

occur commonly in practice. For the more lightly reinforced beams 

particularly at moderate ratios of torsion to bending the proposed method 

provides quite good estimates of the torsional rotations. 

8.2 FLEXURAL DEFLECTIONS 

In Chater 2.4 some of the main features of the theories for 

deflection were discussed. It was found in that chapter that a good 

empirical approximation to the effective moment of inertia was given by 

Branson as, 

M )4 
= ( ~r Igt I gt 
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Branson further found that instead of using a varying Ieff 

along the beam a constant I~ff which allows for the stiffer uncracked 

sections, may be used. 

I gt + (8 .12) 

This equation is suitable for the case of bending and torsion if 

the values of I and M are modified. The cracking moment in bending 
er er 

and torsion can calculated from equation 8.2. An expression for the 

cracked stiffness can be derived if consideration is given to the 

longitudinal steel stresses in the combined loading case. It might be 

recalled that in the derivation of the formula for the torsional 

deformations the theory of Rausch was employed. The corresponding stress 

in the longitudinal steel may be deduced from the equations for the area 

of longitudinal steel. 

(b I + d') T 
ALT 

s 
= 2f b'd' Ll 

(8. 13) 

ALH 
M 

= 
fLljd 

(8.14) 
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Where ALT is the contribution to the main lo_ngitudinal steel 

due to torsion and ALB is the contribution due to bending. 

The total area of main longitudinal steel, Au~ is then, 

= 

= 
(b' + d')T 

s 
2f b'd' Ll 

If this expression is rearranged we obtain, 

= 
(b I + d') T 

s 
2A b'd' Ll 

= A M_d (1 + jd(b' + d') . TMs) 
LlJ 2b'd' 

(8.15) 
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Although the exact value of Ts in this formula is not known, an 

examination of the equation suggests that the stress and hence the strain in 

the longitudinal steel would be increased by the presence of torsion. In 

fact in Chapter: 3, Figure 3.32, it was found that the strains in the 

longitudinal steel would be increased by the presence of torsion. 

From the geometry of the flexural deformation, see Figure 8.6, 

= 
e 

s 
d(l - k) 

This can be expressed in the customa=y form by putting, 

Then 

Now 

= 

EI = 

e 
s 

er 

M 
~ er 

d(l - k)M 
e 

s 
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Therefore 

EI = er 

d(l - k)E M 
s 

8.25 

(8.16) 

When the value of fLl (equation 8.15) is substituted into equation 

8.16, then 

EI er = 
jd(b' + d') 1 + ...._......,, __ ____ 

2b'd' 

T 
s 

M 

It is of interest to compare this expression with the 

correspondi_ng result for pure flexure. 

EI er 

(8.17) 

(8.18) 

It can be seen that the equation for bending and torsion for the 
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limiting case of T /M=O reduces to the equation for pure flexure. For other 
s 

values of T /M the above method predicts that torsion will increase the 
s 

deflections of a beam. 

Using the values of T given by the empirical method discussed 
s 

in the previous section and Branson's method a comparison between experi-

mental deflections and the deflections predicted by equation 8.17 can be 

made. This comparison is shown in Figure ~7 where it can be seen that the 

agreement betwe·en test results and the theory is very good. 



300----....------,.----...,.....,---------
p=2.9°1o R3 / 

/ 
0 / 

/ 

R3.20 
R3.24 

.f 200~---t----~-,-.i-------~-------,-------, 

.Q. R3.30 
~ 

/ 
~ z 
w 
~ 

~Cb// 

~ 100,1-------1---+------#--t--~~-~~--~ 

0 0.4 0.5 

200-----....------,,--.------,,-------,----

.5 
ci. 

p=2.0°lo 

0 

R2 / 

01 0.2 

R2.24 
/ 

/ 

0.3 

R2.38 _, 

0.4 

FIG. 8.1 EXPERIMENTAL RESULTS - PREDICTED LOAD 

DEFLECTION CURVES. 

0.5 

8. 2 7 



8.28 

p:3.30/o 

200 
C 

ci 
.:Ji. 

I-z 
100 w 

6 
~ 

0.2 0.3 04 0.5 

DEFLECTION inches 

FIG. 8. 7 CONTINUED 



CHAPTER 9 

CONCLUSIONS 

A solution to the problem of "The Strength and Stiffness of 

Rectangular Reinforced Concrete Beams Subjected to Combined Flexure 

9.1 

and Torsion." has been presented. This solution has been obtained from an 

extensive experimental investigation, a rational analysis of failure 

mechanisms, empirical treatment of test data and where necessary 

engineering assumptions. 

In particular the following conclusions were reached: 

1. Beams containing only longitudinal steel. 

1.1 The ultimate torsional strength of a beam without web 

reinforcement was found to be given by a plastic stress 

distribution and a maximum stress criterion of failure. 

1.2 Based on an analysis of all the available test results for 

plain concrete beams loaded in pure torsions, a safe and 

reasonably accurate expression for the critical tensile 

strength of concrete in torsion has been presented. 

1.3 For beams reinforced in the longitudinal direction only, 

it was shown to be adequate to assume no interaction 

between bending and torsion and a linear interaction 

between shear and torsion. 

1.4 A design method which replaces the torsional loading 

on a beam with only longitudinal reinforcement by an 

equivalent effective shear force has been developed. 

1.5 The theory recommended for beams without web reinforcement has 

been verified by comparison with the large number of tests of 



this investigation and with the available test results reported 

in the literature. 

2. Ultimate stre_ngth of beams containing both longitudinal and 

transverse reinforcement. 

2.1 A method of analysis 1 based on observed failure mechanisms 1 

has been derived for the ultimate s·trength of web reinforced 

beams subjected to combined torsion 1 bending and moderate 

shear force. 

2. 2 An empirical equation has been adopted for·· the case of 

combined shear and secondary torsion. 

2.3 The proposed analysis equations have been shown to explain 

satisfactorily the bending torsion interaction of web 

reinforced beams. 

2.4 A simple ultimate strength design method has been developed 

from the analysis equations. 

2.5 Good correlation has been found between a large number of 

test results and the proposed theory. 

3. Defamations of web reinforced beams in combined bending and 

to:r:sion. 

3.1 A quite accurate theory for the flexural deflections in the 

presence of torsion 1 at service loads 1 has been proposed. 

3.2 A reasonably satisfactory solution to the problem of rotations 

of web reinforced members loaded in bending·and torsion has been 

presented. 

9.2 

Fi~ally it should be emphasised that the ultimate strength 

design methods that have been proposed are simple 1 reliable and accurate. 
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APPENDIX B 

This appendix contains a summary of all the experimental data 

used in the comparisons of theory and experiment in Chapters 2 and 6 

for beams with web reinforcement. Further details of these test results 

can be found in the references cited in Appendix A. A discussion of the 

test results of this investigation is, of course, given in Chapter 3. 

In the table the concrete strengths have been expressed in terms of the 

cylinder compressive strength. Where the investigator specified the 

concrete used by its cube strength a conversion factor of O. 8 has been 

employed. 



APPENDIX B. EXPERIMENTAL DATA 
• 

Geometry (inches) Web Steel Longitudinal Steel Failure Loads 
J Beam h b al a2 A f s ALI fLl R f' T M V +' $-, 
Ul 0 w w C 

kip. kip. kips (I) +' No. 
sq. in. k.s.i . in. sq. in. k. s. i p. s. i. :> et! s:: llO in. in. 

~ El 10.0 6.5 1.6 1.7 o.110 49.0 3.CO 0.392 44.0, 1.000 4599 81.4 6.3 0.18 
R E2 11'1.') 6.5 1.6 1.3 0.110 49.0 3.00 0.392 44.0 1.000 4599 83.5 32.0 0.92 
RE3 l"·" 6.5 1.6 1.3 0.110 49.C' 3.C'O 0.392 44.0 1.000 4599 81.5 45.0 1.28 
RE4 1,.,, 6.5 1.6 1.3 r.110 49.C' 3.00 0.392 44.0 1.coo 4599 74.6 84.4 3.26 
RES 10.0 6.5 1 .6 1.3 0.110 49.C' 3.C'O 0.392 44.0 1.000 4599 66.0 108.2 3.0 7 
R E4" lf).t'l 6.5 1.6 1.3 0.110 49.(' 3.00 0.392 44.0 1.000 4599 38.0 134.0 3.86 
RUl 1n.o 6.5 1.a 1 .4 0.110 49.C 4.CO o. 880 46.8 C.239 3679 73.3 6.3 0.18 
RU3t~ 11). 0 6.5 l.8 1.4 0.110 49.r 4.00 o.eao 46.8 0.239 4629 76.0 6.3 (1.19 
RU2 10.0 6.5 1.8 1 .4 0.110 49.(' 4.00 C.880 46.8 0.239 3679 84.9 51.1 c.o 
RU3 1 n.,, 6.5 1 .8 1.4 r.11r. 49.(' 4.CO 0.880 46.8 0.239 3679 105.0 84.0 c.u 

s:: RU3A 1,.0 6.5 l.8 1.4 0.110 49.C 4.00 o.8ao 46.8 0.239 4629 89.4 149.3 o.o 0 
,,-j RU4 10.n 6.5 1.8 1.4 0.110 49.0 4.C'O o.8ao 46.8 0.2.39 3679 85.5 145.0 4.13 +-' 
et! RU5 1n.o 6.5 1.8 l .4 0.110 49.C 4.00 0.880 46.8 0.239 3679 75.4 249.7 7.15 llO 

,,-I RU5A 10.0 6.5 1.e 1.4 0.110 49.(' 4.CO 0.880 46.8 0.239 4399 68.3 266.8 1.80 +' 
Ul RU6 11"1.(' 6.5 l.A 1.4 0.110 4q. r 4.00 o.aao 46. 8 0.239 3679 59.l 281.2 7.95 (I) 

~ 36T4 1n.o 6.5 1.6 1.3 r,.110 43.0 4.or 0.880 37. 7 0.295 4399 62.6 240.4 7. 53 ..... 36T4C 10. 0 6. 5 1.6 1. 4 0.110 43.(' 4.00 o. 880 37.7 0.309 4339 94.l 61. l o.o 
I Ul 36T5.5 l('.0 6.5 1.6 1.4 o. l 10 43.C 5. 50 o.aao 37. 7 0.295 4629 85.9 173.4 o.o ,,-j 

I ..c:: 77T5 10.0 6.5 1.7 l .4 ').110 43.f' 5.CO 1.200 37.7 1.000 4629 91.6 262.4 o.o 
I 

E-t 
77T4 lfl.O 6.5 t.7 1. 4 1).110 43.(l 4.00 1.200 37.7 1.000 4629 107.6 223.4 o.o 
24T3 1 t:'. 0 6.5 1.3 l .4 o. 110 43.t 3.00 0.392 4 7. 1 0.372 4339 70.8 46.6 G.O 

I 38T5 ll"l.n 6.5 1.7 1.6 n.110 43.0 5.00 l.5 70 38.7 o.156 3829 80.1 216.4 6. 73 

ttl 
N 



APPENDIX B. EXPERIMENTAL DATA 

Geometry (inches) Web Steel Longitudinal Steel Failure Loads 
I 

h b A f s ALl fLl R f' T M V +-' 1-.. al a2 [/} 0 Beam w w C 
kip. kip. kips (I) +-' 

sq. in. k. s. i . in. sq. in. k.s.i p.s.i. !> co No. s:: b.O in. in. ..... o,-( 

R4.2r 1n.o s., 1.5 1.2 r..1.r 49 58.6 2. 59 1.420 40.6 0.155 3474 59.9 331.u 
0 ·"' R4.24 l "' • (') 5." 1.5 1.2 l"."49 58.6 2.25 1. 420 40.6 0.155 3C34 56.5 264.u o.o 

R3.2r 10.0 5. 'l 1.5 1.1 Q.n49 58.6 3.12 1.220 4v.6 t').180 3444 50.7 252.v o.o 
R3.24 l '1 • 0 s.n 1.5 1.1 "·('149 58.6 2. 72 1.220 40.6 0.180 315 7 53.7 230.0 u.O 
rn. 3"' 1 ., • r 5.1 1.5 1. 1 r.n49 58.6 2. 38 1.220 40.6 0.180 3414 61.6 201.0 t.o 
R2.24 10.n 5 • ,, 1.1 1.2 0.049 58.6 3.8C 0.830 42.4 0.265 3239 44.2 zus.o (J .o 
R2.3" 1n.f'I 5 .;1 1.7 1.2 f'.f'49 5 8 .6 3. 32 o. 830 42.4 0.265 3314 49.7 176.0 0 .o 
P2.38 11'.'.'1 5.1 1.7 1.2 n.r49 58.6 2.84 C. 830 42.4 0.26s 3474 53.4 138.0 o.u 
R1.3r 10.fl 5. Cl 1.2 1.2 O.C49 58.6 3. 95 {). 710 41.3 0.310 3279 41. 8 146.0 (, .c, 
R4A l , • ') 5 .I') 1.5 1.2 0.r49 58.6 3.22 1.420 4".6 o.1s5 2954 50.5 92.l 3.94 
R4B 10.n 5.1) 1.5 1.2 "-049 58.6 3.22 1.420 40.6 o.155 2954 51. 6 166.0 6.92 
R4.20A 10.0 5.'"I 1.5 1.2 fl. 0 49 73.6 2.00 l.420 40.6 ().155 3474 72.0 220.0 9.08 
R4.2r'!B l I'). r:, 5.1') 1.5 1.2 0.049 73.6 2.ro l.420 40.6 0.155 3474 70.8 151.0 6.30 
R4.24A 10.0 5. :1 1 .5 1.2 O.C49 58.6 2.C(' l.420 4('1.6 0.155 3034 62. l 255.0 8.21 
P3A 1n.~ 5.') 1.5 1.1 0.049 73.6 3.CO 1.220 41).6 C. 180 2919 5 7 .6 92.l 3.94 

s:: R3B l"·"' 5.0 1.5 l. l "·"49 73.6 3.rn 1.220 40. 6, 0.180 2919 51.5 166.0 b.92 
0 R3.2f'A 11.0 5. () 1.5 1.1 1'1.049 58.6 2. 50 1.220 40.6 0.180 3444 61.7 183.0 7.60 •,-( 

+-' R3.2'JB 10.0 s.o 1.5 1.1 t').049 58.6 2. 50 1. 220 40.6 0.180 3444 59.0 78.9 3.41 co 
b.O R3.24A 1,,." s., 1.5 1.1 o.n49 73.6 2. 50 1.220 40.6 0.180 3157 56. 5 92.9 3.97 o,-( 

+-' R3.24B 10.0 s.o 1.5 1.1 0.049 73.6 2. 50 1.220 40.6 0.180 3157 54.9 158.0 6.57 00 
(I) R3.3"'A 1'1.'l 5.,.. 1.5 1.1 o.r49 73.6 2.co 1. 220 40.6 0.180 3414 62.2 203.0 8.39 !> s:: R3.31'.'B 1 n. • 0 5.0 1.5 1.1 ('.('49 73.6 2.r-0 1.220 40.6 0.180 3414 63.4 86.8 3. 73 ..... 
00 R2A l 'l. 0 5.0 1.1 1.2 0.049 58.6 3.00 0.830 42.4 0.265 3199 55.7 111.0 4.71 

o,-( 

R2B 10.0 5.0 1.1 1.2 0.049 58.6 3.CO 0.830 42.4 0.265 3199 50.9 78.7 3.42 ...c:: 
~ R2.24A 10.0 5.0 1.7 1.2 1).049 58.6 3. 30 c. 830 42.4 0.265 3239 62.3 140.0 5.85 

R2.3f'IA 1').f" s.o 1.7 1.2 0. 0 49 73.6 3.CO 0.830 42.4 ').265 3314 50.3 104.0 4.43 
R2.3"'B 10.0 5.0 1.7 l .2 0.049 73.6 3.00 0.830 42.4 0.265 3314 50.6 71.8 3.13 
R2.38A 10. 0 5.l'l 1.7 1.2 0.!'49 73.6 2. 50 o. 830 42.4 0.265 3474 54.6 120.0 5.08 
R2.38B 10.c 5.0 1.1 1.2 0.('49 73.6 2.5C 0.830 42.4 o.265 3474 48.8 10.1 3.08 
Rl.3~A 1n.o 5.1) 1.2 1.2 "-049 58.6 3.14 0.710 41.3 0.310 3279 42.6 97.l 4.13 
Rl.3~B 10.0 s.n 1.2 1.2 I'\. I') 49 58.6 3.14 0.710 41.3 o. 310 3279 40.9 61.8 2.73 

td 
w 



APPENDIX B. EXPERIMENTAL DATA 

Geometry (inches) Web Steel 
. 

+-'~ h b al a2 A f s 
00 0 Beam w w (1) +-' 
> Cl! No. sq. in. k.s.i in. ~ 0.0 ........... 

Vl 1().() 6.5 1.5 1.3 0.049 58.6 ~- 75 
Vl* l'l.O 6.5 1.5 1.3 0.049 58.6 ~.75 
V2 1r,.r 6.5 1.5 1.3 ().!'49 58.6 ~- 75 
V2* 1~.o 6.5 1.5 1.3 'l.049 58.6 4.75 
V3 10.n 6.5 1.5 l .3 1).049 58.6 4.75 
V3 ,r l"·" 6.5 1.5 1.3 0.049 58.6 4. 75 
V4 11.0 6.5 1.5 1.3 0.049 58.6 4.75 
V4* 1,, .o 6.5 1.5 1.3 O.C49 58.6 14. 75 
V5* 1,.0 6.5 1.5 1.3 0.(149 58.6 4. 75 
V6 10.c 6.5 1.5 1.3 J.n49 58.6 4.75 
V6* H'.0 6.5 1.5 1.3 ').049 58.6 4. 75 
V7 1 "'·0 6.5 1.5 1.3 0.049 58.6 4.75 
V7* 10.0 6.5 1. 5 1.3 o. 0 49 58.6 ~. 75 
Ul 10.0 6.5 1.5 1.3 0.049 58.6 3.00 

00 Ul* l'l.f) 6.5 1.5 1.3 0.<'49 58.6 3.00 
~ U2 1,.0 6.5 1.5 1.3 1).049 58.6 3.00 ..... 

.--i U2* 10.0 6.5 1.5 1.3 0.049 58.6 3.00 .--i 
0 

U3 1n.o 6.5 l.5 1.3 0.049 5·8.6 3.00 u 
U3* 1 fl. n 6.5 1.5 1.3 0.049 58.6 3.00 

Tl l 'l." 6.5 l. 2 · 1.7 0.049 58.6 3.62 
T2 l"'·" 6.5 1.2 1.7 O.C49 58.6 3.62 
T4 l ')." 6.5 1.2 1.1 0.049 58.6 3.62 
T4* 10.0 6.5 1.2 1.7 0.049 58.6 3.62 
T5 lf).0 6.5 1.2 1.7 0.;049 58.6 3.62 
T5* 10. (' 6.5 1.2 1. 7 0.049 58.6 3.62 
T6 11.t') 6.5 1.2 1.7 0.049 58.6 3.62 
T6* 10.!l 6.5 1.2 1.1 0.049 58.6 3.62 

Longitudinal Steel 

AL! fLl R f' 
C 

sq. in. k. s. i p. s. i. 

1. 840 65.2 0.333 5029 
1.840 65.2 0.333 5029 
1.840 65.2 0.333 5029 
1.840 65.2 0.333 5029 
1.840 65.2 0.333 5029 
1.840 65. 2 0.333 5029 
1. 840 6 5. 2 0.333 5029 
1.840 65.2 0.333 5029 
1. 84f'I 65.2 0.333 5029 
1. 840 65.2 0.333 5029 
1.840 65.2 0.333 5029 l .840 65. 2 0.333 5029 
1.840 65.2 0.333 5029 
1. 840 65.2 0.333 5029 
1.840 65.2 0.333 5029 
1. 840 65.2 0.333 5029 
1.840 65.2 0.333 5029 
1. 840 65.2 0.333 5029 
1. 840 65.2 Q.;333 5029 
1. 5 70 39. 3 0.140 5029 
1. 5 70 39.3 0.140 5029 
1.570 39.3 0.140 5029 
1. 570 39.3 0.140 5029 
1.570 39.3 0.140 5029 
1.570 39.3 0.140 5029 
1.570 39.3 0.140 5029 
1.570 39.3 0.140 5029, 

Failure Loads 

T M V 
kip. kip. kips 
in. in . 

38.2 544.0 22.30 
60.6 421.0 17.30 
52.3 413.0 17.ClO 
86.0 166.0 1.10 
16.9 685 .o, 27.80 
79.2 394.0 16.20 
91. 3 243.0 10,.20 
40.4 664.0 21.00 
89.7 o.o o.o 
24.8 668.0 21.20 
82.9 348.0 14.40 
83. 9 298.0 9.30 

103.4 210.0 12.10 
106.6 o.o o.o 
99.5 199.0 8.40 
43.9 689.0 28.00 
85.2 315.0 13.10 
82.7 533.0 21.80 
66.2 720.0 29, .• 30 
75.l 327.0 13.50 
92.9 102.0 4 •. 10 
53.0 523.0 21.40 
81.3 366.0 15.lG 
63.4 432.0 17.70 
75.4 o.o o.o 
83.0 196.0 8.30 
29. 4 584.0 23.90 

td 
~ 



APPENDIX B. EXPERIMENTAL DATA 

Geometry (inches) Web Steel Longitudinal Steel Failure Loads 
I 

+-' ~ ·h b al a2 A . f s ALl fLl R f' T M V Ul 0 w w C Q) +-' Beam kip. kip. kips > ro sq. in. k . .s. j : . in. sq. in. k. s. i p.s.i. s:: bD No. in. in. 
- •ri 

t3 TR 3 12.0 6.0 1.3 1.0 0.049 55.5 l4.00 0.220 53.6 1.000 3922 34.3 o.o o.o 
l3TR 7 12.0 6.0 1.3 1.0 0.049 55.5 7.00. 0.220 53,.6 1.000 3922 49. 7 o.o o .• o 
t3 TR 15 12.0 6.0 1.3 1.0 0.049 55.5 4.00 0.220 53.6 1.000 3922 61.7 o.o o.o 
13 TR 30 12.Cl 6.0 1.3 1.0 0.049 55.5 2.00 0.220 53.6 1.000 3922 76.0 o.o o.o 
14TR3 12.0 6.0 1.4 1.1 0.049 55.5 l4.00 0.390 41.0 1.000 3922 35.0 o.o o.o 

+-' ~TR 7 12. f'.' 6.() 1 .4 l. 1 o. C'49 55.5 1.00 o. 390 41.0 1.000 3922 54.8 o.o o.o 
Ul 
s:: ~TR15 12.r 6. I') 1.4 1. 1 0.049 55.5 4.00 ().390 41.0 1.000 3922 74.0 o.o o.o 
~ 14 TR 30 12.0 6.0 1.4 1.1 0.049 55.5 2.00 o. 390 41.0 1.000 3922 85.0 o.o o.o ~ 

5TR3 12.0 6.0 1.4 1.2 0.049 55.S 14.00 0.610 48.6 1.000 3922 43.0 o.o. o.o 
~TR7 12.0 6.(l 1.4 1.2 0.049 55.5 1.co 0.610 48.6 1.000 3922 59.7 o.o o.o 
5TR15 12.n 6.0 1.4 1.2 n.049 55.5 4.(10 0.610 48.6 1.000 3922 76.5 o.o o •. o 
5TR3'l 12.0 6.1) 1.4 1.2 0.049 55.5 2.00 0.610 48.6 1.000 3922 92.6 o.o o.o 
R3 9.0 6.0 o.8 o.a 0.049 20.8 4.00 0.580 48.5 0.672 7699 71.B o.o o .. o 

s:: R.5 9.0 6.0 o.a c.0 0.049 20.8 4.00 0.580 48.5 0.672 8500 75.4 75.4 o.o 
ro R. 2 9.0 6.0 o.a o.a 0.049 20.8 4.00 o. 580 48. 5 0.672 7299 79.0 158.0 o.o 
~ ~1 9.,, 6.0 o.a 0.8 0.049 20.a 4.CO 0.580 48.5 0.672 7299 43.0 258.0 o.o 
0 
u Sl 9.0 6.0 0.0 0.8 0.049 20.0 3.00 0.580 48.5 0.672 7199 82.6 206.5 o •. o 

IS4 9.0 6.0 o.a o.a 0.049 20.8 3.00 0.580 48.5 0.672 6969 64.6 258.4 o.o 
l 8.0 a.o 1.5 1. 5 0.110 50.0 5.00 o.580 51.0 0.672 5029 79.0 79.0 o.o 
2 8. ') a.o 1.5 1.5 0.110 50.0 2.00 o. 580 51.0 0.672 5299 102.0 102.0 o •. o .. 3 a.o a.o 1.5 1.5 0.110 50.0 5.00 0.580 51.0 0.672 5309 61.0 122.0 o.o 

. 4 8.0 a.o 1.5 1.5 0.110 50.0 2.co o. 580 51.Q 0.672 4679 67.0 134.0 o..o 
.-I 
ro 5 8.o a.o 1.5 1.5 0.110 50.C 5.00 0.580 51.0. 0.672 4239 4,9.0 147.0 o. .. o 
+-' 6 a.o a.o 1.5 1.5 0.110 50~0 2.00 0.580 51.0 0.672 4059. 56.0 168.0 o..o Q) 

"Cl 1 8.0 a.o 1.5 1.5 0.110 50.0 5.00 0.580 51.0 0.672 5279 43.0 173.0 o.o 
s:: 8 a.o a.o 1.5 1.5 0.110 50.0 2.00 o.5ao 51.0 0.672 5739 44.0 176.0 o.o ::s 
Ul 9 12.0 6.0 2.0 1.8 0.110 50.0 a.co 0.580 51. 0. 0.672 4859 60.0 120.0 o.o 
Q) 

0 JO 12.0 6.0 2.0 1.8 0.110 50.0 a.co o. 580 51.0 0.672 3899 44.0 176.0 0..0 
ll l 12.0 6.0 2.0 1.8 0.110 50.0 4.00 o. 580 51.0 0.672 4859 68.0 138.0 o •. o 

12 12. 'l 6.0 2.0 1.8 0.110 50.0 4.00 0.580 51.0 0.672 3899 53.0 213.0 O<.o 

tj 

IJl 



APPENDIX B. EXPERIMENTAL DATA. 

Geometry (inches) Web Steel Longitudinal Steel Failure Loads 
I 

+-' ~ h b al a2 A f s ALl fLl R f' T M V ~ .8 Beam w w C 
kip. kip. kips :> ro 

No. sq. in. k. s. i in. sq. in. k. s. i, p.s.i. ~ bD in. in. I-< ..... 

8Kl 11.8 7.9 1.0 l .2 0.122 49.l ir+. 90 0.560 34.5 1.000 2009 121.0 o.o o.o 
BKlA 12.'l 8.1 l • r. 1.4 0.122 49.l 14.qo 0.560 34.5 1.000 1569 104.0 o.o o •. ,o 
8K2 12.~ 7.9 1.4 1.2 n.122 49. 1 13. 90 0.630 46.5 1.000 1709 14 7. 8 o.o o.o 
BK2A 11.8 7.9 1.2 1.2 0.122 49. 1 13. 90 . 0.630 46.5 1.000 1849 153.0 o.o o .• o 
BK3 15. 8 6.7 1.0 1.4 0.122 49. 1 ~.90 0.630 46.5 1.000 1909 175.5 o.o o.o 
BK3A 15.8 6.7 l.(l 1.4 0. 122 49. l ~-90 0.630 46.5 1.000 1569 149.3 o.o Q.O 
BU4 12.1) 8.1 1.4 1.6 0.122 49.l ~.90 1.940 54.0 0.273 909 111.0 556.0 o.o 
BU4A 11. 8 7.9 1.2 1.4 0.122 49.l ~.90 1.940 54.0 0.273 909 104.0 522.0 o.o 
8U5 11.8 7.9 1 .2 1. 4 0.122 49. l ~-90 0.990 49.7 1.000 679 69.5 86.8 o.o 
BUSA 11.8 7.9 1 • r: 1.4 0.122 49.l 4.90 0.990 49.7 1.000 714 67.6 174.0 o.o 
BU6 11.8 7. g 1.0 1 .4 0.122 49.1 4.90 0.630 46.5 1.000 750 69.5 173.6 o.o 
8U6A 12.0 7.9 1.1 1 .4 0.122 49. 1 ~.90 0.630 46.5 1.000 789 73.0 104.2 o.o 
8117 1 2 • " 6. 1 1.4 1.4 0.122 40.0 3.90 1.900 55.5 0.163 1429 62.5 625.0 22.95 
8 I 17A 11.a 6. l 1.2 1. 4 0.122 40.0 3. 90 1.900 55.5 o.163 1659 62.5 625.0 22.95 
8118 12.2 5.9 1.6 1.2 0.122 40.0 3.90 0.980 50.0 0.347 1509 74.0 382.0 14.50 
BIIAA 11.a 5.9 1. 2 1.3 0 .122 41).0 3.90 0.980 50.0 0.347 1779 74.0 382.0 14.35 
BI I 9 11.8 6.1 1.2 1.3 0.122 40.0 3.90 0.980 50.0 0.347 1559 88.6 157.0 6.04 

bD B 119A 11.8 6.1 1.2 l .4 0.122 40.0. 3.90 0.980 50.0 0.347 1729 94.0 156.0 6.07 ..... 
Ul Bil 10 11.8 8.1 1.0 1.3 n.122 40.0 · 3.90 0.980 50.0 0.347 1639 13 7.0 348.0 12 .. 99 Ul 
<l) 8111,,A 11.8 7.9 1.2 1.2 o. 122 40.0 3.90 0.980 50.0 0.347 180,9 125.0 313.0 11.77 r-4 B 1111 12.n 7.9 1.2 1. l 0.122 40.0 3.90 0.980 50.0 0.347 1599 122.0 156.0 6.12 

BI I l lA 11.8 7.9 1.4 1.1 0.122 40.0 3.90 0.980 50.0 0.347 1659 115.0 156.0 6.14 
8(112 12. ry 7.9 1 .4 1.2 0.078 51.5 3.90 1.250 84.5 0.176 2779 146.0 243.0 9.24 
B 1112A 12.0 7.9 1.2 1.2 0.078 51.5 3.90 1.250 84.5 0.176 2779 151. 0 261.0 10.21 
81113 11.a 6.1 1.2 1.4 o. 121 45.5 3.90 l.900 55.5 0.109 2129 93.5 520.0 19.16 
8 II 13A 11.6 6.1 1.2 1.4 0.121 45.5 3. 90 1.900 55. 5 0.189 2579 125.0 625.0 23.16 
8 I 114 11.8 5.9 1.2 1.8 0 .121 45.5 3.90 1.900 55.5 o.1a9 2379 83. 2 416.0 15.51 
BI I 14A 12.!'l 5.9 1.2 2.0 0.121 45.5 3.90 l.900 55.5 0.189 2649 113.0 572.0 21.26 
B ll 15 12.2 7.9 1.2 1.6 0.121 45.5 3.90 o. 980 49.5 0.418 2539 156.0 416.0 15.56 
81115A 12.0 7.9 1.2 l .4 · 0.121 45.5 3.90 o. 980 49.5 0.418 2759 151. 0 416.0, 15.52 
B 1116 12. 4 6.1 1.0 1.4 0.122 42.5 3.90 0.350 58.0 1.000 3259 92.0 156.0 4.07 
Blll6A 12.0 6.1 l.('l 1.4 0.122 42.5 3.90 0.350 58.0 1.000 3549 83.4 156.0 4.14 

to 
O' 



APPENDIX B. EXPERIMENTAL DATA 

Geometry (inches) Web Steel Longitudinal Steel Failure Loads 
I 

+-' ~ h b al a2 A f s ALl ffLl R f' T M V 00 0 
Q.) +-' Beam w w 

in. C 
kip. kip. kips > ctl sq. in. k. s. i. sq. in. k.s.i p.s.i. i:: bJ) No. in. in. I-< ..... 

8 ll 17A 12. 2 6.1 1 .2 1 .4 0.122 42.5 3.90 0.622 50.6 1.000 3969 90.4 313.0 8.06 
81117 12.2 6.1 1 .2 1.4 0.122 42.5 t3.90 0.622 50.5 1.000 3799 83.4 278.0 7.16 
8 I 118 12.2 6 .1 1 • "' 1. 4 o.r59 41.5 3.90 0.933 50.5 0.667 3509 114.5 191 .o 4.99 
B II 18A 12.2 6 .1 1 • "' 1.2 0.('59 41.5 13.90 0.<;33 50.5 0.667 3699 111.0 191.0 4.99 
8 I I 19 1 2. n. 6.1 r.s 1.4 0 .(159 41.5 3.90 0.622 50.5 1.000 3389 78.0 313.0 4.63 

bJ) BII19A 1 2.,, 5.9 1 • (' 1. 4 r. o 59 41.5 3. 9('1 0.622 50.5 1.coo 3589 79.0 313.0 4.71 ..... 
rn 

8117" 12.2 7.9 2.4 1. 4 n.122 42.5 3.90 1.592 49.0 n.240 1489 125.0 313.0 11.77 rn 
(l) 8IJ2nA 12.n 7.9 2 • ('I 1.4 0.122 42.5 3.90 1. 592 49.0 0.240 1609 130.2 339.0 12.69 ....:i 

8 JI 21 12.0 7.9 2.('I 1.9 o. 122 42.5 3.90 1. 592 49.0 0.240 1549 120.8 313.0 11.77 
8IlllA 1 2. 2 7.9 2.n 1.6 0.122 42.5 3.90 1.592 49.0 0.240 1629 99.0 313.0 11.78 
I I B 11. 8 6.5 2.n 1.2 o.n44 32.7 6.10 0.622 56.5 1.000 2409 41.7 206.5 10.20 
11 BA 11.8 7.1 2.3 1.2 ('.044 32.7 6.10 0.622 56.5 1.000 28.89 57.3 2uo.5 10 .17 
W8 11.8 6.1 2.r 1.2 o.n44 32.7 6.10 0.622 56.5 1.000 2409 53.0 132.0 6.64 
WBA 11.8 6.4 2. ('I 1.2 o.<'44 32.7 6 .10 0.622 56.5 1.000 2889 57.3 143.0 7.16 

828 r.1 11.8 7.9 l .4 1.4 0.060 41. f' 3. 20 o. 995 54.0 1.000 1223 48.6 486.0 o.o 
A28 f".lA 12. 0 7.9 1.4 1.4 0.060 41.C 3.20 0.995 52.5 1.000 1223 46.9 469.0 a •. o 
82A "•2 12.2 7.9 1.4 1.4 0.060 41.~ 3.20 1.030 52.3 1.000 1023 83.4 41 7.0 o.o 
B28 r.2A 12.c 7.9 1.6 1.4 0.(160 41.C 3.20 0.995 53.3 1.000 1223 83.4 417.0 o.o 
B28 ('1.4 12.('I 7.9 1.6 1.4 0.060 41.C 3.20 1 .050 52.3 1.000 2783 146.0 365.0 o.o 

> 828 f'.4A 12.r 7.9 1.6 1 .4 o.c-60 41.0 3.20 1.050 52.3 1.000 2783 13.9.0 347.0 o.o 0 
.!:I: B28 r.4B 12. f' 7.9 1.6 1.4 0.060 41.C 3. 20 1.040 52.3 1.000 4319 146.0 365.0 o.o i:: 
(l) B28 f'.4C 11.8 7.9 1.3 l.4 O.C'\60 41.C 3.20 1.080 55.0 1.000 4319 153.0 382.0 o.o i:: 828 C'.4D 11.8 7.9 l .4 1 .4 0.060 41.(' 3.20 1.010 52.5 1.000 2271 125.0 313.0 o •. o ..... 

.c: 
B28 f".4E 12.0 7.9 1.4 1.4 0.060 40.r 3.20 1.030 52.5 1.000 2271 132.0 330.0 o.o u 
828 C'.4F 11.8 7.9 1.4 1.4 0.121 4n.c 3.20 1.050 53.0 1.000 2271 139.0 34 7 .0. o..o 

td 
-J 



APPENDIX B. EXPERI:M:ENTAL DAT.A 

· Geometry (inches) Web Steel Longitudinal Steel Failure Loads 
I 

+' ~ h b al a2 A: f~ s ALI fLl R f' T M V rl.l 0 
Q,) +' Beam w w C 

kip. kip. kips > C1! 
No. sq. in. k. s. i in. sq. in. k.s.i p.s.i. i:::: b.O in. in. H •.-1 

88 K 12.2 7.9 1 .4 1 .4 0.079 44.5 [3. 20 1.010 54.5 1.000 1359 125.o o.o. o .• o 
88 KA 12.2 7.9 1.4 1.4 0.019 44.5 13.20' 1.010 54.5 1.000 2399 153.0 o.o o.o 
B8 0. l 12.2 7.9 1.4 l .4 0.019 44.5 3.20 0.980 54.5 1.000 1759 52.0 520.0 12.52 
B8 tl.lA 12.2 7.9 1.4 l .4 0.019 44.5 3.20 1.030 55.8 1.000 1759 55.5 555.0 13.36 
88 C'.2 11.8 7.9 1.4 1.4 0.079 44.5 3.20 1.000 56.2 1.000 1535 90.0 451.0 10.85 
88 0.2A 12.2 7.9 1.4 1. 4 0.079 44.5 3.20 1.040 52.0 1.000 1759 97.0 486.0 11.69 

88 0.4 12.2 7.9 1.4 1.4 0.079 44.5 3. 20 1.040 56.4 1.000 1727 132.0 347.0 8.42 
88 0.4A 12.0 7.9 1.4 1.4 0.079 44.5 3.20 1.030 57.6 1.000 2223 139.0 347.0 8.38 
87 r'l .2 12.0 7.9 1 .4 l. 4 0.059 41 .6 3.20 1.040 55.7 1.000 153,51 93.8 468.0 11.30 
87 0.2A 12.0 7.9 1 .4 1.4 0.059 41.6 3.20. 1.010 55. 5 1.000 1927 90.2 451.0 10.87 
010 r.2 12.0 7.9 1.4 1.4 o.117 40.8 3.20 1.020 52.5 1.000 2215 104.0 521.0 1'2.53 
81") 0.2A 12.2 7.9 l. 4 l .4 o. 117 40.8 3.20 1.020 53.0 1.000 2399 104.0 521.0 12,.53 
81 7.9 8.7 1.4 1.4 0.074 63.5 3.20 l.440 53.3 1.000 4087 90.3 452, •. 0 lQ.82 
BlA 7.9 8.7 1.4 1.;4 · 0.-fllf"r- ~3 ... s.. 3 • .20 .. 1.490 55.0 1.000 3935 90.3 452.Q 12.75 
62 11.8 8.7 1.4 l .4 0.074 63.5 3. 20 1.490' 41. 8 1.000 4087 139.0 694.0, 16.65 
B2A 11.8 8.7 1.4 I .4 0.014 63.5 3.20 1.460 53.0 1.000 4095 139.0 694.0 16.65 
83 11.8 8.7 1.4 1.-4 0.074 63.5 3.20 1.440 53.0. 1.000 3927 194.0 486.0 17.48 
83A 11.8 8.7 1.4 1 .4 0.074 63.5 3.20 1.490 51.0 1.000 3927 194.0 486.0 17.48 
85 15.7 8.7 1.4 1.4 0.074 63.5 3.20 1.460 54.6 1.000 3701 194.0 972.0 23.24 

i:::: BSA 15.7 8.7 1.4 1.4 0.074 63.5 3.20 1.480 48.8 1.000 4135 194.0 972.0 23.24 •.-1 
...-i 86 15.7 6.7 1.4 l .4 0.074 63.5 3.20 1.460 47.4 1.000 4215 167 .a. 833.0 20.~·19 C1! 
:>-, 86A 15.7 6.7 1.4 1.4 0.014 63.5 3.20 1.460 47.0 1.000 4135 181.0 903.0 21.88 ~ 

87 11.8 7.9 1.4 l .4 0.210 37.0. 4.10 1.060 47.0 1.000 2655 221.0 o.o o.o 
87A 11.8 7.5 1.2 1.2 0.210 37.0 4.10 1.060 47.0 1.000 2655 zoa.o o.o o.o 
88 11.8 7.5 1.2 1.2 0.010 68. 7 4.10 1.010 49.2 1.000 2591 156.0 156.0 3.83 
88A 11.e 7.9 l .4 l .4 0.010 68. 7 4. 10 1.060 47.0 1.000 2615 156.0 156.0 3.63 
89 9.1 5.9 1.4 1.4 0.01s 50.7 4.10 1.000 50.8 1.000. 1023 39.0 20.8 .• 0. 10,.()5 
B9A 9.1 5.9 1.4 1.4 0.075 50.7 4.10 1.010 52.6 1.000 1087 47.0 235.0 11.39 
810 9. 1 7.1 1.4 l .4 0.075 50.7 4.10 1.060 47.0 1.000 967 36.4 182.0 8.82 
Bl'lA 9. l 5.9 1.4 1 .4 0.075 50.7 4. 10 1.060 47.0 1.000 1031 41.8 209 .o. 10..13 
811 9.1 5.9 1.4 1 .4. 0.075 50.7 4. 10 0.101 57.,3 1.000 1055 36.6 209.0 10.10 
BllA 9.1 5.9 1.4 1.4 0~015 50.7 4.10 0.670 54.7 1.000 1119 36.,6 209.0 1u.10 
812 9.1 5.9 1.4 1.4 0.075 50.1 4.10 0.682 56.0 1.000 887 24.2 78 • .Q 3 ..• 78 
812A 9. 1 5.9 1.4 1.4 0.075 50.7 4.10 0.682 56.0 1.000 927 31.2 101:t.O 5.07 

lJj 

00 



APPENDIX B. EXPERIMENTAL DATA 

Geometry (inches) Web Steel Longitudinal Steel Failure Loads 
I 

C/l 8 h b al a2 A f s ALl fLl R fl T M V 
(I)+> Beam w w . in . C 

kip. kip. kips :> cd 
SQ. in. k.s.i SQ. in. k. s. i p.s.i. s::::1 tl.O No. . 1n. 1n. I-< ..... 

1 6.3 3 .5 1.0 1.0 0.031 64.0 5.90 0.244 49. 8 0.422 1351 7.2 36.2 1.84 
2 6.3 3.5 1 • (' 1.0 0.031 64.0 5.90 0.244 49.8 0.422 1351 1.2 36.2 1.84 
6 6.3 3.5 l.t:' 1.0 0.031 64.r 5.90 0.244 49.8 0.422 1351 4.6 45.7 2.32 
1 6.3 3.5 l.t" 1.c 0.031 64.0 5.90 0.244 49.8 0.422 1351 9.9 49.3 2 .. 51 

1"l ' 6.3 3.5 1.0 1.0 o.o 31 64.0 5.90 0.244 49.8 0.422 1351 5.9 59.0 3 .• oo 
3 6.3 3.5 1.r 1.0 0.031 164.0 2.95 0.244 49.8 0.422 1351 11.9 59.4 3.02 
'1 6.3 3.5 l. C 1.0 o. f'31 l64.0 2. 95 0.244 49.8 0.422 1351 11.9 59,.4 3.02 
A 6.3 3.5 l .o 1.0 O.f"31 164.0 2.95 0.244 49.8 0.422 1351 13.l 65.3 3.32 

i::: <; 6.3 3.511.0 1.n 0 .(?31 ;64.0 2.95 0.244 49.8 0.422 1351 13. l 65.3 3.32 ..... 
I "Cl 11 6.3 3.5 1.2 1.0 o. 031 !64.C' 3.94 0.312 49.8 1.000 2319 14.3 71.7 3.65 i ;:::s 

I :>-t 121 6.3 3.5 1.2 1 .o O.C'31 64.0 ,3.94 0.312 49.6 1.000 2319 11.1 55.7 2,.83 
13 6.3 3.5 1.2 1.0 0.031 64.(l 3.94 0.312 49.8 1.000 2319 11. 1 55.7 2.83 
11 6.3 3.5 1.2 1.0 0.031 64.0 7.87 0.312 49.8 0 .500. 2175 1.2 36.0 1.83 
Ul 6.3 3.5 1.2 1 .o 0.031 64.0 7. 87 0.312 49.8 o.soo 2175 7.9 39.4 2.00 
l c; 6.3 3.5 1.2 1.0 0.031 64.0 7.87 0.312 49.8, 0.500 2175 7. 9 39.4 2.00 
2".' 6. 3 3.5 1.2 1.0 0.031 64.0 7.87 0.312 49.8 o.soo 2175 9.1 45.7 2.32 
21 6.3 3.5 1.2 1.0 0.031 '64.0 7.87 0.312 49.S o.soo 2175 7.9 39.4 2.00 
22 6.3 3.5 1.c 1.0 0.031 64.C 7.87 0.156 49.8 2.000 2175 6.5 32.6 1.06 
HEl 7.6 6. 1 o.a o.a 0.049 46.C 4.00 0.220 59.0 o.759 6919 44.l o.o o.o 
HB 2 7.6 6. 1 0.8 0.8 0.049 46.0 4.00 0.220 59.0 0.759 6463 33.9 66.8 o.o 
HB3 7.5 6.0 C .a· 1 0 .8 0.049 46.C 4.CO 0.220 59.0 o.759 6359 20.4 75.3 o.o 

~ HB 4 7.7 6.1 o.8 0.8 0.049 46.0 4.00 0.220 59.0, o. 759 7000 15.7 81.6 o .• o cd 
~ HB5 7.5 6.0 0.8 0.8 0.049 46.0 4.00 0.220 59.0 o. 759 6063 13.2 81.5 o..o ~ 
cd HB 7 9.0 6.1) 0.8 o.8 0.049 40.8 4.00 0.220 54.5 0.895 5119 36.l o.o o.o U) 

HB 8 9.0 6.0 0.8 0.8 0.049 40.8 4.00 0.220 54.5 o.895 5099 21.4 79.6 o.o "O 
i::: HB 9 9.0 6.0 o.8 o.8 0.049 46.0 4.00 o.22p 59.0 0~759 4031 18. 3 85.l o.o 
cd HB 10 9.1 6.0 o.s o.8 C.049 46.0 4.00 o. 220 59.0 0.759 6439 17.3 , 91.3 o.o C/l 

HB 11 9.t') 6.0 0.8 o.8 0~049 46.0 4.00 0.220 59.0 0.159 5199 14.1 94.0 o._o i::: 
cd HB 13 12.0 6.0 o.a 0.8 0.049 40.8 4.00 0.220 54.5 0.895 5159 51.3 o.o o.o :> 
~ HB 14 12.1 6.0 o.8 o.e 0.049 46.0 4.CO 0.220 59.0 o.759 5199 41.7 82.l o.o 

HB 15 12.0 6.0 o.a o.8 · 0.049 40.8 4.00 0.220 54.5 0.895 5159 29.9 111.0 o.o 
HB 16 12.1 6.0 o.8 o.a 0.049 46.0 4.00 0.220 59.0 0.759 4031 23.5 129.0 o.o 
HB 17 12.0 6.0 o.a o.s 0~049 46.C• 4.00 0.220 59.0. 0.759 6439 19. 4 137.0 O.O' 

to 
,o 



APPEND I >i: C 

Optimum Value of r 

The t.;tal volume of reinforcement per unit 

leneth of beam is given by 

01 

W = (AL1 + RAL 1 ) + Aw 2 [(h-2a3) + 2(b-2a4 )1 ... (C1) 
s 

= c1AL1 (1 + kr) 

where 

••• ( C2) . 

and 

For a given size of beam both c1 and k are constant 

if the ratio of top to bottom steel remains constant. The 

area of steel AL1 to prevent the most common type of· 

failure, mode 1, is, from equation (5q), 

AL1= T1/(h-a1-x1 ) 2r /(1)2 + 1+2o( - 1 
. · 1+2~ ~ r ~ 

When this is substituted for Ari1 , equation (C1) becomes 

w 1 + kr ••• (c3) 

+ 20( 1 ] 
r - ~ 



This function is a minimum when 

r = 1 

k + 2/R: 
~ /1+2o<' 

C2 

••• c4) 

The value of k (see e~uation 02) is dependent 

upono<', Rand the ratio of cover on the steel to the 

width of the section.· Hence, the influence of these 

variables would need to be considered in any attempt 

to find a minimum weight solution. An examination 

of these variables for practical situations indicates that 

k might vary between 2 and 7. Test, reference (2.18), 

(2.14), show, however, that reinforced beams behave in 

a relatively ductile manner when subjected to torsion 

and bending if r_is not unduly small. It is therefore 

advantageous to adopt a k value somewhat less than the 
' 

upper limit. 

The design process is,,. -of course, considerably 

simplified if a constant value is adopted fork. In 

view of the above rem~rks the value k = 4 has been 

adopted so ·that 

r = o· 

4 + 

1 

4 

~ /1 + 2°' 



APPENDIX D 

The experimental data listed in Appendix B has been analysed, 

and the results of the analysis are presented in this Appendix. The failure 

loads of each beam have been expressed in terms of the three ratios T /T , 
0 

M/M and V/V . T is the pure torsional strength of the beam as calcu-
u O 0 

lated from the theory set out in Chapter 5 ( see Equation 5. 11). M is the 
u 

calculated flexural strength and V is the shear capacity of the beam as 
0 

given by the A. C. I. code. 

The parameters r/r , pf ·/f' and V ff/bd ~. which are listed 
0 Y C e C 

in the table, are related to the restrictions on the theory discussed in 

Chapter 6. 

i. e. r/r 0.9 
0 

pf /f' 0,40 
y C 

V eff/bd/ f~ 8 

(D. 1) 

(D. 2) 

(D. 3) 

Beams which do not satisfy the above requirements have been 

included in the table, but they have been marked with the letters R, P and V 

if they violate the limits set out in equations (D. 1), (D. 2) and (D. 3) 

respectively. 

For each beam the theoretical failure torque has been calculated 

in four ways, from the Modes 1, 2 and 3 equations and from the effective 

shear formula. These values have been expressed in the table as the 

ratios T /Tth Also listed in the table is the critical value, as exp eor. 
T /Tth and its associated mode. exp eor. 



APPENDIX D. ANALYSIS OF TEST DATA 

T Critical 
ex:e 

I 
T T 

+-' f.,. theor. 
00 0 Beam 

T M V 
pf V e:ff ~ 

(1) +-' r LI 
Tth. Restrict-:> ctl No. - ~ - -

s:: b.O T M V r f' bd{f' 1 2 3 VEF Mode 
ions .......... 0 u 0 0 C C 

-..~•; •• • •' I • • 

REl 0.83 0.05 0.01 2.12 o.oo 6.2 0.85 o.aa o. 82 0.68 o.aa 2 
RE2 f').89 0.23 0.03 2.23 o.oo 5.8 1.01 0.90 0.85 0.12 1.01 l 
RE3 l).;83 0.32 0.04 2.60 o.oo 5.7 1.01 o. 85 0.19 0.12 1.01 1 
RE4 0.76 0.61 0.11 3.1() o.oo 5.2 1.12 o. 85 0.65 0.73 1.12 1 
RE5 i.67 0.78 0.10 3.71) O.f'O 4.5 1.16 0. 76 o •. s1 0.65 1.16 1 
RE4* 0.39 1).96 0.13 5.61 o.oo 3.2 1.10 0.50 0.26 0.45 1.10 l 
RUl 0.60 0.02 0.01 0.72 0 .16 4.6 0.61 0.1s 1.22 0.10 1.22 3V R 

R~3A* 0.60 0.02 0.01 0.12 0.13 4.2 0.62 0.1s 1.23 0.65 1.23 3V R 
RU2 0.70 0.1 7 o.o 0.9") 0.16 5.8 0.79 0.86 1.11 0.81 1.11 3 

s:: RU3 0.86 0.28 o.o 0.97 0.16 6.3 1.01 1.06 1.26 1.00 1.26 3 0 ..... 
RU3A 0. 71 0.49 o.o 1.21 o. 13 6.1 1.00 0.88 0.76 o.76 1.00 1 +-' 

ctl RU4 0.10 0.49 0.16 1.28 0.16 6.4 0.99 1.00 1. 21 0.97 1.21 3V b.O ..... 
RU5 0.62 0.84 0.28 1.83 0.16 6.8 1.11 1.00 0.87 Q.;99 1.11 l +-' 

00 
(1) RU5A 0.55 0.88 0.28 2.04 0.13 6.1 1.14 0.93 0.10 Q.;87 1.14 1 
~ RU6 0.48 0.95 0.31 2.33 0.16 6.0 1.15 o. 86 o.56 0.87 1.15 1 

H 
36T4 0.57 0.94 0.28 2.19 o. 10 5.3 1.21 0.96 Q.;64 o.;a4 1.21 1 
36T4C 0.87 0.24 o.o 0.96 0.10 5.2 1.00 l .07 1.23 0.87 1.23 3 

00 36T5.5 0.93 0.67 o.;o 1.06 0.09 4.3 1.32 1.15 Q.;91 0.98 1.32 l ..... 
..c: 77T5 0.;83 o.;1s o.o 1.01 o.oo 4.7 1.31 o. 82 0.52 0~99 1.31 l E-t 

77T4 0.;87 Q.67 o.o 1.12 o.oo 5.7 1.26 0.86 0.60 1.00 1.26 1 
24T3 0.73 o.;30 o.o 2.13 o.os 5.1 0.90. 0.92 o •• 86 0.58 0.92 2 
38T5 0.70 0.52 0.29 0.11 0.25 6.1 1.01 1.21 1.29 1.15 1.29 3V R 

' 

t, 

N 



T Critical 

I r. +-' ~ pf veff theor. T tll 0 Beam M V (I) +-' T r :J,. exp Restrict-> co - -
i::: bD No. T M V r f' bd/1' 1 2 3 VEF Tth. Mode 

ions ~ •.-! 0 u 0 0 C C 

R4. 20 0.61 0.82 o.o 1. 01 0.32 6.7 1.15 o.79 o. 42 0.96 1.15 l 
R4.24 0~54 0.65 n.o 1.04 0.37 8.1 0.96 0.69 0.40 0.97 0.97 \IEF \I 
R3.20 0.62 1).73 n.o 0.91 0.27 6.0 1.oe 0.18 0.46 0.81 1.08 l 
R3.24 f'.61 0.66 o.o 0.94 0.29 7.0 1.02 0. 77 0.48 Q.90 1.02 1 
R3.30 n.65 0.60 c.o n.93 0.21 7.8 1.02 c. 82 o.59 0.99 1.02 l 
R2.24 !'.71 0.84 c.o l .N) 0.18 4.9 1.24 0.84 0.50 0.84 1.24 1 
R2.30 0.74 0.11 o.n n.97 0. 18 5.7 1. 18 0.88 0.61 0.85 1.18 l 
R2.38 '). 73 0.56 r.o 0.94 0.11 6.7 1.06 C.87 0.69 o.a8 1.06 l 
Rl.30 ,,.67 fl.65 o.o 0.97 o. 13 5.0 1 .07 0.83 o.54 o. 76 1.07 1 
R4A 0.58 0.23 0.21 0.43 0.38 a.o o. 70 0.89 1.09 1.09 l .09 3 \I R 
R4B 0.59 0.41 C.37 0.57 0.38 9.C ').83 1.01 0.92 l .27 1.21 VEF \/ R 
k4.20A 0.58 c. 55 0.45 1.13 0.32 13.l 0.91 0.98 0.93 1.60 1.60 VEF V 
R4.208 0.57 0.37 (I. 31 0.93 C.32 11.2 0.19 0.90 1. 0,4 1.44 1.44 VEF V 

i::: R4.24A 0.56 0.63 0.44 1.07 0.37 12.5 0.96 0.96 o. 88 1.50 1.50 \IEF \I 
0 R3A 0.61 0.21 0.21 0.63 P.31 8.9 o.76 0.90 1. 10 1.22 1.22 VEF V R •.-! 
+-' 

R38 C.55 0.48 0.38 0.90 1.21 1.21 co 0.31 11. 1 0.84 0.92 fl. 79 \IEF V 
bD 

•.-! R3.20A 0.67 0.53 C.38 1).82 0.27 9.9 0.98 1.11 1.01 1.37 1.37 VEf V R 
+-' 
tll R3.2r,8 0.64 0.23 o. 17 0.56 0.21 7.5 o. 76 0.93 1.19 1.12 1.19 3V R 
(I) 

E R3.24A 0.55 0.27 0.21 0.11 0.29 9.4 0.10 0.81 0.'98 1.15 1;15 VEF V R 

'""" R3.248 o. 53 0.46 (.34 1 .c 1 0.29 11.6 0.81 0.87 o. 81 1.26 1.26 VEF V 
tll R3.30A 0.54 0.59 0.42 1.36 C'.27 12. 5 0.91 0.91 0.18 1.42 1.42 VEF V •.-! 
~ R3.30B "-55 0.25 0.19 0.89 0.27 9.5 0.69 o.ao 1.02 1.21 1.21 \/EF V R 
~ R2A r.79 0.45 0.25 0.78 0.19 8.4 l .05 1.14 1.14 1.21 1.21 \IEF V R 

R28 0.72 0.32 0.18 0.70 0 .19 1.1 0.90 1.01 l. 10 1.06 1.10 3V R 
R2.24A 0.93 0.57 0.31 0.75 0.18 8.1 1.25 1.36 1.30 1.37 1.37 VEF V R 
R2.30A 0.63 0.42 C'l.23 1.00 0.18 9.4 0.88 0.92 0.90 1.08 1.08 VEF V 
R2.30B 0.64 0.29 C'.16 ().85 0.18 8.3 o. 80 0.88 0.99 1.02 1.02 VEF V R 
R2.38A 0.62 0.48 0.26 1.24 0.11 10. 1 0.91 0.92 0.87 1.16 1.16 VEf V 
R2.38B 0.56 0.28 0.16 1 .03 0.17 9.0 0.72 0.11 o. 86 0.96 0.96 VEF V 
Rl.30A Q.61 0.43 0.21 0.96 0.13 7.5 0.86 0.94 0.11 0.89 0.94 2 
Rl.3'lB 0.59 0.21 ('1.14 'l.79 0.13 7.4 o. 74 0.85 o. 82 0.19 0.85 2 :R 

I 
t3 
l,.J 



APPENDIX D. ANALYSIS OF TEST DATA 

T 
exE. 

I T +> M 
Ul 0 Beam T M V pf V theor. 
Q) +> r eff > C1S 

No. T M V ~ bd~ 1 2 3 s::: b.O r 
1-1 •.-I 0 u 0 0 " 

Vl 0.30 0.65 1.15 0.11 0.29 4.9 0.16 1.04 0.13 
Vl* 0.47 0.50 0.89 0.43 o.;29 4.9 o.;1a 1.10 o.;36 
V2 0.41 0.49 0.88 0.47 0.29 4.9 0.12 1 .01 o.2e 
V2* 0.67 0.20 0.37 0.19 o.;29 5.0: ~.;11 1.03 0.90 
V3 0.13 0.82 1.44 2.02- 0.29 4.9 0.84 1.01 0.02 
V3* fl.61 0.47 C.84 o.;33 0.29 4.9 0.;89 l .24 o.57 
V4 0.71 0.29 0.53 0.22 o.;29 4.9 0.81 1.11 o.; a1 
V4* r,.31 0. 79 1.40 0.88 0.29 4.9 0.90 1.21 0.12 
V5* 0.10 0.1) o.o o.;10 0.29 4.5 0.10 0.84 1.21 
V6 0.19 o.ao 1.41 l. 3 8 0.29 4.9 o.;a4 1.01 0.05 

' V6* 0.64 0.41 0.74 0.30 o.;29 4.9 0.88 1.22 0.65 
V7 ').65 0.35 0.;49 0.26 o.;29 4.8 0.85 1.01 0.12 
V7* Q.;80 0.25 0.61 0.19 0.29 5.1 0.94 1.34 1.07 

Ul Ul 0.66 o.o o.o .. 0.15 0.29 5.9 0.66 o.ao 1.14 
s::: Ul* 0.61 0.24 0.33 0.30 0.29 6.5 0.11+ 0.95 0.11 

•.-I 
r-1 U2 0.21 0.82 1.11 1.33 o.;29 6.5 0.90 1.01 0.09 r-1 
0 U2* o.s1 0.38 0.52 o.;43 0.29 6.5 0. 75 0.96 0.51 u 

U3 0.51 0.63 0.86 0.64 0.29 6.5 o.;9z 1.15 0.35 
U3* 0.41 o.;a6 1.16 0.97 0.29 6.5 1.02 1.21 0.18 

Tl 0.65 0.69 0.59 0.11 o. 18 5.3 1.08 1.50 0.64 
T2 o.ao 0.22 0.18 0.38 o.; 1a 4.1 0.92 1.34 1.63 
T4 n.46 1. l l. 0.93 1.44 0.18 5.5 1.21 1.54 0.1a 
T4* 0.10 Q.;78 0.66 0.19 0.18 5.3 1.19 1.64 o.;66 
T5 0.55 0.92 0.11 1.01 0.18 5.4 1.11 1.52 0.;31 
T5* 0.;65 o.o o.o ·. 0.24 0.18 3.0 o.;6s 0.95 1.55 
T6 0.12 o.;42 o.;36 0.53 0.18 5.1 0.96 1.38 1.15 
T6* 0.25 1.24 1.04 2.65 0.18 5.7 1.29 1.35 0.05 

Critical 

T 
exp 

VEF T 
th. 

Mode 

1.64 1.64 VEF 
1.67 l.67 ~EF 
1.54 1.54 VEF 
1.46 1.46 VEF 
1.65 1.65 VEF 
1.85 1.85 VEF 
1.69 1.69 VEF 
1.91 1.91 VEF 
1.24 1.24 VEf 
1.12 1.12 VEF 
1.ao 1.ao VEF 
1.5a 1.58 VEf 
1.sa 1.88 VEF 
1.11 1.14 3 
1.30 1.30 VEF 
1.53 1.53 VEF 
1.34 1.34. VEF 
1.66 1.66 VEF 
1.80 1.ao VEF · 
1.39 1.so·2 
1.18 1.63 3V 
1.50 1.54 2 
1.53 1.64 2 
1.45 1.52 2 
0.86 1.ss 3 
1.25 1.38 2 
1.36 1.36 VEf 

Restrict-
ions 
R 
R 
R 
R 

R 
R 
R 
R 

R 
R 
R 
R 
R 

R 
R 

R 
R 

R 

R 
R. 

\ 

t:, 

~ 

'· 



I 
+> H 
tll 0 
<I) +> > Cll s:: OJ) 
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APPENDJX D. ANALYSIS OF TEST DATA 

T 
exp. 

T 

Critical 

B . I T IM IV I I pf V ff the or. I T ~~~ T 0 Mu V0 ~o if b:~ 1 I 2 I 3 jvEF T::~ Mode 

3TR3 1.16 0.0 O.O 0.29 0.00 2.~ 1.16 1.11 1.16 0.77 1.16 1 
3T~7 1.19 o.n o.o o.58 o.oo 2.0 1.19 1.14 1.19 o.a3 1.19 1 
3TRt5 1.12 n.o o.o 1.c1 o.oo 3.7 1.12 1.01 1.12 0.14 1.12 1 
3TR31 0.97 O.~ 0.0 2.C3 0.00 5.2 0.97 0.93 0.97 0.63 0.97 1 
4TR3 1.04 n.o o.o 0.21 c~oo 2.3 1.04 1.00 1.04 o.ao 1.04 1 
4TR7 1.15 n.n o.o o.43 o.oo 3.2 1.1s 1.11 1.15 0.92 1.15 1 
4TR15 1.11 o.c o.n 0.1s 0.10 4.2 1.11 1.13 1.11 0.90 1.11 1 
4TR3~ o.95 o.r n.o 1.50 0.01 6.o o.95 0.92 o.95 0.11 o.95 1 

Restrict
ions 

R 
R 

R 
R 

5TR3 C.97 0.0 O.~ 0.12 0.00 2.9 0.97 0.96 0.97 0.98 0.98 VEf R 
5TR7 0.95 0.0 O.O 0.23 0.00 4.C 0.95 0.94 0.95 1.01 1.01 VEF R 
5TR15 C.92 0.0 0.0 0.40 0.00 5.5 0.92 0.91 0.92 0.93 0.93 VEf R 

, 5TR3C c.79 c.o r.o o.e1 o.oo 7.9 o.79 0.1s o.79 0.11 o.79 1 R 
1----- R3 1.50 o.o o.o 0.19 0.02 2.4 1.50 1.61 1.83 1.54 1.83 3 R 1 

r::: 
Cll 
~ 
0 
u 

cil 
+> 
<I) 

"d 
r::: 
;::l 
tll 
<I) 

0 

R5 1.57 0.34 O.O 0.28 r.02 2.5 1.75 1.69 1.68 1.57 1.75 l R 
R2 1.65 0.72 O.O 0.38 0.03 2.4 2.05 1.78 1.55 1.73 2.05 l R 
Rl 0.90 1.17 O.O 0.75 r.03 l.6 t.66 0.97 0.53 0.94 1.66 l R 
SI 1.50 0.94 O.O 0.57 0.03 2.6 2.04 1.61 1.26 1.63 2.04 1 R 
S4 1.11 1.1a o.o 0.1s 0.03 2.2 1.90 1.26 o.ao 1.29 1.90 1 R 

1 o.a2 0.44 o.o 1.36 0.04 4.o 1.01 0.90 0.13 0.14 1.01 1 
2 o.67 o.57 n.o 3.40 o.o4 5.3 1.01 0.13 o.so o.67 1.01 1 
3 0.63 0.68 o.o 1.86 0.04 3.1 1.06 0.69 0~42 0.57 1.06 1 
4 0.44 0.7~ o.o 4.65 0.04 3.9 0.96 0.48 0.22 0.47 0.96 l 
5 0.52 0.83 o.o 2.36 0.04 2.7 1.08 0.56 0.26 0.47 1.08 l 
6 0.37 0.95 o.o 5.89 0.05 3.1 1.08 0.41 0.13 0.42 1.08 l 
1 0~45 o.96 o.o · 2.01 0.04 2.0 1.14 o.49 0.1a o.40 1.14 1 
a 0.29 o.97 o.o 1.14 0.03 2.1 1.05 0.31 o.as 0.28 1.os 1 
9 o.86 o.43 n.o o.60 0.03 3.5 1.10 1.00 0.11 o.74 1.10 1 

10 o.64 o.64 r.o o.ea o.o4 3.c 1.04 o.74 o.44 o.56 1.04 1 
11 o.69 o.5Q o.o 1.21 0.03 4.4 o.9s o.so o.55 o.s4 o.98 1 

12 0.54 0.78 o.o 1.77 0.04 3.6 1.06 0.63 0.30 0.47 1.06 1 

R 
R 

tJ 
\J1 



APPENDIX D. ANALYSIS OF TEST DATA 

T 
Critical ex:e. 

I T +> S-, pf T rn o 
T M V veff theor. 

(].) +> Beam r _]f.. ex:e Restrict-::,. co - - - -
bd/f' i:: bJ) No. T MU V r f' 1 2 3 VEF T Mode 

~ •.-1 
0 0 0 C C th. ions 

BKl 0.97 o.o o.o l .65 o.oo 6.6 0.97 0.98 0.97 o.so 0.98 2 
BKlA 0.84 o.o n.o 1.59 o.oo 6.7 0.84 0.87 0.84 0.73 0.87 2 
BK2 0.93 o.o o.o l. 36 o.oo 9.3 0.93 0.91 0.93 1 .oa 1.08 VEF V 
BK2A 0.95 o.o o.o 1.36 o.oo 9.1 0.95 0.94 0.95 1.08 1.oa VEF V 
BK3 1.15 o.o o.o 0.82 o.oo 8.2 1.15 1.19 1.15 1.21 1.21 VEf V R 
BK3A n.98 o.n o.o 0.82 o.co 9.0. 0.98 1.01 0.98 1.13 1.13 VEF V R 
BU4 f'l. 76 1.03 o.o 1.03 0.97 5.9 1. 43 0.98 0.49 1.06 1.43 l p 

BU4A l"I. 70 0.97 c.o 1.01 1.00 6.2 1.34 0.90 0.45 1.04 1.34 l p 

BU5 0.38 ').19 o.o 1.02 o.oo 13.3 0.48 0.39 0~30 0.81 0.81 VEF V 
BUSA 0.35 0.36 ,, • 0 1.43 o.oo 10 .4 0.58 0.37 0~22 0.75 0.75 VEF V 
BU6 D.48 0.60 o.o 2.29 o.oo 6.9 0.87 0.50 0.26 0.75 0.87 l 
BU6A 0.51 0.36 o.o 1.74 o.oo 8.5 o. 72 0.52 0.36 o.76 o.16 VEF V 
B117 0.61 1.29 1.17 1.23 o. 95 9.3 1. 53 1.73 0.28 2.01 2.01 VEF V p 

8117A '1.54 1.16 1 .09 1.23 o. 82 9.5 1.37 1.57 0.24 1.87 1.87 VEF V p 
bJ) 8118 0.55 0.87 0.75 1.57 0.34 12.6 1.13 1 .02 0.39 1.78 1.78 VEF V 

•.-1 
Cll 811 AA 0.53 0. 83 0.68 l.52 0.29 12.0 1.09 l.05 0.38 1.63 1.63 VEF V rn 
(].) B119 "-61 0.34 0.30 0.87 0.32 12. 4 0.81 0.93 0.82 1.43 1.43 VEF V R 
~ BII9A 0.66 0.34 C.28 0.81 0.29 ll.3 0.85 1.02 Q.91 1.43 1. 43 VEF V R 

Billi') ('.68 o.;12 0.46 1.56 0.22 9.6 1.13 1.18 0.71 1.41 1.41 VEf V 
8 I I 1 OA 0.66 0.68 0.41 1.54 0.21 9.6 1.08 1.09 0.10 1.30 1.30 VEF V 
B1111 Q.62 0.33 0.22 1.15 0.23 10. l o. 81 0.88 0.85 1.13 1.13 VEF V 
BilllA 0.62 0.35 l'l.23 1. l 8 0.23 10 .o 0.82 o.a8 0.83 1.10 1.10 VEF V 
81112 0~60 0.25 0.29 0.46 0.37 7.1 0.74 0.95 1.07 1.23 1.23 VEF R 
81112A 0.59 0.26 0.32 0.47 0.37 1.1 0.74 Q.97 1.04 1.21 1.21 VEF R 
81113 0.62 0.11 o.ao 0.85 0.62 10.6 1.12 1.38 0.54 1.83 1. 83 VEF V R p 
Bll l 3A 0.74 0.83 0.90 0.19 0. 52 11.0 1.21 1.58 0.74 2.17 2.17 VEF V R P 
BI I 14 0.6') 'l.58 0.64 0.61 0.57 8.9 0.96 1.40 0.62 1.56 1.56 VEF V R p 
BI 114A 0.78 0.12 0.81 0.54 0.51 8.3 1.22 1.91 o.ao 1.98 1.98 VEF V R p 
BI 115 o.80 o.00 0.44 1.59 0.13 1.1 1.35 1.40 o. 75 1.35 1.40 2 
81115A n. 76 0.89 0.43 1.74 0.12 7.7 1.33 1.30 0.10 1.29 1.33 l 
B1116 0.89 0.71 0~13 l .98 o.oo 5.4 1.31 1 .08 0.11 0.89 1.31 l 
Btl 16A 0.82 0.74 n.13 2.08 o.oo 5. 1 1.21 1.01 0.10 0.81 1.21 l 

t, 

------- 0--



APPENDIX D. ANALYSIS OF TEST DATA 

T Critical 
ex2. 

I pf veff T T 
+' ~ Beam T M V r theor. exp 
00 0 ~ Restrict-
Q) +' No. T M V r f' bd(iT" .l 2 3 VEF T Mode :> ro ions s:: 0.0 0 u 0 0 C C th. 

1-1 -~ 

81117A 0.74 0.97 0.24 1.85 o.oo 5.5 1.37 0.98 0.54 0.94 1.37 l 
BI 117 0.68 0.87 0.22 1.81 o.oo 5.7 1.24 0.90 o.so 0.88 1.24 1 
81118 1.11 0.40 0.22 0.40 0.01 5.5 1.33 1.47 1.18 1.56 1. 56 VEF R 
81118A 1.03 0.40 0.22 0.44 0.06 5.5 1.25 1.31 1.09 1.51 1.51 VEF R 

0.0 BI 119 0.90 0.96 0.21 0.96 o.oo 4.2 1. 50. 1.16 0.74 1.15 1.so 1 -~ 
00 BI ll 9A 0.98 0.98 0.22 0.90 o.oo 4.2 1. 59 1.23 o. 80 1.22 1.59 1 R 00 
(]) 81120 0.75 0.61 0.49 0.96 0.51 10. 5 1.11 1.19 0.96 1.55 1.55 VEF \i p 
~ 81120A 0.70 0.59 0.50 0.99 0.47 10.6 1.05 1.16 0.87 1.54 1.54 VEF \I p 

81121 0. 72 0.56 0.47 0.83 0.48 8.9 1.06 1.30 0.91 1.46 1.46 VEF \i R p 
81121A 0.49 0.49 0.45 1.03 0.45 10. 7 o.ao 0.90 0.53 1.22 1.22 VEF \i p 
IIB 0.81 0.69 0.90 0.45 o.oo 3.6 1.21 1.35 0.54 1.a1 1.81 VEF R 
II BA 1.n2 0.69 0.84 0.42 o.oo 3.3 1. 42 1 .48 0.13 1.91 1.91 VEF R 
WB 1.12 0.45 0.60 0.21 o.oo 3.7 1.36 l.~3 0.91 1.87 1.87 VEF R 
WBA 1. 11 0.47 0.61 0.29 o.oo 3.5 1.37 l.~4 0.90 1.82 1.82 VEF R 

828 0.1 0.36 1.01 o.o 1.82 o.oo 3.0 1.12 0.37 0.12 o.46 1.12 1 
828 O.lA 0.35 0.98 o.o 1.86 o.oo 3.0 1.09 o .• 3s 0.11 0.43 1.09 l 
828 0.2 0.61 0.82 o.o 1.05 o.oo 5.4 1.14 0.61 0.32 0.11 1.14 1 

:> 828 0.2A 0.65 0.89 o.o 1.01 o.oo 4.8 1.21 0.64 0.34 0.79 1.23 l 0 
~ B28 r,.4 1.10 o.74 o.o 0~67 o.oo 4.5 1. 53' 1.oa o.79 1.22 1.53 l R s:: 

828 f'.4A 1.05 0.11 o.o' 0.67 o.oo 4.5 1.46 1 .03 0.75 1.16 1.46 l R (]) 

s:: 828 0.48 1.04 0. 71 o.o 0.67 o.oo · 3. 8 1.45 1.02 0~ 75 1.13 1.45 1 R -~ .c:: 828 0 .4C 1.06 0.68 o.o 0.59 o.oo 3.9 1.45 1.01 0.11 1.11 1.45 1 R u 
828 0.40 0.94 0.66 o.o 0.69 o.oo 4.9 1.33 0.95 0.61 1.08 1.33 1 R 
828 0.4E 0.98 Q.;66 o.o 0.66 o.oo 4.9 1.37 0.99 0.11 1.14 1.37 l R 
828 0.4F 0. 73 o.;69 o.o 1.30 o.oo 6.2 1.15 0. 73 0.46 0.90 1.15 1 

e 
-J 



APPENDIX D. ANALYSIS OF TEST DATA 

i ~ pf veff Ul 0 Beam T M V r 
Q) 1d - ~ > 0( No. T M V r f' bd/f' .E •.-1 0 u 0 0 C . C 

88 K 0.69 o.o c.o 0.50 o.oo 9.4 
88 KA 'l.84 o.o o.o o.so o.oo 7.6 
B8 0.1 0.29 1.04 0.44 3.08 o.oo 5.8 
88 O.lA rJ.30 1.03 f'.47 2.86 o.oo 6.2 
B8 '.'.>.2 fl. 51 0.89 0.42 1.73 o.o a.1 
88 0.2A n.54 0.96 0.41 1.78 o.oo 7.3 

88 C'.4 ~.70 J.63 n.3') 1.09 o.oo a.a 
88 0.4A ii.75 0.64 0.21 1 .05 o.oo s.o. 
B 7 '.'.2 0.62 0.88 0.49 1.13 o.oo 7.1 
87 t:l.2A 0.61 0.87 0.45 1.16 o.oo 6.5 
810 !'.2 0.51 1. 06 0.40 2.45 o.oo 6.8 
810 n.2A 0.50 1 .03 o.;31 2.42 o.oo 6.6 
B1 0.53 1 .13 0.41 2.04 o.oo 5.7 

i:: BIA 0.52 1.oa 0.48 1.91 o.oo 6.4 •.-1 
..-I 

82 o.;s5 1 .06 0.39 1.98 o.oo 5.7 ell 
>, 

82A n.53 0.98 0.39 1.83 o.oo 6.0 ~ 
83 0.74 0.70 0.41 1.22 o.oo 7.5 
83A 0.74 0~70 0.41 1.23 o.oo 7.5 
85 0.59 0.95 0.40 1.60 o.oo 6.4 
85A 0.60 1.03 0.40 1.76 Q.;OQ 5.6 
86 0.11 0.93 0.41 1.23 o.;oo 7.4 
86A r,.;77 1.02 0.44 1.24 o.oo 7.4 
B7 0.;85 o.o o.o. 1.35 o.;oo 12.4 
87A o.ao o.o o.o 1.21 o.oo 13.5 
B8 0.86 0.32 0.12 0.84 o.;oo 8.2 
BSA 0.90 0.35 0.11 0.;89 o.oo 7.7 
B9 0.44 0.65 o. 86 1.14 o.o 12.4 
89A 0.50 o.;66 0.95 0.98 o.oo. 12. l 
B10 .· 0.34 o.;s8 0.65 1.49 o.oo 10.;9 
BlfM 0.48 Q.67 0.87 1.11 o.oo 12.4 
B11 0.4J 0.82 0.86 1.44 o.;oo 12.0 ·. 
BUA o.;so. Q.;91 0.83 1.59 o.;oo 11.7 
B12 0.32 0.;32 o.;35 1.03 o.oo 12.9 
812A 0.42 0.43 0.46 1.06 o.oo 12. 7 

T 
exQ. 

T . 
theor. 

. l 2 3 

0.69 o.&9 0.69 
o. 84 o.;a4 0.84 
1. l 1 o.;s1 o.oa 
1. 11 0.58 o.08 
1.12 0.75 0.21 
1.20 o.eo 0.28 
1.09 0.88 0.53 
1.13 o.93 0.57 
1.20 0.92 0.33 
1.19 0.90 0.32 
1.26 0.1s 0.21 
1.23 o.73 0.26 
1.33 o.ao 0.25 
1.29 0.84 0.2:1 
1.29 0.83 0.26 
1.22 o. 81 0.25 
1.11 1.03 0.47 
1.11 1.03 o.;1t1 
1.22 0.88 0.28. 
1.31 0.;91 0.29 
1.31 1.00 0.42 
1.43. 1.09 0.;46 
0.85 o.as o.;as 
0.80 o.ao 0r.ao 
1.03 -0.93 Q.;78 
1.09 o.;99 0.'82 
o.a1 o.;eo o.;22 
o.;93 0.89 0.21 
0.74 0.64 O.il6 
Q.;91 0.84 o.;25 
1.04 Q.;89 o.; 22 
1.13 0.93 o.;22 
0.52 0.49 0.20 
0.68 0.63 o.;2s 

VEF 

1.01 
0.98 
o.a1 
0.86 
1.13 
1.09 
1.24 
1.16 
1.31 
1.22 
1.01 
1.00 
1.03 
1.11 
0.99 
0.99 
1.25 
1.24 
1.02 
1.01 
1.21 
1.32 
1.32 
1.35 
1.1s 
1.01 
1.11 
2.01 
1.25 
1.84 
1.10. 
l.65 
0.95 
1.22 

Critical 

T 
exo 

T Mode 
th. 

1.01 VEF V 
0.98 VEF 
1.11 1 
1.11 l 
1.13 VEF V 
1.20 1 
1.24 VEF V 
1.16 VEF 
1.31 VEF 
1.22 VEF 
1.26 l 
1.23 1 
1.33 1 
1.29 l 
1.29 l 
1.22 l 
1.25 VEF 
1.24 VEF 
1.22 l 
1.31 1 
1. 31 l 
1.43 1 
1.32 VEF V 
1.35 VEF V 
1.15 VEF V 
1.09 1 
1.11 VEF V 
2.01 VEF Y 
1.25 VEF V 
1.84 VEF V 
1.10 VEF V 
1.65 VEF ·v 
0.95 VEF V 
1.22 VEF V 

Restrict-
ions 

R 
R 

R 
R 

t:r 
00 



APPENDIX D. ANALYSIS OF TEST DATA 

T Critical 
ex:12 

I T +> S-4 pf veff theor. T 
{I) 0 Beam T M V Q,) +> r -:._i exp - Restrict-> c,j No. T M V r f' bd/F 1 2 3 VEF T Mode i::: b.O 

1-1 ..... 0 u 0 0 C C th. ions 

l 0.59 0.69 0.37 0.85 0.28 1.0 1.03 1.oa o. so 1.02 1.oe 2 R 
2 o.59 0.69 0.37 0.85 0.28 7.0 1.03 1.00 o,. 50 1.02 1.08 2 R 
6 0.37 0.87 0.46 1.43 0.28 6.4 1.01 o.e<J 0.15 o.8a 1.01 l 
1 0.81 0.94 0.50 0.85 0.28 7.0 1.41 1.48 0.69 1.40 1.48 2 R 

10 0.48 1. 13 0.60 1.44 0.28 6.4 1.31 1.15 0.19 1.13 1.31 1 
3 0.68 1.14 0.55 1.69 0.2a 8.5 1.46 1.25 0.59 1.55 1.55 VEF \I 
4 0.68 1.14 0.55 1.69 0.28 8.5 1.46 1.25 0.59 1.55 1.55 VEF \I 

i::: 8 0.75 1.25 0.61 l.69 0.28 8.5 1.60 1.38 0.65 1.11 1.11 VEF \I 
..... 9 r.75 1.25 0.61 1.69 0.28 8.5 1.60 1.38 0.65 1.11 1.11 VEF \I 'O 
;::s 11 0.91 1.16 C.53 1.co o.oo 7.1 1.66 1.36 ,.so 1.48 1.66 1 
~ 12 o.;11 0.9(' t'l.41 1 .ro o.oo 7.1 1.29 1.os 0.39 1.15 1.29 l 

13 0.11 0.90 0.41 1.00 o.oo 7.1 1.29 1 .05 0.39 1.15 1.29 l 
17 0.66 0.59 0.42 0.50 0.20 5.2 1.02 1.13 0.52 1.11 1.11 VEF R 
18 0.12 0.65 0.46 0.50 0.20 5.2 1.12 1.24 0..5i7 1.29 1.29 VEF R 
19 0.12 0.65 0.46 0.50 0.20 5.2 1.12 1.24 0.57 1.29 1.29 VEF R 
2il 0.83 0.75 0.53 0.50 o. 20 5. 2 1.29 l .43 0.65 1.49 1.49 VEF R 
21 0.72 ().65 0.46 0.50 0.20 5.2 1.12 1.21. o.s1 1.29 1.29 VEF R 
22 0.10 0.89 0.38 1.0, 0.19 4.2 1.28 0.88 0.32 1.05 1.28 1 
HBl 1.00 o.o c~o 0.92 0.01 2.9 1.00 1.06 1.1s 0.81 1.15 3 
HB2 0.11 0~78 o.o l .89 0.01 2.1 1.25 0.82 0.51 0.63 1.25 1 
HB3 1).48 o.;e9 o.o 2.68 0.01 1.s 1.10 o.so 0.21 0.40 1.10 l 

s... H84 0.35 0.94 o.o 3.47 0.01 1.1 1.05 0~37 0~12 0.28 1.05 l 
c,j HB5 0.31 O.97 o.o 3.88 0.01 1.1 1.06 0.33 0.09 0.26 1.06 l 
~ HB7 0.81 o.o' o.o 0.87 o.oo ', 3. 2 0~81 0.82 0.86 0.65 0.86 3 R S-4 
c,j HB8 0~48 0.83 o.o 2.48 o.oo 1.5 1.os 0.49 0.22 0.38 1.05 1 rn 

'O H89 'l.38 o.a3 o.o 3.00 0.02 1.6 0.98 0.39 0.15 0.32 0.98 1 
i::: HBlO o.;35 0.87 o.o 3.28 0.01 1.2 0~99 0.36 0.13 0.21 0.99 1 c,j 

{I) HBll 0.29 0.91 o.o 3.91 0.01 1.1 0.99 0.10 0~08 0.24 0.99 1 
i::: HB13 0.94 o.o o.o 0.87 o.oo 2.9 0.94 0~93 0.99 0.67 0.99 3 R 
c,j 

> H814 0.69 0.57 o. () 1.10 0.01 2.2 1.03 0.70 o.so o.so 1.03 1 
ri1 H815 0.55 0.84 o.o 2.31 o.oo 1.s 1.11 0.54 0.21 0.39 1.11 1 

H816 0.39 0.90 o.o 3.11 0.01 1. 4 1.05 0.40 0.15 0.30 1.05 l 
HB17 0.32 0.96 o.o 3.75 0.01 0.9 1.06 o.33 o. 10 0.23 1.0.6 1 t, 

'° 
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